1
|
Garaycochea J, Slaughter MM. GABAB receptors enhance excitatory responses in isolated rat retinal ganglion cells. J Physiol 2016; 594:5543-54. [PMID: 27112134 DOI: 10.1113/jp272374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/21/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS GABA is an inhibitory transmitter but can sometimes produce paradoxical excitatory effects through synaptic networks. We found a novel GABA-mediated excitation within a single retinal cell. It involves a chain of events from receptor stimulation to the sequential modulation of two associated channels, resulting in enhanced neuroexcitability. GABAB receptor activation selectively suppresses N-type calcium channels. The BK-type potassium channels are exclusively linked to the N-type calcium channel. Thus, stimulation of GABAB receptors suppresses an outward current, increasing the excitatory range of single neurons. ABSTRACT GABAB receptors (GABAB Rs) suppress voltage-gated calcium channels and activate G-protein coupled potassium channels (GIRK and TREK channels), both mechanisms serving to inhibit neurons. In isolated rat retinal spiking neurons, GABAB Rs produce both actions but the net effect is to enhance excitatory signals. This is because GABAB Rs selectively suppress N-type calcium channels, which in turn are specifically linked to BK channels. Consequently, when GABAB Rs are stimulated there is a reduction in outward current, allowing neurons to extend their level of depolarization. Whereas many retinal neurons use L-type channels to stimulate vesicle fusion, the suppression of N-type channels augments dynamic range without affecting transmitter release.
Collapse
Affiliation(s)
- Jay Garaycochea
- Neuroscience Program and Department of Physiology & Biophysics, University at Buffalo School of Medicine, 124 Sherman Hall Buffalo, NY, 14214, USA.,Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Malcolm M Slaughter
- Neuroscience Program and Department of Physiology & Biophysics, University at Buffalo School of Medicine, 124 Sherman Hall Buffalo, NY, 14214, USA.
| |
Collapse
|
2
|
GABAB receptor antagonist CGP46381 inhibits form-deprivation myopia development in guinea pigs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:207312. [PMID: 25649745 PMCID: PMC4306252 DOI: 10.1155/2015/207312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/02/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
The aim was to investigate the effects of the GABAB receptor antagonist, CGP46381, on form-deprivation myopia (FDM) in guinea pigs. Twenty-four guinea pigs had monocular visual deprivation induced using a diffuser for 11 days (day 14 to 25). The deprived eyes were treated with daily subconjunctival injections (100 μl) of either 2% CGP46381, 0.2% CGP46381, or saline or received no injection. The fellow eyes were left untreated. Another six animals received no treatment. At the start and end of the treatment period, ocular refractions were measured using retinoscopy and vitreous chamber depth (VCD) and axial length (AL) using A-scan ultrasound. All of the deprived eyes developed relative myopia (treated versus untreated eyes, P < 0.05). The amount of myopia was significantly affected by the drug treatment (one-way ANOVA, P < 0.0001). The highest dose tested, 2% CGP46381, significantly inhibited myopia development compared to saline (2% CGP46381: −1.08 ± 0.40 D, saline: −4.33 ± 0.67 D, P < 0.01). The majority of these effects were due to less AL (2% CGP46381: 0.03 ± 0.01 mm, saline: 0.13 ± 0.02 mm, P < 0.01) and VCD (2% CGP46381: 0.02 ± 0.01 mm, saline: 0.08 ± 0.01 mm, P < 0.01) elongation. The lower dose tested, 0.2% CGP46381, did not significantly inhibit FDM (P > 0.05). Subconjunctival injections of CGP46381 inhibit FDM development in guinea pigs in a dose-dependent manner.
Collapse
|
3
|
Cheng ZY, Wang XP, Schmid KL, Han XG. GABAB1 and GABAB2 receptor subunits co-expressed in cultured human RPE cells regulate intracellular Ca2+ via Gi/o-protein and phospholipase C pathways. Neuroscience 2014; 280:254-61. [PMID: 25241062 DOI: 10.1016/j.neuroscience.2014.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 11/26/2022]
Abstract
GABAB receptors associate with Gi/o-proteins that regulate voltage-gated Ca(2+) channels and thus the intracellular Ca(2+) concentration ([Ca(2+)]i), there is also reported cross-regulation of phospholipase C. These associations have been studied extensively in the brain and also shown to occur in non-neural cells (e.g. human airway smooth muscle). More recently GABAB receptors have been observed in chick retinal pigment epithelium (RPE). The aims were to investigate whether the GABAB receptor subunits, GABAB1 and GABAB2, are co-expressed in cultured human RPE cells, and then determine if the GABAB receptor similarly regulates the [Ca(2+)]i of RPE cells and if phospholipase C is involved. Human RPE cells were cultured from five donor eye cups. Evidence for GABAB1 and GABAB2 mRNAs and proteins in the RPE cell cultures was investigated using real time polymerase chain reaction, western blots and immunofluorescence. The effects of the GABAB receptor agonist baclofen, antagonist CGP46381, a Gi/o-protein inhibitor pertussis toxin, and the phospholipase C inhibitor U73122 on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo-3. Both GABAB1 and GABAB2 mRNA and protein were identified in cell cultures of human RPE; antibody staining was co-localized to the cell membrane and cytoplasm. One-hundred micromolars of baclofen caused a transient increase in the [Ca(2+)]i of RPE cells regardless of whether Ca(2+) was added to the buffer. Baclofen-induced increases in the [Ca(2+)]i were attenuated by pre-treatment with CGP46381, pertussis toxin, and U73122. GABAB1 and GABAB2 are co-expressed in cell cultures of human RPE. GABAB receptors in RPE regulate the [Ca(2+)]i via a Gi/o-protein and phospholipase C pathway.
Collapse
Affiliation(s)
- Z-Y Cheng
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| | - X-P Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - K L Schmid
- School of Optometry and Vision Science, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - X-G Han
- Department of Ophthalmology, The Second Hospital, Jinan, Shandong 250001, China
| |
Collapse
|
4
|
Abstract
Muscarinic agonists act mainly via muscarinic M₃ cholinoceptors to cause contraction of the iris sphincter, ciliary muscle and trabecular meshwork as well as increase outflow facility of aqueous humour. In the iris dilator, the effect of muscarinic agonists is species dependent but is predominantly relaxation via muscarinic M₃ receptors. In the conjunctiva, muscarinic agonists stimulate goblet cell secretion which contributes to the protective tear film. Muscarinic M₂ and M₃ receptors appear mainly involved. In the lens muscarinic agonists act via muscarinic M₁ receptors to produce depolarization and increase [Ca(2+)](i). All five subtypes of muscarinic receptor are present in the retina. In the developing retina, acetylcholine appears to limit purinergic stimulation of retinal development and decrease cell proliferation. In the adult retina acetylcholine and other muscarinic agonists may have complex effects, for example, enhancing light-evoked neuronal firing in transient ON retinal ganglion cells and inhibiting firing in OFF retinal ganglion cells. In the lacrimal gland, muscarinic agonists activate M₃ receptors on secretory globular acinar cells to stimulate tear secretion and also cause contraction of myoepithelial cells. In Sjögren's syndrome, antibodies to the muscarinic M₃ receptor disrupt normal gland function leading to xerophthalmia although the mechanism of action of the antibody is still not clear. Atropine and pirenzepine are useful in limiting the development of myopia in children probably by an action on muscarinic receptors in the sclera, although many other muscarinic receptor antagonists are not effective.
Collapse
Affiliation(s)
- Frederick Mitchelson
- Department of Pharmacology, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
5
|
Borst A, Euler T. Seeing Things in Motion: Models, Circuits, and Mechanisms. Neuron 2011; 71:974-94. [PMID: 21943597 DOI: 10.1016/j.neuron.2011.08.031] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 12/31/2022]
|
6
|
The influences of metabotropic receptor activation on cellular signaling and synaptic function in amacrine cells. Vis Neurosci 2011; 29:31-9. [PMID: 21864448 DOI: 10.1017/s0952523811000204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAmacrine cells receive glutamatergic input from bipolar cells and GABAergic, glycinergic, cholinergic, and dopaminergic input from other amacrine cells. Glutamate, GABA, glycine, and acetylcholine (ACh) interact with ionotropic receptors and it is these interactions that form much of the functional circuitry in the inner retina. However, glutamate, GABA, ACh, and dopamine also activate metabotropic receptors linked to second messenger pathways that have the potential to modify the function of individual cells as well as retinal circuitry. Here, the physiological effects of activating dopamine receptors, metabotropic glutamate receptors, GABAB receptors, and muscarinic ACh receptors on amacrine cells will be discussed. The retina also expresses metabotropic receptors and the biochemical machinery associated with the synthesis and degradation of endocannabinoids and sphingosine-1-phosphate (S1P). The effects of activating cannabinoid receptors and S1P receptors on amacrine cell function will also be addressed.
Collapse
|
7
|
Song Y, Slaughter MM. GABA(B) receptor feedback regulation of bipolar cell transmitter release. J Physiol 2010; 588:4937-49. [PMID: 20974680 DOI: 10.1113/jphysiol.2010.194233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABAergic amacrine cell feedback to bipolar cells in retina has been described, activating both GABA(A) and GABA(C) receptors. We explored whether metabotropic GABA(B) receptors also participate in this feedback pathway. CGP55845, a potent GABA(B) receptor antagonist, was employed to determine the endogenous role of these receptors. Ganglion cell EPSCs and IPSCs were monitored to measure the output of bipolar and amacrine cells. Using the tiger salamander slice preparation, we found that GABA(B) receptor pathways regulate bipolar cell release directly and indirectly. In the direct pathway, the GABA(B) receptor antagonist reduces EPSC amplitude, indicating that GABA(B) receptors cause enhanced glutamate release from bipolar cells to one set of ganglion cells. In the indirect pathway, the GABA(B) receptor antagonist reduces EPSC amplitude in another set of ganglion cells. The indirect pathway is only evident when GABA(A) receptors are inhibited, and is blocked by a glycine receptor antagonist. Thus, this second feedback pathway involves direct glycine feedback to the bipolar cell and this glycinergic amacrine cell is suppressed by GABAergic amacrine cells, through both GABA(A) and GABA(B) but not GABA(C) receptors. Overall, GABA(B) receptors do contribute to feedback regulation of bipolar cell transmitter release. However, unlike the ionotropic GABA receptor pathways, the metabotropic GABA receptor pathways act to enhance bipolar cell transmitter release. Furthermore, there are three discrete subsets of bipolar cell output regulated by GABA(B) receptor feedback (direct, indirect and null), implying three distinct, non-overlapping bipolar cell to ganglion cell circuits.
Collapse
Affiliation(s)
- Yunbo Song
- Department of Physiology & Biophysics, Center for Neuroscience, 124 Sherman Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | |
Collapse
|
8
|
Cimini BA, Strang CE, Wotring VE, Keyser KT, Eldred WD. Role of acetylcholine in nitric oxide production in the salamander retina. J Comp Neurol 2008; 507:1952-63. [PMID: 18273886 DOI: 10.1002/cne.21655] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although acetylcholine is one of the most widely studied neurotransmitters in the retina, many questions remain about its downstream signaling mechanisms. In this study we initially characterized the cholinergic neurotransmitter system in the salamander retina by localizing a variety of cholinergic markers. We then examined the link between both muscarinic and nicotinic receptor activation and nitric oxide production by using immunocytochemistry for cyclic guanosine monophosphate (cGMP) as an indicator. We found a large increase in cGMP-like immunoreactivity (cGMP-LI) in the inner retina in response to muscarinic (but not nicotinic) receptor activation. Based on the amplification of mRNA transcripts, receptor immunocytochemistry, and the use of selective antagonists, we identified these receptors as M2 muscarinic receptors. Using double-labeling techniques, we established that these increases in cGMP-LI were seen in GABAergic but not cholinergic amacrine cells, and that the increases were blocked by inhibitors of nitric oxide production. The creation of nitric oxide in response to cholinergic receptor activation may provide a mechanism for modulating the well-known mutual interactions of acetylcholine-glycine-GABA in the inner retina. As GABA and glycine are the primary inhibitory neurotransmitters in the retina, signaling pathways that modulate their levels or release will have major implications for the processing of complex stimuli by the retina.
Collapse
Affiliation(s)
- Beth A Cimini
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
9
|
Grzywacz NM, Zucker CL. Modeling Starburst cells' GABA(B) receptors and their putative role in motion sensitivity. Biophys J 2006; 91:473-86. [PMID: 16648160 PMCID: PMC1483088 DOI: 10.1529/biophysj.105.072256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 04/10/2006] [Indexed: 11/18/2022] Open
Abstract
Neal and Cunningham (Neal, M. J., and J. R. Cunningham. 1995. J. Physiol. (Lond.). 482:363-372) showed that GABA(B) agonists and glycinergic antagonists enhance the light-evoked release of retinal acetylcholine. They proposed that glycinergic cells inhibit the cholinergic Starburst amacrine cells and are in turn inhibited by GABA through GABA(B) receptors. However, as recently shown, glycinergic cells do not appear to have GABA(B) receptors. In contrast, the Starburst amacrine cell has GABA(B) receptors in a subpopulation of its varicosities. We thus propose an alternate model in which GABA(B)-receptor activation reduces the release of ACh from some dendritic compartments onto a glycinergic cell, which then feeds back and inhibits the Starburst cell. In this model, the GABA necessary to make these receptors active comes from the Starburst cell itself, making them autoreceptors. Computer simulations of this model show that it accounts quantitatively for the Neal and Cunningham data. We also argue that GABA(B) receptors could work to increase the sensitivity to motion over other stimuli.
Collapse
Affiliation(s)
- Norberto M Grzywacz
- Department of Biomedical Engineering, Neuroscience Graduate Program, and Center For Visual Science and Technology, University of Southern California, Los Angeles, California, USA.
| | | |
Collapse
|
10
|
Münch TA, Werblin FS. Symmetric interactions within a homogeneous starburst cell network can lead to robust asymmetries in dendrites of starburst amacrine cells. J Neurophysiol 2006; 96:471-7. [PMID: 16598066 DOI: 10.1152/jn.00628.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Starburst amacrine cells in the mammalian retina respond asymmetrically to movement along their dendrites; centrifugal movement elicits stronger responses in each dendrite than centripetal movement. It has been suggested that the asymmetrical response can be attributed to intrinsic properties of the processes themselves. But starburst cells are known to release and have receptors for both GABA and acetylcholine. We tested whether interactions within the starburst cell network can contribute to their directional response properties. In a computational model of interacting starburst amacrine cells, we simulated the response of individual dendrites to moving light stimuli. By setting the model parameters for "synaptic connection strength" (cs) to positive or negative values, overlapping starburst dendrites could either excite or inhibit each other. For some values of cs, we observed a very robust inward/outward asymmetry of the starburst dendrites consistent with the reported physiological findings. This is the case, for example, if a starburst cell receives inhibition from other starburst cells located in its surround. For other values of cs, individual dendrites can respond best either to inward movement or respond symmetrically. A properly wired network of starburst cells can therefore account for the experimentally observed asymmetry of their response to movement, independent of any internal biophysical or biochemical properties of starburst cell dendrites.
Collapse
Affiliation(s)
- Thomas A Münch
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
11
|
Zucker CL, Nilson JE, Ehinger B, Grzywacz NM. Compartmental localization of gamma-aminobutyric acid type B receptors in the cholinergic circuitry of the rabbit retina. J Comp Neurol 2005; 493:448-59. [PMID: 16261535 PMCID: PMC2849668 DOI: 10.1002/cne.20766] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although many effects of gamma-aminobutyric acid (GABA) on retinal function have been attributed to GABA(A) and GABA(C) receptors, specific retinal functions have also been shown to be mediated by GABA(B) receptors, including facilitation of light-evoked acetylcholine release from the rabbit retina (Neal and Cunningham [1995] J. Physiol. 482:363-372). To explain the results of a rich set of experiments, Neal and Cunningham proposed a model for this facilitation. In this model, GABA(B) receptor-mediated inhibition of glycinergic cells would reduce their own inhibition of cholinergic cells. In turn, muscarinic input from the latter to the glycinergic cells would complete a negative-feedback circuitry. In this study, we have used immunohistochemical techniques to test elements of this model. We report that glycinergic amacrine cells are GABA(B) receptor negative. In contrast, our data reveal the localization of GABA(B) receptors on cholinergic/GABAergic starburst amacrine cells. High-resolution localization of GABA(B) receptors on starburst amacrine cells shows that they are discretely localized to a limited population of its varicosities, the majority of likely synaptic-release sites being devoid of detectable levels of GABA(B) receptors. Finally, we identify a glycinergic cell that is a potential muscarinic receptor-bearing target of GABA(B)-modulated acetylcholine release. This target is the DAPI-3 cell. We propose, based on these data, a modification of the Neal and Cunningham model in which GABA(B) receptors are on starburst, not glycinergic amacrine cells.
Collapse
Affiliation(s)
- Charles L Zucker
- Department Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
12
|
Dacheux RF, Chimento MF, Amthor FR. Synaptic input to the on-off directionally selective ganglion cell in the rabbit retina. J Comp Neurol 2003; 456:267-78. [PMID: 12528191 DOI: 10.1002/cne.10521] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A physiologically identified on-off directionally selective (DS) ganglion cell with its preferred-null axis defined was stained with horseradish peroxidase (HRP) and prepared for electron microscopy. A continuous series of thin sections were used to examine the cell's synaptology. Although the DS cell dendrite received the majority of its synaptic input from a heterogeneous population of amacrine cell processes, a frequently observed synaptic profile consisted of a DS cell dendrite receiving synapses from a cluster of several amacrine cell processes. These clusters of processes were assumed to be from a fascicle of amacrine cells, most of which probably belonged to several different cholinergic starburst amacrine cells. The most frequently observed presynaptic profile within the clusters consisted of a synaptic couplet in which two processes synapsed with each other before one of them finally synapsed with the DS ganglion cell dendrite; occasionally, a chain of three serial synapses was seen. In addition, a specific microcircuit that has the potential to exert lateral feedforward inhibition was also observed. This microcircuit consisted of two cone bipolar cell terminal dyad synapses where one dyad contained an amacrine cell process making a reciprocal synapse and a DS ganglion cell dendrite receiving direct excitation; the other dyad synapse, found lateral to the first dyad, contained two amacrine cell processes that both made reciprocal synapses, but one fed forward to make a putative inhibitory synapse with the DS cell dendrite.
Collapse
Affiliation(s)
- Ramon F Dacheux
- Department of Ophthalmology, University of Alabama at Birmingham, Callahan Eye Foundation Hospital, 35294-0009, USA.
| | | | | |
Collapse
|
13
|
Stasheff SF, Masland RH. Functional inhibition in direction-selective retinal ganglion cells: spatiotemporal extent and intralaminar interactions. J Neurophysiol 2002; 88:1026-39. [PMID: 12163551 DOI: 10.1152/jn.2002.88.2.1026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded from ON-OFF direction-selective ganglion cells (DS cells) in the rabbit retina to investigate in detail the inhibition that contributes to direction selectivity in these cells. Using paired stimuli moving sequentially across the cells' receptive fields in the preferred direction, we directly confirmed the prediction of that a wave of inhibition accompanies any moving excitatory stimulus on its null side, at a fixed spatial offset. Varying the interstimulus distance, stimulus size, luminance, and speed yielded a spatiotemporal map of the strength of inhibition within this region. This "null" inhibition was maximal at an intermediate distance behind a moving stimulus: 1/2 to 11/2 times the width of the receptive field. The strength of inhibition depended more on the distance behind the stimulus than on stimulus speed, and the inhibition often lasted 1-2 s. These spatial and temporal parameters appear to account for the known spatial frequency and velocity tuning of ON-OFF DS cells to drifting contrast gratings. Stimuli that elicit distinct ON and OFF responses to leading and trailing edges revealed that an excitatory response of either polarity could inhibit a subsequent response of either polarity. For example, an OFF response inhibited either an ON or OFF response of a subsequent stimulus. This inhibition apparently is conferred by a neural element or network spanning the ON and OFF sublayers of the inner plexiform layer, such as a multistratified amacrine cell. Trials using a stationary flashing spot as a probe demonstrated that the total amount of inhibition conferred on the DS cell was equivalent for stimuli moving in either the null or preferred direction. Apparently the cell does not act as a classic "integrate and fire" neuron, summing all inputs at the soma. Rather, computation of stimulus direction likely involves interactions between excitatory and inhibitory inputs in local regions of the dendrites.
Collapse
Affiliation(s)
- Steven F Stasheff
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston 02115, USA.
| | | |
Collapse
|
14
|
A critical role of the strychnine-sensitive glycinergic system in spontaneous retinal waves of the developing rabbit. J Neurosci 2001. [PMID: 11438591 DOI: 10.1523/jneurosci.21-14-05158.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing vertebrate retina, spontaneous electric activity occurs rhythmically in the form of propagating waves and is believed to play a critical role in activity-dependent visual system development, including the establishment of precise retinal and geniculate circuitry. To elucidate how spontaneous retinal waves encode specific developmental cues at various developmental stages, it is necessary to understand how the waves are generated and regulated. Using Ca(2+) imaging and patch clamp in a flat-mount perinatal rabbit retinal preparation, this study demonstrates that, in addition to the cholinergic system, a strychnine-sensitive system in the inner retina plays an obligatory and developmentally regulated role in the initiation and propagation of spontaneous retinal waves. This system, which is believed to be the glycinergic network, provided an excitatory drive during early retinal development. It then became inhibitory after postnatal day 1 (P1) to P2, an age when a number of coordinated transitions in neurotransmitter systems occurred concomitantly, and finally contributed to the complete inhibition and disappearance of spontaneous waves after P7-P9. This glycinergic contribution was notably distinct from that of the ionotropic GABAergic system, which was found to exert an inhibitory but nonessential influence on the early wave formation. Blocking glycine- and GABA-gated anion currents had opposing effects on spontaneous retinal waves between embryonic day 29 and P0, suggesting that Cl(-) transporters, particularly R(+)-butylindazone-sensitive K-Cl cotransporters, may have a synapse- and/or cell type-specific distribution pattern, in addition to an age-dependent expression pattern in the inner retina. Overall, the results revealed an important reliance of spontaneous retinal waves on dynamic and coordinated interactions among multiple, nonredundant neurotransmitter systems.
Collapse
|
15
|
Zhou ZJ. A critical role of the strychnine-sensitive glycinergic system in spontaneous retinal waves of the developing rabbit. J Neurosci 2001; 21:5158-68. [PMID: 11438591 PMCID: PMC6762834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2001] [Revised: 04/24/2001] [Accepted: 04/27/2001] [Indexed: 02/20/2023] Open
Abstract
In the developing vertebrate retina, spontaneous electric activity occurs rhythmically in the form of propagating waves and is believed to play a critical role in activity-dependent visual system development, including the establishment of precise retinal and geniculate circuitry. To elucidate how spontaneous retinal waves encode specific developmental cues at various developmental stages, it is necessary to understand how the waves are generated and regulated. Using Ca(2+) imaging and patch clamp in a flat-mount perinatal rabbit retinal preparation, this study demonstrates that, in addition to the cholinergic system, a strychnine-sensitive system in the inner retina plays an obligatory and developmentally regulated role in the initiation and propagation of spontaneous retinal waves. This system, which is believed to be the glycinergic network, provided an excitatory drive during early retinal development. It then became inhibitory after postnatal day 1 (P1) to P2, an age when a number of coordinated transitions in neurotransmitter systems occurred concomitantly, and finally contributed to the complete inhibition and disappearance of spontaneous waves after P7-P9. This glycinergic contribution was notably distinct from that of the ionotropic GABAergic system, which was found to exert an inhibitory but nonessential influence on the early wave formation. Blocking glycine- and GABA-gated anion currents had opposing effects on spontaneous retinal waves between embryonic day 29 and P0, suggesting that Cl(-) transporters, particularly R(+)-butylindazone-sensitive K-Cl cotransporters, may have a synapse- and/or cell type-specific distribution pattern, in addition to an age-dependent expression pattern in the inner retina. Overall, the results revealed an important reliance of spontaneous retinal waves on dynamic and coordinated interactions among multiple, nonredundant neurotransmitter systems.
Collapse
Affiliation(s)
- Z J Zhou
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| |
Collapse
|
16
|
Zucker CL, Ehinger B. Complexities of retinal circuitry revealed by neurotransmitter receptor localization. PROGRESS IN BRAIN RESEARCH 2001; 131:71-81. [PMID: 11420982 DOI: 10.1016/s0079-6123(01)31008-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C L Zucker
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | |
Collapse
|
17
|
Developmental expression of muscarinic acetylcholine receptors in chick retina: selective induction of M2 muscarinic receptor expression in ovo by a factor secreted by muller glial cells. J Neurosci 2001. [PMID: 11069949 DOI: 10.1523/jneurosci.20-22-08417.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) play an important role in signal processing in the retina. We have used subtype-specific antibodies to identify the changes in the localization of mAChR expression during embryonic development of the retina in vivo and their relationship to the changes in mAChRs in retinal cells in culture. We have demonstrated previously that treatment of fresh retinal cultures with conditioned media from mature retinal cultures specifically induces expression of the M(2) mAChR (McKinnon et al., 1998). We show that the M(2)-inducing activity, which we tentatively have called MARIA (muscarinic acetylcholine receptor-inducing activity) is produced by Müller glial cells in culture, because significant activity can be found in media conditioned by essentially neuron-free cultures of Müller glia, as well as by a Müller glial cell line but not several neuroblastoma cell lines. We also demonstrate that the appearance of the M(2) receptor in vivo occurs concomitantly with the appearance of significant numbers of Müller glial cells in the developing retina. Furthermore, the administration of crude or partially purified preparations of MARIA to developing chick embryos in ovo induces precocious expression of M(2) mAChRs in the appropriate cell types in the retina. These results show that a factor secreted by cultured retinal Müller glia can regulate M(2) mAChR expression in vivo and in vitro and suggest that the secretion of MARIA by Müller glia in vivo may be responsible for the normal induction of M(2) mAChR expression during embryonic development.
Collapse
|
18
|
Belmonte KE, McKinnon LA, Nathanson NM. Developmental expression of muscarinic acetylcholine receptors in chick retina: selective induction of M2 muscarinic receptor expression in ovo by a factor secreted by muller glial cells. J Neurosci 2000; 20:8417-25. [PMID: 11069949 PMCID: PMC6773186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) play an important role in signal processing in the retina. We have used subtype-specific antibodies to identify the changes in the localization of mAChR expression during embryonic development of the retina in vivo and their relationship to the changes in mAChRs in retinal cells in culture. We have demonstrated previously that treatment of fresh retinal cultures with conditioned media from mature retinal cultures specifically induces expression of the M(2) mAChR (McKinnon et al., 1998). We show that the M(2)-inducing activity, which we tentatively have called MARIA (muscarinic acetylcholine receptor-inducing activity) is produced by Müller glial cells in culture, because significant activity can be found in media conditioned by essentially neuron-free cultures of Müller glia, as well as by a Müller glial cell line but not several neuroblastoma cell lines. We also demonstrate that the appearance of the M(2) receptor in vivo occurs concomitantly with the appearance of significant numbers of Müller glial cells in the developing retina. Furthermore, the administration of crude or partially purified preparations of MARIA to developing chick embryos in ovo induces precocious expression of M(2) mAChRs in the appropriate cell types in the retina. These results show that a factor secreted by cultured retinal Müller glia can regulate M(2) mAChR expression in vivo and in vitro and suggest that the secretion of MARIA by Müller glia in vivo may be responsible for the normal induction of M(2) mAChR expression during embryonic development.
Collapse
Affiliation(s)
- K E Belmonte
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | | | |
Collapse
|
19
|
Abstract
The mRNA distribution of the two cloned GABA(B) receptor variants, GABA(B)R1a and -R1b, was analysed in the retina by non-radioactive in situ hybridization. GABA(B)R1a transcripts were found in the inner nuclear and ganglion cell layers, probably in horizontal, amacrine and ganglion cells, whereas GABA(B)R1b transcripts were detected in the ganglion cell layer only. Together with a recent immunohistochemical localization of GABA(B)R1 in the retina, this indicates a differential targeting of the receptor variants to pre- and postsynaptic sites with GABA(B)R1a and -R1b localized to axonal and dendritic compartments, respectively. In this way, inhibition of neurotransmitter release and slow postsynaptic inhibition could be provided by receptor variants derived from the same gene.
Collapse
Affiliation(s)
- C Zhang
- Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
20
|
Koulen P, Malitschek B, Kuhn R, Bettler B, Wässle H, Brandstätter JH. Presynaptic and postsynaptic localization of GABA(B) receptors in neurons of the rat retina. Eur J Neurosci 1998; 10:1446-56. [PMID: 9749799 DOI: 10.1046/j.1460-9568.1998.00156.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The recently cloned GABA(B) receptors were localized in rat retina using specific antisera. Immunolabelling was detected in the inner and outer plexiform layers (IPL, OPL), and in a number of cells in the inner nuclear layer and the ganglion cell layer. Double-labelling experiments for GABA (gamma-aminobutyric acid) and GABA(B) receptors, respectively, demonstrated a co-localization in horizontal cells and amacrine cells. Electron microscopy showed that GABA(B) receptors of the OPL were localized presynaptically in horizontal cell processes invaginating into photoreceptor terminals. In the IPL, GABA(B) receptors were present presynaptically in amacrine cells, as well as postsynaptically in amacrine and ganglion cells. The postnatal development of GABA(B) receptors was also studied, and immunoreactivity was observed well before morphological and synaptic differentiation of retinal neurons. The present results suggest a presynaptic (autoreceptor) as well as postsynaptic role for GABA(B) receptors. In addition, the extrasynaptic localization of GABA(B) receptors could indicate a paracrine function of GABA in the retina.
Collapse
Affiliation(s)
- P Koulen
- Max-Planck-Institut für Hirnforschung, Abteilung für Neuroanatomie, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Whole-cell voltage clamp in the retinal slice and intracellular current clamp in the intact retina were used to study inhibitory interactions in the inner plexiform layer. Picrotoxin or strychnine reduced inhibitory, light-evoked currents in a majority of ganglion cells. However, in nearly a third of the ganglion cells, each of these antagonists enhanced the inhibitory synaptic current. All inhibitory current was blocked by the addition of the other antagonist. This indicates a cross-inhibition between GABAergic and glycinergic feedforward pathways. Blocking of GABAARs with SR95531 shortened the time course of both excitatory and inhibitory synaptic currents in ganglion cells. Application of picrotoxin, which blocked both GABAARs and GABACRs, produced the opposite effect. Recordings in the intact retina indicated that the light responses of ON bipolar cells, sustained ON, and transient ON-OFF third-order neurons were all made more transient by SR95531 and made more sustained by picrotoxin. The data suggest that a GABAC feedback pathway to bipolar cells makes light responses more phasic and that this feedback is inhibited through a GABAAR pathway. Consequently, the balance between GABAAR and GABACR inhibition regulates the time course of inputs to ganglion cells.
Collapse
Affiliation(s)
- J Zhang
- Department of Physiology, School of Medicine, State University of New York, Buffalo 14214, USA
| | | | | |
Collapse
|
22
|
Wright LL, Macqueen CL, Elston GN, Young HM, Pow DV, Vaney DI. The DAPI-3 amacrine cells of the rabbit retina. Vis Neurosci 1997; 14:473-92. [PMID: 9194315 DOI: 10.1017/s0952523800012141] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the rabbit retina, the nuclear dye, 4,6,diamidino-2-phenylindole (DAPI), selectively labels a third type of amacrine cell, in addition to the previously characterized type a and type b cholinergic amacrine cells. In this study, these "DAPI-3" amacrine cells have been characterized with respect to their somatic distribution, dendritic morphology, and neurotransmitter content by combining intracellular injection of biotinylated tracers with wholemount immunocytochemistry. There are about 100,000 DAPI-3 amacrine cells in total, accounting for 2% of all amacrine cells in the rabbit retina, and their cell density ranges from about 130 cells/mm2 in far-peripheral retina to 770 cells/mm2 in the visual streak. The thin varicose dendrites of the DAPI-3 amacrine cells form a convoluted dendritic tree that is symmetrically bistratified in S1/S2 and S4 of the inner plexiform layer. Tracer coupling shows that the DAPI-3 amacrine cells have a fivefold dendritic-field overlap in each sublamina, with the gaps in the arborization of each cell being occupied by dendrites from neighboring cells. The DAPI-3 amacrine cells consistently show the strongest glycine immunoreactivity in the rabbit retina and they also accumulate exogenous [3H]-glycine to a high level. By contrast, the AII amacrine cells, which are the best characterized glycinergic cells in the retina, are amongst the most weakly labelled of the glycine-immunopositive amacrine cells. The DAPI-3 amacrine cells costratify narrowly with the cholinergic amacrine cells and the On-Off direction-selective ganglion cells, suggesting that they may play an important role in movement detection.
Collapse
Affiliation(s)
- L L Wright
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|