1
|
Shapiro IM, Risbud MV, Landis WJ. Toward understanding the cellular control of vertebrate mineralization: The potential role of mitochondria. Bone 2024; 185:117112. [PMID: 38697384 PMCID: PMC11251007 DOI: 10.1016/j.bone.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
This review examines the possible role of mitochondria in maintaining calcium and phosphate ion homeostasis and participating in the mineralization of bone, cartilage and other vertebrate hard tissues. The paper builds on the known structural features of mitochondria and the documented observations in these tissues that the organelles contain calcium phosphate granules. Such deposits in mitochondria putatively form to buffer excessively high cytosolic calcium ion concentrations and prevent metabolic deficits and even cell death. While mitochondria protect cytosolic enzyme systems through this buffering capacity, the accumulation of calcium ions by mitochondria promotes the activity of enzymes of the tricarboxylic acid (TCA/Krebs) cycle, increases oxidative phosphorylation and ATP synthesis, and leads to changes in intramitochondrial pH. These pH alterations influence ion solubility and possibly the transitions and composition in the mineral phase structure of the granules. Based on these considerations, mitochondria are proposed to support the mineralization process by providing a mobile store of calcium and phosphate ions, in smaller cluster or larger granule form, while maintaining critical cellular activities. The rise in the mitochondrial calcium level also increases the generation of citrate and other TCA cycle intermediates that contribute to cell function and the development of extracellular mineral. This paper suggests that another key role of the mitochondrion, along with the effects just noted, is to supply phosphate ions, derived from the breakdown of ATP, to endolysosomes and autophagic vesicles originating in the endoplasmic reticulum and Golgi and at the plasma membrane. These many separate but interdependent mitochondrial functions emphasize the critical importance of this organelle in the cellular control of vertebrate mineralization.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - William J Landis
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
2
|
Crapart CC, Scott ZC, Konno T, Sharma A, Parutto P, Bailey DMD, Westrate LM, Avezov E, Koslover EF. Luminal transport through intact endoplasmic reticulum limits the magnitude of localized Ca 2+ signals. Proc Natl Acad Sci U S A 2024; 121:e2312172121. [PMID: 38502705 PMCID: PMC10990089 DOI: 10.1073/pnas.2312172121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
The endoplasmic reticulum (ER) forms an interconnected network of tubules stretching throughout the cell. Understanding how ER functionality relies on its structural organization is crucial for elucidating cellular vulnerability to ER perturbations, which have been implicated in several neuronal pathologies. One of the key functions of the ER is enabling Ca[Formula: see text] signaling by storing large quantities of this ion and releasing it into the cytoplasm in a spatiotemporally controlled manner. Through a combination of physical modeling and live-cell imaging, we demonstrate that alterations in ER shape significantly impact its ability to support efficient local Ca[Formula: see text] releases, due to hindered transport of luminal content within the ER. Our model reveals that rapid Ca[Formula: see text] release necessitates mobile luminal buffer proteins with moderate binding strength, moving through a well-connected network of ER tubules. These findings provide insight into the functional advantages of normal ER architecture, emphasizing its importance as a kinetically efficient intracellular Ca[Formula: see text] delivery system.
Collapse
Affiliation(s)
- Cécile C. Crapart
- UK Dementia Research Institute at the University of Cambridge, CambridgeCB2 0AH, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, CambridgeCB2 0AH, United Kingdom
| | | | - Tasuku Konno
- UK Dementia Research Institute at the University of Cambridge, CambridgeCB2 0AH, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, CambridgeCB2 0AH, United Kingdom
| | - Aman Sharma
- Department of Physics, University of California, San Diego, La Jolla, CA92130
| | - Pierre Parutto
- UK Dementia Research Institute at the University of Cambridge, CambridgeCB2 0AH, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, CambridgeCB2 0AH, United Kingdom
| | - David M. D. Bailey
- UK Dementia Research Institute at the University of Cambridge, CambridgeCB2 0AH, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, CambridgeCB2 0AH, United Kingdom
| | - Laura M. Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI49546
| | - Edward Avezov
- UK Dementia Research Institute at the University of Cambridge, CambridgeCB2 0AH, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, CambridgeCB2 0AH, United Kingdom
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA92130
| |
Collapse
|
3
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
4
|
Swaminathan D, Dickinson GD, Demuro A, Parker I. Noise analysis of cytosolic calcium image data. Cell Calcium 2019; 86:102152. [PMID: 31918030 DOI: 10.1016/j.ceca.2019.102152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
Cellular Ca2+ signals are often constrained to cytosolic micro- or nano-domains where stochastic openings of Ca2+ channels cause large fluctuations in local Ca2+ concentration (Ca2+ 'noise'). With the advent of TIRF microscopy to image the fluorescence of Ca2+-sensitive probes from attoliter volumes it has become possible to directly monitor these signals, which closely track the gating of plasmalemmal and ER Ca2+-permeable channels. Nevertheless, it is likely that many physiologically important Ca2+ signals are too small to resolve as discrete events in fluorescence recordings. By analogy with noise analysis of electrophysiological data, we explore here the use of statistical approaches to detect and analyze such Ca2+ noise in images obtained using Ca2+-sensitive indicator dyes. We describe two techniques - power spectrum analysis and spatio-temporal correlation - and demonstrate that both effectively identify discrete, spatially localized calcium release events (Ca2+ puffs). Moreover, we show they are able to detect localized noise fluctuations in a case where discrete events cannot directly be resolved.
Collapse
Affiliation(s)
- Divya Swaminathan
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA.
| | - George D Dickinson
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA
| | - Angelo Demuro
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA
| | - Ian Parker
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA92697, USA
| |
Collapse
|
5
|
Wang Y, Wang Y, Du X, Yan S, Zhang P, Chen HY, Huang S. Electrode-free nanopore sensing by DiffusiOptoPhysiology. SCIENCE ADVANCES 2019; 5:eaar3309. [PMID: 31523706 PMCID: PMC6731070 DOI: 10.1126/sciadv.aar3309] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/02/2019] [Indexed: 05/24/2023]
Abstract
A wide variety of single molecules can be identified by nanopore sensing. However, all reported nanopore sensing applications result from the same measurement configuration adapted from electrophysiology. Although urgently needed in commercial nanopore sequencing, parallel electrophysiology recording is limited in its cost and its throughput due to the introduced complexities from electronic integration. We present the first electrode-free nanopore sensing method defined as DiffusiOptoPhysiology (DOP), in which single-molecule events are monitored optically without any electrical connections. Single-molecule sensing of small molecules, macromolecules, and biomacromolecules was subsequently demonstrated. As a further extension, a fingertip-sized, multiplexed chip with single-molecule sensing capabilities has been introduced, which suggests a new concept of clinical diagnosis using disposable nanopore sensors. DOP, which is universally compatible with all types of channels and a variety of fluorescence imaging platforms, may benefit diverse areas such as nanopore sequencing, drug screening, and channel protein investigations.
Collapse
Affiliation(s)
- Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, 210023 Nanjing, China
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Yu Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, 210023 Nanjing, China
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, 210023 Nanjing, China
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, 210023 Nanjing, China
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, 210023 Nanjing, China
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, 210023 Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, 210023 Nanjing, China
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, 210023 Nanjing, China
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
6
|
Lock JT, Smith IF, Parker I. Spatial-temporal patterning of Ca 2+ signals by the subcellular distribution of IP 3 and IP 3 receptors. Semin Cell Dev Biol 2019; 94:3-10. [PMID: 30703557 DOI: 10.1016/j.semcdb.2019.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
The patterning of cytosolic Ca2+ signals in space and time underlies their ubiquitous ability to specifically regulate numerous cellular processes. Signals mediated by liberation of Ca2+ sequestered in the endoplasmic reticulum (ER) through inositol trisphosphate receptor (IP3R) channels constitute a hierarchy of events; ranging from openings of individual IP3 channels, through the concerted openings of several clustered IP3Rs to generate local Ca2+ puffs, to global Ca2+ waves and oscillations that engulf the entire cell. Here, we review recent progress in elucidating how this hierarchy is shaped by an interplay between the functional gating properties of IP3Rs and their spatial distribution within the cell. We focus in particular on the subset of IP3Rs that are organized in stationary clusters and are endowed with the ability to preferentially liberate Ca2+.
Collapse
Affiliation(s)
- Jeffrey T Lock
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA.
| | - Ian F Smith
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA
| | - Ian Parker
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA; Department of Physiology & Biophysics, UC Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Wilson C, Lee MD, Heathcote HR, Zhang X, Buckley C, Girkin JM, Saunter CD, McCarron JG. Mitochondrial ATP production provides long-range control of endothelial inositol trisphosphate-evoked calcium signaling. J Biol Chem 2019; 294:737-758. [PMID: 30498088 PMCID: PMC6341391 DOI: 10.1074/jbc.ra118.005913] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
Endothelial cells are reported to be glycolytic and to minimally rely on mitochondria for ATP generation. Rather than providing energy, mitochondria in endothelial cells may act as signaling organelles that control cytosolic Ca2+ signaling or modify reactive oxygen species (ROS). To control Ca2+ signaling, these organelles are often observed close to influx and release sites and may be tethered near Ca2+ transporters. In this study, we used high-resolution, wide-field fluorescence imaging to investigate the regulation of Ca2+ signaling by mitochondria in large numbers of endothelial cells (∼50 per field) in intact arteries from rats. We observed that mitochondria were mostly spherical or short-rod structures and were distributed widely throughout the cytoplasm. The density of these organelles did not increase near contact sites with smooth muscle cells. However, local inositol trisphosphate (IP3)-mediated Ca2+ signaling predominated near these contact sites and required polarized mitochondria. Of note, mitochondrial control of Ca2+ signals occurred even when mitochondria were far from Ca2+ release sites. Indeed, the endothelial mitochondria were mobile and moved throughout the cytoplasm. Mitochondrial control of Ca2+ signaling was mediated by ATP production, which, when reduced by mitochondrial depolarization or ATP synthase inhibition, eliminated local IP3-mediated Ca2+ release events. ROS buffering did not significantly alter local Ca2+ release events. These results highlight the importance of mitochondrial ATP production in providing long-range control of endothelial signaling via IP3-evoked local Ca2+ release in intact endothelium.
Collapse
Affiliation(s)
- Calum Wilson
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Matthew D Lee
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Helen R Heathcote
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Xun Zhang
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Charlotte Buckley
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - John M Girkin
- the Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Christopher D Saunter
- the Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - John G McCarron
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| |
Collapse
|
8
|
Lock JT, Alzayady KJ, Yule DI, Parker I. All three IP 3 receptor isoforms generate Ca 2+ puffs that display similar characteristics. Sci Signal 2018; 11:11/561/eaau0344. [PMID: 30563861 DOI: 10.1126/scisignal.aau0344] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3) evokes Ca2+ release through IP3 receptors (IP3Rs) to generate both local Ca2+ puffs arising from concerted openings of clustered IP3Rs and cell-wide Ca2+ waves. Imaging Ca2+ puffs with single-channel resolution yields information on the localization and properties of native IP3Rs in intact cells, but interpretation has been complicated because cells express varying proportions of three structurally and functionally distinct isoforms of IP3Rs. Here, we used TIRF and light-sheet microscopy to image Ca2+ puffs in HEK-293 cell lines generated by CRISPR-Cas9 technology to express exclusively IP3R type 1, 2, or 3. Photorelease of the IP3 analog i-IP3 in all three cell lines evoked puffs with largely similar mean amplitudes, temporal characteristics, and spatial extents. Moreover, the single-channel Ca2+ flux was similar among isoforms, indicating that clusters of different IP3R isoforms contain comparable numbers of active channels. Our results show that all three IP3R isoforms cluster to generate local Ca2+ puffs and, contrary to findings of divergent properties from in vitro electrophysiological studies, display similar conductances and gating kinetics in intact cells.
Collapse
Affiliation(s)
- Jeffrey T Lock
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.
| | - Kamil J Alzayady
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Parrington J, Arnoult C, Fissore RA. The eggstraordinary story of how life begins. Mol Reprod Dev 2018; 86:4-19. [PMID: 30411426 DOI: 10.1002/mrd.23083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
More than 15 years have elapsed since the identification of phospholipase C ζ1 (PLCζ) from a genomic search for mouse testis/sperm-specific PLCs. This molecule was proposed to represent the sperm factor responsible for the initiation of calcium (Ca2+ ) oscillations required for egg activation and embryo development in mammals. Supporting evidence for this role emerged from studies documenting its expression in all mammals and other vertebrate species, the physiological Ca2+ rises induced by injection of its messenger RNA into mammalian and nonmammalian eggs, and the lack of expression in infertile males that fail intracytoplasmic sperm injection. In the last year, genetic animal models have added support to its role as the long sought-after sperm factor. In this review, we highlight the findings that demonstrated the role of Ca2+ as the universal signal of egg activation and the experimental buildup that culminated with the identification of PLCζ as the soluble sperm factor. We also discuss the structural-functional properties that make PLCζ especially suited to evoke oscillations in eggs. Lastly, we examine unresolved aspects of the function and regulation of PLCζ and whether or not it is the only sperm factor in mammalian sperm.
Collapse
Affiliation(s)
- John Parrington
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, France.,Institut pour l'Avancée des Biosciences (IAB), INSERM 1209, CNRS UMR 5309, La Tronche, France
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
10
|
Nguyen RL, Medvedeva YV, Ayyagari TE, Schmunk G, Gargus JJ. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1718-1732. [PMID: 30992134 DOI: 10.1016/j.bbamcr.2018.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a group of complex, neurological disorders that affect early cognitive, social, and verbal development. Our understanding of ASD has vastly improved with advances in genomic sequencing technology and genetic models that have identified >800 loci with variants that increase susceptibility to ASD. Although these findings have confirmed its high heritability, the underlying mechanisms by which these genes produce the ASD phenotypes have not been defined. Current efforts have begun to "functionalize" many of these variants and envisage how these susceptibility factors converge at key biochemical and biophysical pathways. In this review, we discuss recent work on intracellular calcium signaling in ASD, including our own work, which begins to suggest it as a compelling candidate mechanism in the pathophysiology of autism and a potential therapeutic target. We consider how known variants in the calcium signaling genomic architecture of ASD may exert their deleterious effects along pathways particularly involving organelle dysfunction including the endoplasmic reticulum (ER), a major calcium store, and the mitochondria, a major calcium ion buffer, and theorize how many of these pathways intersect.
Collapse
Affiliation(s)
- Rachel L Nguyen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yuliya V Medvedeva
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Tejasvi E Ayyagari
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Galina Schmunk
- UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - John Jay Gargus
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Pediatrics, Section of Human Genetics and Genomics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
Dynamic Ca 2+ imaging with a simplified lattice light-sheet microscope: A sideways view of subcellular Ca 2+ puffs. Cell Calcium 2017; 71:34-44. [PMID: 29604962 DOI: 10.1016/j.ceca.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022]
Abstract
We describe the construction of a simplified, inexpensive lattice light-sheet microscope, and illustrate its use for imaging subcellular Ca2+ puffs evoked by photoreleased i-IP3 in cultured SH-SY5Y neuroblastoma cells loaded with the Ca2+ probe Cal520. The microscope provides sub-micron spatial resolution and enables recording of local Ca2+ transients in single-slice mode with a signal-to-noise ratio and temporal resolution (2ms) at least as good as confocal or total internal reflection microscopy. Signals arising from openings of individual IP3R channels are clearly resolved, as are stepwise changes in fluorescence reflecting openings and closings of individual channels during puffs. Moreover, by stepping the specimen through the light-sheet, the entire volume of a cell can be scanned within a few hundred ms. The ability to directly visualize a sideways (axial) section through cells directly reveals that IP3-evoked Ca2+ puffs originate at sites in very close (≤a few hundred nm) to the plasma membrane, suggesting they play a specific role in signaling to the membrane.
Collapse
|
12
|
Sanders KM, Kito Y, Hwang SJ, Ward SM. Regulation of Gastrointestinal Smooth Muscle Function by Interstitial Cells. Physiology (Bethesda) 2017; 31:316-26. [PMID: 27488743 DOI: 10.1152/physiol.00006.2016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interstitial cells of mesenchymal origin form gap junctions with smooth muscle cells in visceral smooth muscles and provide important regulatory functions. In gastrointestinal (GI) muscles, there are two distinct classes of interstitial cells, c-Kit(+) interstitial cells of Cajal and PDGFRα(+) cells, that regulate motility patterns. Loss of these cells may contribute to symptoms in GI motility disorders.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada; and
| | - Yoshihiko Kito
- Department of Pharmacology, Faculty of Medicine, Saga University, Nabeshima, Japan
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada; and
| |
Collapse
|
13
|
Blatter LA. Tissue Specificity: SOCE: Implications for Ca 2+ Handling in Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:343-361. [PMID: 28900923 DOI: 10.1007/978-3-319-57732-6_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many cellular functions of the vascular endothelium are regulated by fine-tuned global and local, microdomain-confined changes of cytosolic free Ca2+ ([Ca2+]i). Vasoactive agonist-induced stimulation of vascular endothelial cells (VECs) typically induces Ca2+ release through IP3 receptor Ca2+ release channels embedded in the membrane of the endoplasmic reticulum (ER) Ca2+ store, followed by Ca2+ entry from the extracellular space elicited by Ca2+ store depletion and referred to as capacitative or store-operated Ca2+ entry (SOCE). In vascular endothelial cells, SOCE is graded with the degree of store depletion and controlled locally in the subcellular microdomain where depletion occurs. SOCE provides distinct Ca2+ signals that selectively control specific endothelial functions: in calf pulmonary artery endothelial cells, the SOCE Ca2+ signal drives nitric oxide (an endothelium-derived relaxing factor of the vascular smooth muscle) production and controls activation and nuclear translocation of the transcription factor NFAT. Both cellular events are not affected by Ca2+ signals of comparable magnitude arising directly from Ca2+ release from intracellular stores, clearly indicating that SOCE regulates specific Ca2+-dependent cellular tasks by a unique and exclusive mechanism. This review discusses the mechanisms of intracellular Ca2+ regulation in vascular endothelial cells and the role of store-operated Ca2+ entry for endothelium-dependent smooth muscle relaxation and nitric oxide signaling, endothelial oxidative stress response, and excitation-transcription coupling in the vascular endothelium.
Collapse
Affiliation(s)
- Lothar A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Ca2+-activation kinetics modulate successive puff/spark amplitude, duration and inter-event-interval correlations in a Langevin model of stochastic Ca2+ release. Math Biosci 2015; 264:101-7. [DOI: 10.1016/j.mbs.2015.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 01/12/2023]
|
15
|
Guisoni N, Ferrero P, Layana C, Diambra L. Abortive and propagating intracellular calcium waves: analysis from a hybrid model. PLoS One 2015; 10:e0115187. [PMID: 25602295 PMCID: PMC4300085 DOI: 10.1371/journal.pone.0115187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
The functional properties of inositol(1,4,5)-triphosphate (IP3) receptors allow a variety of intracellular Ca(2+) phenomena. In this way, global phenomena, such as propagating and abortive Ca(2+) waves, as well as local events such as puffs, have been observed. Several experimental studies suggest that many features of global phenomena (e.g., frequency, amplitude, speed wave) depend on the interplay of biophysical processes such as diffusion, buffering, efflux and influx rates, which in turn depend on parameters such as buffer concentration, Ca(2+) pump density, cytosolic IP3 level, and intercluster distance. Besides, it is known that cells are able to modify some of these parameters in order to regulate the Ca(2+) signaling. By using a hybrid model, we analyzed different features of the hierarchy of calcium events as a function of two relevant parameters for the calcium signaling, the intercluster distance and the pump strength or intensity. In the space spanned by these two parameters, we found two modes of calcium dynamics, one dominated by abortive calcium waves and the other by propagating waves. Smaller distances between the release sites promote propagating calcium waves, while the increase of the efflux rate makes the transition from propagating to abortive waves occur at lower values of intercluster distance. We determined the frontier between these two modes, in the parameter space defined by the intercluster distance and the pump strength. Furthermore, we found that the velocity of simulated calcium waves accomplishes Luther's law, and that an effective rate constant for autocatalytic calcium production decays linearly with both the intercluster distance and the pump strength.
Collapse
Affiliation(s)
- Nara Guisoni
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), Universidad Nacional de La Plata, CONICET CCT-La Plata; Calle 59–789 (1900) La Plata, Argentina
- * E-mail: (NG); (LD)
| | - Paola Ferrero
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas; 60 y 120 (1900) La Plata, Argentina
| | - Carla Layana
- Centro Regional de Estudios Genómicos (CREG), Universidad Nacional de La Plata; Blvd 120 N 1461 (1900) La Plata, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genómicos (CREG), Universidad Nacional de La Plata; Blvd 120 N 1461 (1900) La Plata, Argentina
- * E-mail: (NG); (LD)
| |
Collapse
|
16
|
Dickinson GD, Parker I. Factors determining the recruitment of inositol trisphosphate receptor channels during calcium puffs. Biophys J 2014; 105:2474-84. [PMID: 24314078 DOI: 10.1016/j.bpj.2013.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/28/2013] [Indexed: 11/29/2022] Open
Abstract
Puffs are localized, transient elevations in cytosolic Ca(2+) that serve both as the building blocks of global cellular Ca(2+) signals and as local signals in their own right. They arise from clustered inositol 1,4,5-trisphosphate receptor/channels (IP3Rs), whose openings are coordinated by Ca(2+)-induced Ca(2+) release (CICR). We utilized total internal reflection fluorescence imaging of Ca(2+) signals in neuroblastoma cells with single-channel resolution to elucidate the mechanisms determining the triggering, amplitudes, kinetics, and spatial spread of puffs. We find that any given channel in a cluster has a mean probability of ∼66% of opening following opening of an initial "trigger" channel, and the probability of puff triggering thus increases steeply with increasing number of channels in a cluster (cluster size). Mean puff amplitudes scale with cluster size, but individual amplitudes vary widely, even at sites of similar cluster size, displaying similar proportions of events involving any given number of the channels in the cluster. Stochastic variation in numbers of Ca(2+)-inhibited IP3Rs likely contributes to the variability of amplitudes of repeated puffs at a site but the amplitudes of successive puffs were uncorrelated, even though we observed statistical correlations between interpuff intervals and puff amplitudes. Initial puffs evoked following photorelease of IP3-which would not be subject to earlier Ca(2+)-inhibition-also showed wide variability, indicating that mechanisms such as stochastic variation in IP3 binding and channel recruitment by CICR further determine puff amplitudes. The mean termination time of puffs lengthened with increasing puff amplitude size, consistent with independent closings of channels after a given mean open time, but we found no correlation of termination time with cluster size independent of puff amplitude. The spatial extent of puffs increased with their amplitude, and puffs of similar size were of similar width, independent of cluster size.
Collapse
Affiliation(s)
- George D Dickinson
- Department of Neurobiology and Behavior, University of California, Irvine, CA.
| | | |
Collapse
|
17
|
Thul R. Translating intracellular calcium signaling into models. Cold Spring Harb Protoc 2014; 2014:2014/5/pdb.top066266. [PMID: 24786496 DOI: 10.1101/pdb.top066266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rich experimental data on intracellular calcium has put theoreticians in an ideal position to derive models of intracellular calcium signaling. Over the last 25 years, a large number of modeling frameworks have been suggested. Here, I will review some of the milestones of intracellular calcium modeling with a special emphasis on calcium-induced calcium release (CICR) through inositol-1,4,5-trisphosphate and ryanodine receptors. I will highlight key features of CICR and how they are represented in models as well as the challenges that theoreticians face when translating our current understanding of calcium signals into equations. The selected examples demonstrate that a successful model provides mechanistic insights into the molecular machinery of the Ca²⁺ signaling toolbox and determines the contribution of local Ca²⁺ release to global Ca²⁺ patterns, which at the moment cannot be resolved experimentally.
Collapse
Affiliation(s)
- Rüdiger Thul
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
18
|
Fedorenko OA, Popugaeva E, Enomoto M, Stathopulos PB, Ikura M, Bezprozvanny I. Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 2013; 739:39-48. [PMID: 24300389 DOI: 10.1016/j.ejphar.2013.10.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 09/28/2013] [Accepted: 10/17/2013] [Indexed: 01/13/2023]
Abstract
The inositol-1,4,5-trisphosphate receptors (InsP3Rs) are the major intracellular Ca(2+)-release channels in cells. Activity of InsP3Rs is essential for elementary and global Ca(2+) events in the cell. There are three InsP3Rs isoforms that are present in mammalian cells. In this review we will focus primarily on InsP3R type 1. The InsP3R1 is a predominant isoform in neurons and it is the most extensively studied isoform. Combination of biophysical and structural methods revealed key mechanisms of InsP3R function and modulation. Cell biological and biochemical studies lead to identification of a large number of InsP3R-binding proteins. InsP3Rs are involved in the regulation of numerous physiological processes, including learning and memory, proliferation, differentiation, development and cell death. Malfunction of InsP3R1 play a role in a number of neurodegenerative disorders and other disease states. InsP3Rs represent a potentially valuable drug target for treatment of these disorders and for modulating activity of neurons and other cells. Future studies will provide better understanding of physiological functions of InsP3Rs in health and disease.
Collapse
Affiliation(s)
- Olena A Fedorenko
- Department of Brain Physiology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine; State Key Laboratory of Molecular and Cellular Biology, 01024 Kiev, Ukraine
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Peter B Stathopulos
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Dickinson GD, Parker I. Temperature dependence of IP3-mediated local and global Ca2+ signals. Biophys J 2013; 104:386-95. [PMID: 23442860 DOI: 10.1016/j.bpj.2012.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/12/2012] [Accepted: 12/13/2012] [Indexed: 11/28/2022] Open
Abstract
We examined the effect of temperature (12-40°C) on local and global Ca2+ signals mediated by inositol trisphosphate receptor/channels (IP3R) in human neuroblastoma (SH-SY5Y) cells. The amplitudes and spatial spread of local signals arising from single IP3R (blips) and clusters of IP3R (puffs) showed little temperature dependence, whereas their kinetics (durations and latencies) were markedly accelerated by increasing temperature. In contrast, the amplitude of global Ca2+ waves increased appreciably at lower temperatures, probably as a result of the longer duration of IP(3)R channel opening. Several parameters, including puff and blip durations, puff latency and frequency, and frequency of repetitive Ca2+ waves, showed a biphasic temperature dependence on Arrhenius plots. In all cases the transition temperature occurred at ∼25°C, possibly reflecting a phase transition in the lipids of the endoplasmic reticulum membrane. Although the IP3-evoked Ca2+ signals were qualitatively similar at 25°C and 36°C, one should consider the temperature sensitivity of IP3-mediated signal amplitudes when extrapolating from room temperature to physiological temperature. Conversely, further cooling may be advantageous to improve the optical resolution of channel gating kinetics.
Collapse
Affiliation(s)
- George D Dickinson
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA.
| | | |
Collapse
|
20
|
Abstract
InsP3-mediated puffs are fundamental building blocks of cellular Ca2+ signalling, and arise through the concerted opening of clustered InsP3Rs (InsP3 receptors) co-ordinated via Ca2+-induced Ca2+ release. Although the Ca2+ dependency of InsP3Rs has been extensively studied at the single channel level, little is known as to how changes in basal cytosolic [Ca2+] would alter the dynamics of InsP3-evoked Ca2+ signals in intact cells. To explore this question, we expressed Ca2+-permeable channels (nicotinic acetylcholine receptors) in the plasma membrane of voltage-clamped Xenopus oocytes to regulate cytosolic [Ca2+] by changing the electrochemical gradient for extracellular Ca2+ entry, and imaged Ca2+ liberation evoked by photolysis of caged InsP3. Elevation of basal cytosolic [Ca2+] strongly increased the amplitude and shortened the latency of global Ca2+ waves. In oocytes loaded with EGTA to localize Ca2+ signals, the number of sites at which puffs were observed and the frequency and latency of puffs were strongly dependent on cytosolic [Ca2+], whereas puff amplitudes were only weakly affected. The results of the present study indicate that basal cytosolic [Ca2+] strongly affects the triggering of puffs, but has less of an effect on puffs once they have been initiated.
Collapse
|
21
|
Nader N, Kulkarni RP, Dib M, Machaca K. How to make a good egg!: The need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. Cell Calcium 2012; 53:41-54. [PMID: 23266324 DOI: 10.1016/j.ceca.2012.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022]
Abstract
The egg-to-embryo transition marks the initiation of multicellular organismal development and is mediated by a specialized Ca(2+) transient at fertilization. This explosive Ca(2+) signal has captured the interest and imagination of scientists for many decades, given its cataclysmic nature and necessity for the egg-to-embryo transition. Learning how the egg acquires the competency to generate this Ca(2+) transient at fertilization is essential to our understanding of the mechanisms controlling egg and the transition to embryogenesis. In this review we discuss our current knowledge of how Ca(2+) signaling pathways remodel during oocyte maturation in preparation for fertilization with a special emphasis on the frog oocyte as additional reviews in this issue will touch on this in other species.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Qatar
| | | | | | | |
Collapse
|
22
|
McCarron JG, Olson ML, Chalmers S. Mitochondrial regulation of cytosolic Ca²⁺ signals in smooth muscle. Pflugers Arch 2012; 464:51-62. [PMID: 22555917 DOI: 10.1007/s00424-012-1108-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/11/2012] [Indexed: 11/25/2022]
Abstract
The cytosolic Ca²⁺ concentration ([Ca²⁺]c) controls virtually every activity of smooth muscle, including contraction, migration, transcription, division and apoptosis. These processes may be activated by large (>10 μM) amplitude [Ca²⁺]c increases, which occur in small restricted regions of the cell or by smaller (<1 μM) amplitude changes throughout the bulk cytoplasm. Mitochondria contribute to the regulation of these signals by taking up Ca²⁺. However, mitochondria's reported low affinity for Ca²⁺ is thought to require the organelle to be positioned close to ion channels and within a microdomain of high [Ca²⁺]. In cultured smooth muscle, mitochondria are highly dynamic structures but in native smooth muscle mitochondria are immobile, apparently strategically positioned organelles that regulate the upstroke and amplitude of IP₃-evoked Ca²⁺ signals and IP₃ receptor (IP₃R) cluster activity. These observations suggest mitochondria are positioned within the high [Ca²⁺] microdomain arising from an IP₃R cluster to exert significant local control of channel activity. On the other hand, neither the upstroke nor amplitude of voltage-dependent Ca²⁺ entry is modulated by mitochondria; rather, it is the declining phase of the transient that is regulated by the organelle. Control of the declining phase of the transient requires a high mitochondrial affinity for Ca²⁺ to enable uptake to occur over the normal physiological Ca²⁺ range (<1 μM). Thus, in smooth muscle, mitochondria regulate Ca²⁺ signals exerting effects over a large range of [Ca²⁺] (∼200 nM to at least tens of micromolar) to provide a wide dynamic range in the control of Ca²⁺ signals.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, 161 Cathedral Street, Glasgow, G4 0NR, UK.
| | | | | |
Collapse
|
23
|
Raturi A, Simmen T. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:213-24. [PMID: 22575682 DOI: 10.1016/j.bbamcr.2012.04.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/12/2012] [Accepted: 04/25/2012] [Indexed: 01/01/2023]
Abstract
More than a billion years ago, bacterial precursors of mitochondria became endosymbionts in what we call eukaryotic cells today. The true significance of the word "endosymbiont" has only become clear to cell biologists with the discovery that the endoplasmic reticulum (ER) superorganelle dedicates a special domain for the metabolic interaction with mitochondria. This domain, identified in all eukaryotic cell systems from yeast to man and called the mitochondria-associated membrane (MAM), has a distinct proteome, specific tethers on the cytosolic face and regulatory proteins in the ER lumen of the ER. The MAM has distinct biochemical properties and appears as ER tubules closely apposed to mitochondria on electron micrographs. The functions of the MAM range from lipid metabolism and calcium signaling to inflammasome formation. Consistent with these functions, the MAM is enriched in lipid metabolism enzymes and calcium handling proteins. During cellular stress situations, like an altered cellular redox state, the MAM alters its set of regulatory proteins and thus alters MAM functions. Notably, this set prominently comprises ER chaperones and oxidoreductases that connect protein synthesis and folding inside the ER to mitochondrial metabolism. Moreover, ER membranes associated with mitochondria also accommodate parts of the machinery that determines mitochondrial membrane dynamics and connect mitochondria to the cytoskeleton. Together, these exciting findings demonstrate that the physiological interactions between the ER and mitochondria are so bilateral that we are tempted to compare their relationship to the one of a married couple: distinct, but inseparable and certainly dependent on each other. In this paradigm, the MAM stands for the intracellular location where the two organelles tie the knot. Resembling "real life", the happy marriage between the two organelles prevents the onset of diseases that are characterized by disrupted metabolism and decreased lifespan, including neurodegeneration and cancer. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Arun Raturi
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
24
|
Calcium Oscillations and Waves in Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:521-9. [DOI: 10.1007/978-94-007-2888-2_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Abstract
The Ca(2) (+) signals evoked by inositol 1,4,5-trisphosphate (IP(3)) are built from elementary Ca(2) (+) release events involving progressive recruitment of IP(3) receptors (IP(3)R), intracellular Ca(2) (+) channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP(3)R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP(3)R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca(2) (+) waves that propagate across the cell. This hierarchical recruitment of IP(3)R is important in allowing Ca(2) (+) signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP(3)R by Ca(2) (+) and IP(3), the ability of a single IP(3)R rapidly to mediate a large efflux of Ca(2) (+) from the endoplasmic reticulum, and the assembly of IP(3)R into clusters are key features that allow IP(3)R to propagate Ca(2) (+) signals regeneratively. We review these properties of IP(3)R and the structural basis of IP(3)R behavior.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK,
| | | |
Collapse
|
26
|
Kadiri LR, Kwan AC, Webb WW, Harris-Warrick RM. Dopamine-induced oscillations of the pyloric pacemaker neuron rely on release of calcium from intracellular stores. J Neurophysiol 2011; 106:1288-98. [PMID: 21676929 DOI: 10.1152/jn.00456.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endogenously bursting neurons play central roles in many aspects of nervous system function, ranging from motor control to perception. The properties and bursting patterns generated by these neurons are subject to neuromodulation, which can alter cycle frequency and amplitude by modifying the properties of the neuron's ionic currents. In the stomatogastric ganglion (STG) of the spiny lobster, Panulirus interruptus, the anterior burster (AB) neuron is a conditional oscillator in the presence of dopamine (DA) and other neuromodulators and serves as the pacemaker to drive rhythmic output from the pyloric network. We analyzed the mechanisms by which DA evokes bursting in the AB neuron. Previous work showed that DA-evoked bursting is critically dependent on external calcium (Harris-Warrick RM, Flamm RE. J Neurosci 7: 2113-2128, 1987). Using two-photon microscopy and calcium imaging, we show that DA evokes the release of calcium from intracellular stores well before the emergence of voltage oscillations. When this release from intracellular stores is blocked by antagonists of ryanodine or inositol trisphosphate (IP(3)) receptor channels, DA fails to evoke AB bursting. We further demonstrate that DA enhances the calcium-activated inward current, I(CAN), despite the fact that it significantly reduces voltage-activated calcium currents. This suggests that DA-induced release of calcium from intracellular stores activates I(CAN), which provides a depolarizing ramp current that underlies endogenous bursting in the AB neuron.
Collapse
Affiliation(s)
- Lolahon R Kadiri
- Department of Neurobiology and Behavior, Cornell University, W 159 Seeley G. Mudd Hall, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
27
|
Rüdiger S, Nagaiah C, Warnecke G, Shuai JW. Calcium domains around single and clustered IP3 receptors and their modulation by buffers. Biophys J 2010; 99:3-12. [PMID: 20655827 DOI: 10.1016/j.bpj.2010.02.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/12/2010] [Accepted: 02/26/2010] [Indexed: 02/04/2023] Open
Abstract
We study Ca(2+) release through single and clustered IP(3) receptor channels on the ER membrane under presence of buffer proteins. Our computational scheme couples reaction-diffusion equations and a Markovian channel model and allows our investigating the effects of buffer proteins on local calcium concentrations and channel gating. We find transient and stationary elevations of calcium concentrations around active channels and show how they determine release amplitude. Transient calcium domains occur after closing of isolated channels and constitute an important part of the channel's feedback. They cause repeated openings (bursts) and mediate increased release due to Ca(2+) buffering by immobile proteins. Stationary domains occur during prolonged activity of clustered channels, where the spatial proximity of IP(3)Rs produces a distinct [Ca(2+)] scale (0.5-10 microM), which is smaller than channel pore concentrations (>100 microM) but larger than transient levels. While immobile buffer affects transient levels only, mobile buffers in general reduce both transient and stationary domains, giving rise to Ca(2+) evacuation and biphasic modulation of release amplitude. Our findings explain recent experiments in oocytes and provide a general framework for the understanding of calcium signals.
Collapse
Affiliation(s)
- S Rüdiger
- Institute of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
28
|
Superresolution localization of single functional IP3R channels utilizing Ca2+ flux as a readout. Biophys J 2010; 99:437-46. [PMID: 20643061 DOI: 10.1016/j.bpj.2010.04.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/06/2010] [Accepted: 04/14/2010] [Indexed: 11/22/2022] Open
Abstract
The subcellular localization of membrane Ca2+ channels is crucial for their functioning, but is difficult to study because channels may be distributed more closely than the resolution of conventional microscopy is able to detect. We describe a technique, stochastic channel Ca2+ nanoscale resolution (SCCaNR), employing Ca2+-sensitive fluorescent dyes to localize stochastic openings and closings of single Ca2+-permeable channels within <50 nm, and apply it to examine the clustered arrangement of inositol trisphosphate receptor (IP3R) channels underlying local Ca2+ puffs. Fluorescence signals (blips) arising from single functional IP3Rs are almost immotile (diffusion coefficient<0.003 microm2 s(-1)), as are puff sites over prolonged periods, suggesting that the architecture of this signaling system is stable and not subject to rapid, dynamic rearrangement. However, rapid stepwise changes in centroid position of fluorescence are evident within the durations of individual puffs. These apparent movements likely result from asynchronous gating of IP3Rs distributed within clusters that have an overall diameter of approximately 400 nm, indicating that the nanoscale architecture of IP3R clusters is important in shaping local Ca2+ signals. We anticipate that SCCaNR will complement superresolution techniques such as PALM and STORM for studies of Ca2+ channels as it obviates the need for photoswitchable labels and provides functional as well as spatial information.
Collapse
|
29
|
Poulsen AN, Jansen-Olesen I, Olesen J, Klaerke DA. Neuronal fast activating and meningeal silent modulatory BK channel splice variants cloned from rat. Pflugers Arch 2010; 461:65-75. [PMID: 20938677 DOI: 10.1007/s00424-010-0887-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 12/25/2022]
Abstract
The big conductance calcium-activated K(+) channel (BK) is involved in regulating neuron and smooth muscle cell excitability. Functional diversity of BK is generated by alpha-subunit splice variation and co-expression with beta subunits. Here, we present six different splice combinations cloned from rat brain or cerebral vascular/meningeal tissues, of which at least three variants were previously uncharacterized (X1, X2(92), and X2(188)). An additional variant was identified by polymerase chain reaction but not cloned. Expression in Xenopus oocytes showed that the brain-specific X1 variant displays reduced current, faster activation, and less voltage sensitivity than the insert-less Zero variant. Other cloned variants Strex and Slo27,3 showed slower activation than Zero. The X1 variant contains sequence inserts in the S1-S2 extracellular loop (8 aa), between intracellular domains RCK1 and RCK2 (4 aa at SS1) and upstream of the calcium "bowl" (27 aa at SS4). Two other truncated variants, X2(92) and X2(188), lacking the intracellular C-terminal (stop downstream of S6), were cloned from cerebral vascular/meningeal tissue. They appear non-functional as no current expression was observed, but the X2(92) appeared to slow the activation of the Zero variant when co-expressed. Positive protein expression of X2(92) was observed in oocytes by immunoblotting and fluorescence using a yellow fluorescent protein-tagged construct. The functional characteristics of the X1 variant may be important for a subpopulation of BK channels in the brain, while the "silent" truncated variants X2(92) and X2(188) may play a role as modulators of other BK channel variants in a way similar to well known beta subunits.
Collapse
Affiliation(s)
- Asser Nyander Poulsen
- Department of Animal and Veterinary Basic Sciences, Faculty of Life Sciences, University of Copenhagen, Groennegaardsvej 7, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
30
|
Parkash J, Asotra K. Calcium wave signaling in cancer cells. Life Sci 2010; 87:587-95. [PMID: 20875431 DOI: 10.1016/j.lfs.2010.09.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/16/2010] [Indexed: 02/05/2023]
Abstract
Ca(2+) functions as an important signaling messenger right from beginning of life to the final moments of the end of life. Ca(2+) is needed at several steps of the cell cycle such as early G(1), at the G(1)/S, and G(2)/M transitions. The Ca(2+) signals in the form of time-dependent changes in intracellular Ca(2+) concentrations, [Ca(2+)](i), are presented as brief spikes organized into regenerative Ca(2+) waves. Ca(2+)-mediated signaling pathways have also been shown to play important roles in carcinogenesis such as transformation of normal cells to cancerous cells, tumor formation and growth, invasion, angiogenesis and metastasis. Since the global Ca(2+) oscillations arise from Ca(2+) waves initiated locally, it results in stochastic oscillations because although each cell has many IP(3)Rs and Ca(2+) ions, the law of large numbers does not apply to the initiating event which is restricted to very few IP(3)Rs due to steep Ca(2+) concentration gradients. The specific Ca(2+) signaling information is likely to be encoded in a calcium code as the amplitude, duration, frequency, waveform or timing of Ca(2+) oscillations and decoded again at a later stage. Since Ca(2+) channels or pumps involved in regulating Ca(2+) signaling pathways show altered expression in cancer, one can target these Ca(2+) channels and pumps as therapeutic options to decrease proliferation of cancer cells and to promote their apoptosis. These studies can provide novel insights into alterations in Ca(2+) wave patterns in carcinogenesis and lead to the development of newer technologies based on Ca(2+) waves for the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Jai Parkash
- Robert Stempel College of Public Health and Social Work, Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, HLS-594, Miami, FL 33199, USA.
| | | |
Collapse
|
31
|
Calabrese A, Fraiman D, Zysman D, Ponce Dawson S. Stochastic fire-diffuse-fire model with realistic cluster dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:031910. [PMID: 21230111 DOI: 10.1103/physreve.82.031910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 07/19/2010] [Indexed: 05/30/2023]
Abstract
Living organisms use waves that propagate through excitable media to transport information. Ca2+ waves are a paradigmatic example of this type of processes. A large hierarchy of Ca2+ signals that range from localized release events to global waves has been observed in Xenopus laevis oocytes. In these cells, Ca2+ release occurs trough inositol 1,4,5-trisphosphate receptors (IP3Rs) which are organized in clusters of channels located on the membrane of the endoplasmic reticulum. In this article we construct a stochastic model for a cluster of IP3R 's that replicates the experimental observations reported in [D. Fraiman, Biophys. J. 90, 3897 (2006)]. We then couple this phenomenological cluster model with a reaction-diffusion equation, so as to have a discrete stochastic model for calcium dynamics. The model we propose describes the transition regimes between isolated release and steadily propagating waves as the IP3 concentration is increased.
Collapse
Affiliation(s)
- Ana Calabrese
- Departamento de Física, FCEN-UBA, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
32
|
Parker I, Smith IF. Recording single-channel activity of inositol trisphosphate receptors in intact cells with a microscope, not a patch clamp. J Gen Physiol 2010; 136:119-27. [PMID: 20660654 PMCID: PMC2912063 DOI: 10.1085/jgp.200910390] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Optical single-channel recording is a novel tool for the study of individual Ca2+-permeable channels within intact cells under minimally perturbed physiological conditions. As applied to the functioning and spatial organization of IP3Rs, this approach complements our existing knowledge, which derives largely from reduced systems - such as reconstitution into lipid bilayers and patch clamping of IP3Rs on the membrane of excised nuclei - where the spatial arrangement and interactions among IP3Rs via CICR are disrupted. The ability to image the activity of single IP3R channels with millisecond resolution together with localization of their positions with a precision of a few tens of nanometers both raises several intriguing questions and holds promise of answers. In particular, what mechanism underlies the anchoring of puffs and blips to static locations; why do these Ca2+ release events appear to involve only a very small fraction of the IP3Rs within a cell; and how can we reconcile the relative immotility of functional IP3Rs with numerous studies reporting free diffusion of IP3R protein in the ER membrane?
Collapse
Affiliation(s)
- Ian Parker
- Department of Neurobiology and Behavior, and Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Ian F. Smith
- Department of Neurobiology and Behavior, and Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
33
|
Abstract
Calcium signals are involved in a large variety of physiological processes. Their
versatility relies on the diversity of spatio-temporal behaviors that the
calcium concentration can display. Calcium entry through inositol
1,4,5-trisphosphate (IP) receptors (IPR's) is a key component that participates in both
local signals such as “puffs” and in global waves. IPR's are usually organized in clusters on the membrane
of the endoplasmic reticulum and their spatial distribution has important
effects on the resulting signal. Recent high resolution observations [1] of Ca puffs offer a window to study intra-cluster organization. The
experiments give the distribution of the number of IPR's that open during each puff without much
processing. Here we present a simple model with which we interpret the
experimental distribution in terms of two stochastic processes: IP binding and unbinding and Ca-mediated inter-channel coupling. Depending on the parameters
of the system, the distribution may be dominated by one or the other process.
The transition between both extreme cases is similar to a percolation process.
We show how, from an analysis of the experimental distribution, information can
be obtained on the relative weight of the two processes. The largest distance
over which Ca-mediated coupling acts and the density of IP-bound IPR's of the cluster can also be estimated. The approach
allows us to infer properties of the interactions among the channels of the
cluster from statistical information on their emergent collective behavior.
Collapse
Affiliation(s)
- Guillermo Solovey
- Departamento de Física, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
34
|
Olson ML, Chalmers S, McCarron JG. Mitochondrial Ca2+ uptake increases Ca2+ release from inositol 1,4,5-trisphosphate receptor clusters in smooth muscle cells. J Biol Chem 2009; 285:2040-50. [PMID: 19889626 DOI: 10.1074/jbc.m109.027094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle activities are regulated by inositol 1,4,5-trisphosphate (InsP(3))-mediated increases in cytosolic Ca2+ concentration ([Ca2+](c)). Local Ca2+ release from an InsP(3) receptor (InsP(3)R) cluster present on the sarcoplasmic reticulum is termed a Ca2+ puff. Ca2+ released via InsP(3)R may diffuse to adjacent clusters to trigger further release and generate a cell-wide (global) Ca2+ rise. In smooth muscle, mitochondrial Ca2+ uptake maintains global InsP(3)-mediated Ca2+ release by preventing a negative feedback effect of high [Ca2+] on InsP(3)R. Mitochondria may regulate InsP(3)-mediated Ca2+ signals by operating between or within InsP(3)R clusters. In the former mitochondria could regulate only global Ca2+ signals, whereas in the latter both local and global signals would be affected. Here whether mitochondria maintain InsP(3)-mediated Ca2+ release by operating within (local) or between (global) InsP(3)R clusters has been addressed. Ca2+ puffs evoked by localized photolysis of InsP(3) in single voltage-clamped colonic smooth muscle cells had amplitudes of 0.5-4.0 F/F(0), durations of approximately 112 ms at half-maximum amplitude, and were abolished by the InsP(3)R inhibitor 2-aminoethoxydiphenyl borate. The protonophore carbonyl cyanide 3-chloropheylhydrazone and complex I inhibitor rotenone each depolarized DeltaPsi(M) to prevent mitochondrial Ca2+ uptake and attenuated Ca2+ puffs by approximately 66 or approximately 60%, respectively. The mitochondrial uniporter inhibitor, RU360, attenuated Ca2+ puffs by approximately 62%. The "fast" Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acted like mitochondria to prolong InsP(3)-mediated Ca2+ release suggesting that mitochondrial influence is via their Ca2+ uptake facility. These results indicate Ca2+ uptake occurs quickly enough to influence InsP(3)R communication at the intra-cluster level and that mitochondria regulate both local and global InsP(3)-mediated Ca2+ signals.
Collapse
Affiliation(s)
- Marnie L Olson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, Glasgow G40NR, Scotland, United Kingdom
| | | | | |
Collapse
|
35
|
Hao Y, Kemper P, Smith GD. Reduction of calcium release site models via fast/slow analysis and iterative aggregation/disaggregation. CHAOS (WOODBURY, N.Y.) 2009; 19:037107. [PMID: 19792032 DOI: 10.1063/1.3223663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mathematical models of calcium release sites derived from Markov chain models of intracellular calcium channels exhibit collective gating reminiscent of the experimentally observed phenomenon of calcium puffs and sparks. Such models often take the form of stochastic automata networks in which the transition probabilities of each channel depend on the local calcium concentration and thus the state of the other channels. In order to overcome the state-space explosion that occurs in such compositionally defined calcium release site models, we have implemented several automated procedures for model reduction using fast/slow analysis. After categorizing rate constants in the single channel model as either fast or slow, groups of states in the expanded release site model that are connected by fast transitions are lumped, and transition rates between reduced states are chosen consistent with the conditional probability distribution among states within each group. For small problems these conditional probability distributions can be numerically calculated from the full model without approximation. For large problems the conditional probability distributions can be approximated without the construction of the full model by assuming rapid mixing of states connected by fast transitions. Alternatively, iterative aggregation/disaggregation may be employed to obtain reduced calcium release site models in a memory-efficient fashion. Benchmarking of several different iterative aggregation/disaggregation-based fast/slow reduction schemes establishes the effectiveness of automated calcium release site reduction utilizing the Koury-McAllister-Stewart method.
Collapse
Affiliation(s)
- Yan Hao
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23187, USA
| | | | | |
Collapse
|
36
|
Taylor CW, Pantazaka E. Targeting and clustering of IP3 receptors: key determinants of spatially organized Ca2+ signals. CHAOS (WOODBURY, N.Y.) 2009; 19:037102. [PMID: 19798811 DOI: 10.1063/1.3127593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca2+ channels that are almost ubiquitously expressed in animal cells. The spatiotemporal complexity of the Ca2+ signals evoked by IP3R underlies their versatility in cellular signaling. Here we review the mechanisms that contribute to the subcellular targeting of IP3R and the dynamic interplay between IP3R that underpin their ability to generate complex intracellular Ca2+ signals.
Collapse
|
37
|
Swaminathan D, Ullah G, Jung P. A simple sequential-binding model for calcium puffs. CHAOS (WOODBURY, N.Y.) 2009; 19:037109. [PMID: 19792034 PMCID: PMC2826368 DOI: 10.1063/1.3152227] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/19/2009] [Indexed: 05/28/2023]
Abstract
Calcium puffs describe the transient release of Ca(2+) ions into the cytosol, through small clusters of 1,4,5-inositol triphosphate (IP(3)) receptors, present on internal stores such as the endoplasmic reticulum. Statistical properties of puffs, such as puff amplitudes and durations, have been well characterized experimentally. We model calcium puffs using a simple, sequential-binding model for the IP(3) receptor in conjunction with a computationally inexpensive point-source approximation. We follow two different protocols, a sequential protocol and a renewal protocol. In the sequential protocol, puffs are generated successively by the same cluster; in the renewal protocol, the system is reset after each puff. In both cases for a single set of parameters our results are in excellent agreement with experimental results for puff amplitudes and durations but indicate puff-to-puff correlations for the sequential protocol, consistent with recent experimental findings [H. J. Rose, S. Dargan, J. W. Shuai, and I. Parker, Biophys. J. 91, 4024 (2006)]. The model is then used to test the consistency of the hypothesized steep Ca(2+) gradients around single channels with the experimentally observed features of puff durations and amplitudes. A three-dimensional implementation of our point-source model suggests that a peak Ca(2+) concentration of the order of 10 muM at the cluster site (not channel) is consistent with the statistical features of observed calcium puffs.
Collapse
Affiliation(s)
- D Swaminathan
- Department of Physics, Ohio University, Athens, Ohio 45701, USA
| | | | | |
Collapse
|
38
|
Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons. J Neurosci 2009; 29:7833-45. [PMID: 19535595 DOI: 10.1523/jneurosci.0573-09.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In most neurons postsynaptic [Ca(2+)](i) changes result from synaptic activation opening voltage gated channels, ligand gated channels, or mobilizing Ca(2+) release from intracellular stores. In addition to these changes that result directly from stimulation we found that in pyramidal cells there are spontaneous, rapid, Ca(2+) release events, predominantly, but not exclusively localized at dendritic branch points. They are clearest on the main apical dendrite but also have been detected in the finer branches and in the soma. Typically they have a spatial extent at initiation of approximately 2 microm, a rise time of <15 ms, duration <100 ms, and amplitudes of 10-70% of that generated by a backpropagating action potential at the same location. These events are not caused by background electrical or synaptic activity. However, their rate can be increased by repetitive synaptic stimulation at moderate frequencies, mainly through metabotropic glutamate receptor mobilization of IP(3). In addition, their frequency can be modulated by changes in membrane potential in the subthreshold range, predominantly by affecting Ca(2+) entry through L-type channels. They resemble the elementary events ("sparks" and "puffs") mediated by IP(3) receptors and ryanodine receptors that have been described primarily in non-neuronal preparations. These spontaneous Ca(2+) release events may be the fundamental units underlying some postsynaptic signaling cascades in mature neurons.
Collapse
|
39
|
Ca2+ spiral waves in a spatially discrete and random medium. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:1061-8. [PMID: 19582445 DOI: 10.1007/s00249-009-0509-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
It is well known that the spatial distribution of the calcium ion channels in the endoplasmic reticulum is discrete. We study the Ca(2+) spiral pattern formation based on a model in which ion channels are discretely and randomly distributed. Numerical simulations are performed on different types of media with the Ca(2+) release sites uniformly distributed, discretely and uniformly arranged, or discretely and randomly arranged. The comparisons among the different media show that random distribution is necessary for spontaneous initiation of Ca(2+) spiral waves, and the discrete and random distribution is of significance for spiral waves under physiologically reasonable conditions. The period and velocity of spiral waves are also calculated, and they are not prominently changed by varying the type of medium.
Collapse
|
40
|
Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells. Proc Natl Acad Sci U S A 2009; 106:6404-9. [PMID: 19332787 DOI: 10.1073/pnas.0810799106] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The spatiotemporal patterning of Ca(2+) signals regulates numerous cellular functions, and is determined by the functional properties and spatial clustering of inositol trisphosphate receptor (IP(3)R) Ca(2+) release channels in the endoplasmic reticulum membrane. However, studies at the single-channel level have been hampered because IP(3)Rs are inaccessible to patch-clamp recording in intact cells, and because excised organelle and bilayer reconstitution systems disrupt the Ca(2+)-induced Ca(2+) release (CICR) process that mediates channel-channel coordination. We introduce here the use of total internal reflection fluorescence microscopy to image single-channel Ca(2+) flux through individual and clustered IP(3)Rs in intact mammalian cells. This enables a quantal dissection of the local calcium puffs that constitute building blocks of cellular Ca(2+) signals, revealing stochastic recruitment of, on average, approximately 6 active IP(3)Rs clustered within <500 nm. Channel openings are rapidly ( approximately 10 ms) recruited by opening of an initial trigger channel, and a similarly rapid inhibitory process terminates puffs despite local [Ca(2+)] elevation that would otherwise sustain Ca(2+)-induced Ca(2+) release indefinitely. Minimally invasive, nano-scale Ca(2+) imaging provides a powerful tool for the functional study of intracellular Ca(2+) release channels while maintaining the native architecture and dynamic interactions essential for discrete and selective cell signaling.
Collapse
|
41
|
Liu Y, Zhang S, Liang M, Liu Q, Liu L. Effects of aconitine on [Ca2+] oscillation in cultured myocytes of neonatal rats. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2008; 28:499-503. [PMID: 18846325 DOI: 10.1007/s11596-008-0502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Indexed: 11/24/2022]
Abstract
In order to investigate the effects of aconitine on [Ca2+] oscillation patterns in cultured myocytes of neonatal rats, fluorescent Ca2+ indicator Fluo-4 NW and laser scanning confocal microscope (LSCM) were used to detect the real-time changes of [Ca2+] oscillation patterns in the cultured myocytes before and after aconitine (1.0 micromol/L) incubation or antiarrhythmic peptide (AAP) and aconitine co-incubation. The results showed under control conditions, [Ca2+] oscillations were irregular but relatively stable, occasionally accompanied by small calcium sparks. After incubation of the cultures with aconitine, high frequency [Ca2+] oscillations emerged in both nuclear and cytoplasmic regions, whereas typical calcium sparks disappeared and the average [Ca2+] in the cytoplasm of the cardiomyocyte did not change significantly. In AAP-treated cultures, intracellular [Ca2+] oscillation also changed, with periodic frequency, increased amplitudes and prolonged duration of calcium sparks. These patterns were not altered significantly by subsequent aconitine incubation. The basal value of [Ca2+] in nuclear region was higher than that in the cytoplasmic region. In the presence or absence of drugs, the [Ca2+] oscillated synchronously in both the nuclear and cytoplasmic regions of the same cardiomyocyte. It was concluded that although oscillating strenuously at high frequency, the average [Ca2+] in the cytoplasm of cardiomyocyte did not change significantly after aconitine incubation, compared to the controls. The observations indicate that aconitine induces the changes in [Ca2+] oscillation frequency other than the Ca2+ overload.
Collapse
Affiliation(s)
- Yan Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | |
Collapse
|
42
|
Solovey G, Fraiman D, Pando B, Ponce Dawson S. Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:041915. [PMID: 18999463 DOI: 10.1103/physreve.78.041915] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Indexed: 05/27/2023]
Abstract
Calcium release from intracellular stores plays a key role in the regulation of a variety of cellular activities. In various cell types this release occurs through inositol-triphosphate (IP3) receptors which are Ca2+ channels whose open probability is modulated by the cytosolic Ca2+ concentration itself. Thus, the combination of Ca2+ release and Ca2+ diffusion evokes a variety of Ca2+ signals depending on the number and relative location of the channels that participate of them. In fact, a hierarchy of Ca2+ signals has been observed in Xenopus laevis oocytes, ranging from very localized events (puffs and blips) to waves that propagate throughout the cell. In this cell type channels are organized in clusters. The behavior of individual channels within a cluster cannot be resolved with current optical techniques. Therefore, a combination of experiments and mathematical modeling is unavoidable to understand these signals. However, the numerical simulation of a detailed mathematical model of the problem is very hard given the large range of spatial and temporal scales that must be covered. In this paper we present an alternative model in which the cluster region is modeled using a relatively fine grid but where several approximations are made to compute the cytosolic Ca2+ concentration ([Ca;{2+}]) distribution. The inner-cluster [Ca;{2+}] distribution is used to determine the openings and closings of the channels of the cluster. The spatiotemporal [Ca;{2+}] distribution outside the cluster is determined using a coarser grid in which each (active) cluster is represented by a point source whose current is proportional to the number of open channels determined before. A full reaction-diffusion system is solved on this coarser grid.
Collapse
Affiliation(s)
- G Solovey
- Departamento de Física, FCEN-UBA, Ciudad Universitaria, Pabellón I, (1428) Buenos Aires, Argentina
| | | | | | | |
Collapse
|
43
|
Modeling Ca2+ feedback on a single inositol 1,4,5-trisphosphate receptor and its modulation by Ca2+ buffers. Biophys J 2008; 95:3738-52. [PMID: 18641077 DOI: 10.1529/biophysj.108.137182] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) is a major regulator of intracellular Ca(2+) signaling, and liberates Ca(2+) ions from the endoplasmic reticulum in response to binding at cytosolic sites for both IP(3) and Ca(2+). Although the steady-state gating properties of the IP(3)R have been extensively studied and modeled under conditions of fixed [IP(3)] and [Ca(2+)], little is known about how Ca(2+) flux through a channel may modulate the gating of that same channel by feedback onto activating and inhibitory Ca(2+) binding sites. We thus simulated the dynamics of Ca(2+) self-feedback on monomeric and tetrameric IP(3)R models. A major conclusion is that self-activation depends crucially on stationary cytosolic Ca(2+) buffers that slow the collapse of the local [Ca(2+)] microdomain after closure. This promotes burst-like reopenings by the rebinding of Ca(2+) to the activating site; whereas inhibitory actions are substantially independent of stationary buffers but are strongly dependent on the location of the inhibitory Ca(2+) binding site on the IP(3)R in relation to the channel pore.
Collapse
|
44
|
Smith IF, Wiltgen SM, Parker I. Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3. Cell Calcium 2008; 45:65-76. [PMID: 18639334 DOI: 10.1016/j.ceca.2008.06.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 05/30/2008] [Accepted: 06/05/2008] [Indexed: 01/14/2023]
Abstract
The Xenopus oocyte has been a favored model system in which to study spatio-temporal mechanisms of intracellular Ca2+ dynamics, in large part because this giant cell facilitates intracellular injections of Ca2+ indicator dyes, buffers and caged compounds. However, the recent commercial availability of membrane-permeant ester forms of caged IP3 (ci-IP3) and EGTA, now allows for facile loading of these compounds into smaller mammalian cells, permitting control of [IP3]i and cytosolic Ca2+ buffering. Here, we establish the human neuroblastoma SH-SY5Y cell line as an advantageous experimental system for imaging Ca2+ signaling, and characterize IP3-mediated Ca2+ signaling mechanisms in these cells. Flash photo-release of increasing amounts of i-IP3 evokes Ca2+ puffs that transition to waves, but intracellular loading of EGTA decouples release sites, allowing discrete puffs to be studied over a wide range of [IP3]. Puff activity persists for minutes following a single photo-release, pointing to a slow rate of i-IP3 turnover in these cells and suggesting that repetitive Ca2+ spikes with periods of 20-30s are not driven by oscillations in [IP3]. Puff amplitudes are independent of [IP3], whereas their frequencies increase with increasing photo-release. Puff sites in SH-SY5Y cells are not preferentially localized near the nucleus, but instead are concentrated close to the plasma membrane where they can be visualized by total internal reflection microscopy, offering the potential for unprecedented spatio-temporal resolution of Ca2+ puff kinetics.
Collapse
Affiliation(s)
- Ian F Smith
- Department of Neurobiology and Behavior, University of California, 1146 McGaugh Hall, Irvine, CA 92697-4545, United States.
| | | | | |
Collapse
|
45
|
Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci U S A 2008; 105:9627-32. [PMID: 18621682 DOI: 10.1073/pnas.0801963105] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium (Ca(2+)) release through inositol 1,4,5-trisphosphate receptors (IP(3)Rs) regulates the function of virtually every mammalian cell. Unlike ryanodine receptors, which generate local Ca(2+) events ("sparks") that transmit signals to the juxtaposed cell membrane, a similar functional architecture has not been reported for IP(3)Rs. Here, we have identified spatially fixed, local Ca(2+) release events ("pulsars") in vascular endothelial membrane domains that project through the internal elastic lamina to adjacent smooth muscle membranes. Ca(2+) pulsars are mediated by IP(3)Rs in the endothelial endoplasmic reticulum of these membrane projections. Elevation of IP(3) by the endothelium-dependent vasodilator, acetylcholine, increased the frequency of Ca(2+) pulsars, whereas blunting IP(3) production, blocking IP(3)Rs, or depleting endoplasmic reticulum Ca(2+) inhibited these events. The elementary properties of Ca(2+) pulsars were distinct from ryanodine-receptor-mediated Ca(2+) sparks in smooth muscle and from IP(3)-mediated Ca(2+) puffs in Xenopus oocytes. The intermediate conductance, Ca(2+)-sensitive potassium (K(Ca)3.1) channel also colocalized to the endothelial projections, and blockage of this channel caused an 8-mV depolarization. Inhibition of Ca(2+) pulsars also depolarized to a similar extent, and blocking K(Ca)3.1 channels was without effect in the absence of pulsars. Our results support a mechanism of IP(3) signaling in which Ca(2+) release is spatially restricted to transmit intercellular signals.
Collapse
|
46
|
Satin J, Itzhaki I, Rapoport S, Schroder EA, Izu L, Arbel G, Beyar R, Balke CW, Schiller J, Gepstein L. Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells 2008; 26:1961-72. [PMID: 18483424 DOI: 10.1634/stemcells.2007-0591] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of the current study was to characterize calcium handling in developing human embryonic stem cell-derived cardiomyocytes (hESC-CMs). To this end, real-time polymerase chain reaction (PCR), immunocytochemistry, whole-cell voltage-clamp, and simultaneous patch-clamp/laser scanning confocal calcium imaging and surface membrane labeling with di-8-aminonaphthylethenylpridinium were used. Immunostaining studies in the hESC-CMs demonstrated the presence of the sarcoplasmic reticulum (SR) calcium release channels, ryanodine receptor-2, and inositol-1,4,5-trisphosphate (IP3) receptors. Store calcium function was manifested as action-potential-induced calcium transients. Time-to-target plots showed that these action-potential-initiated calcium transients traverse the width of the cell via a propagated wave of intracellular store calcium release. The hESC-CMs also exhibited local calcium events ("sparks") that were localized to the surface membrane. The presence of caffeine-sensitive intracellular calcium stores was manifested following application of focal, temporally limited puffs of caffeine in three different age groups: early-stage (with the initiation of beating), intermediate-stage (10 days post-beating [dpb]), and late-stage (30-40 dpb) hESC-CMs. Calcium store load gradually increased during in vitro maturation. Similarly, ryanodine application decreased the amplitude of the spontaneous calcium transients. Interestingly, the expression and function of an IP3-releasable calcium pool was also demonstrated in the hESC-CMs in experiments using caged-IP3 photolysis and antagonist application (2 microM 2-Aminoethoxydiphenyl borate). In summary, our study establishes the presence of a functional SR calcium store in early-stage hESC-CMs and shows a unique pattern of calcium handling in these cells. This study also stresses the importance of the functional characterization of hESC-CMs both for developmental studies and for the development of future myocardial cell replacement strategies. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jonathan Satin
- The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Groff JR, Smith GD. Calcium-dependent inactivation and the dynamics of calcium puffs and sparks. J Theor Biol 2008; 253:483-99. [PMID: 18486154 DOI: 10.1016/j.jtbi.2008.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 03/19/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
Localized intracellular Ca(2+) elevations known as puffs and sparks arise from the cooperative activity of inositol 1,4,5-trisphosphate receptor Ca(2+) channels (IP(3)Rs) and ryanodine receptor Ca(2+) channels (RyRs) clustered at Ca(2+) release sites on the surface of the endoplasmic reticulum or sarcoplasmic reticulum. When Markov chain models of these intracellular Ca(2+)-regulated Ca(2+) channels are coupled via a mathematical representation of a Ca(2+) microdomain, simulated Ca(2+) release sites may exhibit the phenomenon of "stochastic Ca(2+) excitability" reminiscent of Ca(2+) puffs and sparks where channels open and close in a concerted fashion. To clarify the role of Ca(2+) inactivation of IP(3)Rs and RyRs in the dynamics of puffs and sparks, we formulate and analyze Markov chain models of Ca(2+) release sites composed of 10-40 three-state intracellular Ca(2+) channels that are inactivated as well as activated by Ca(2+). We study how the statistics of simulated puffs and sparks depend on the kinetics and dissociation constant of Ca(2+) inactivation and find that puffs and sparks are often less sensitive to variations in the number of channels at release sites and strength of coupling via local [Ca(2+)] when the average fraction of inactivated channels is significant. Interestingly, we observe that the single channel kinetics of Ca(2+) inactivation influences the thermodynamic entropy production rate of Markov chain models of puffs and sparks. While excessively fast Ca(2+) inactivation can preclude puffs and sparks, moderately fast Ca(2+) inactivation often leads to time-irreversible puffs and sparks whose termination is facilitated by the recruitment of inactivated channels throughout the duration of the puff/spark event. On the other hand, Ca(2+) inactivation may be an important negative feedback mechanism even when its time constant is much greater than the duration of puffs and sparks. In fact, slow Ca(2+) inactivation can lead to release sites with a substantial fraction of inactivated channels that exhibit puffs and sparks that are nearly time-reversible and terminate without additional recruitment of inactivated channels.
Collapse
Affiliation(s)
- Jeffrey R Groff
- Department of Applied Science, College of William and Mary, Williamsburg, VA 23187, USA
| | | |
Collapse
|
48
|
Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA. IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 2007; 294:H596-604. [PMID: 18055509 DOI: 10.1152/ajpheart.01155.2007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)-dependent Ca(2+) signaling exerts positive inotropic, but also arrhythmogenic, effects on excitation-contraction coupling (ECC) in the atrial myocardium. The role of IP(3)R-dependent sarcoplasmic reticulum (SR) Ca(2+) release in ECC in the ventricular myocardium remains controversial. Here we investigated the role of this signaling pathway during ECC in isolated rabbit ventricular myocytes. Immunoblotting of proteins from ventricular myocytes showed expression of both type 2 and type 3 IP(3)R at levels approximately 3.5-fold less than in atrial myocytes. In permeabilized myocytes, direct application of IP(3) (10 microM) produced a transient 21% increase in the frequency of Ca(2+) sparks (P < 0.05). This increase was accompanied by a 13% decrease in spark amplitude (P < 0.05) and a 7% decrease in SR Ca(2+) load (P < 0.05) and was inhibited by IP(3)R antagonists 2-aminoethoxydiphenylborate (2-APB; 20 microM) and heparin (0.5 mg/ml). In intact myocytes endothelin-1 (100 nM) was used to stimulate IP(3) production and caused a 38% (P < 0.05) increase in the amplitude of action potential-induced (0.5 Hz, field stimulation) Ca(2+) transients. This effect was abolished by the IP(3)R antagonist 2-APB (2 microM) or by using adenoviral expression of an IP(3) affinity trap that buffers cellular IP(3). Together, these data suggest that in rabbit ventricular myocytes IP(3)R-dependent Ca(2+) release has positive inotropic effects on ECC by facilitating Ca(2+) release through ryanodine receptor clusters.
Collapse
Affiliation(s)
- Timothy L Domeier
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
49
|
Rüdiger S, Shuai JW, Huisinga W, Nagaiah C, Warnecke G, Parker I, Falcke M. Hybrid stochastic and deterministic simulations of calcium blips. Biophys J 2007; 93:1847-57. [PMID: 17496042 PMCID: PMC1959544 DOI: 10.1529/biophysj.106.099879] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this article, we introduce a novel hybrid scheme that is especially tailored to accurately trace events with essential stochastic variations, while deterministic concentration variables are efficiently and accurately traced at the same time. We use finite elements to efficiently resolve the extreme spatial gradients of concentration variables close to a channel. We describe the algorithmic approach and we demonstrate its efficiency compared to conventional methods. Our single-channel model matches experimental data and results in intriguing dynamics if calcium is used as charge carrier. Random openings of the channel accumulate in bursts of calcium blips that may be central for the understanding of cellular calcium dynamics.
Collapse
Affiliation(s)
- S Rüdiger
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
McCarron JG, Chalmers S, Bradley KN, MacMillan D, Muir TC. Ca2+ microdomains in smooth muscle. Cell Calcium 2006; 40:461-93. [PMID: 17069885 DOI: 10.1016/j.ceca.2006.08.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 02/03/2023]
Abstract
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.
Collapse
Affiliation(s)
- John G McCarron
- Department of Physiology and Pharmacology, University of Strathclyde, SIPBS, Glasgow, UK.
| | | | | | | | | |
Collapse
|