1
|
Haug M, Michael M, Ritter P, Kovbasyuk L, Vazakidou ME, Friedrich O. Levosimendan's Effects on Length-Dependent Activation in Murine Fast-Twitch Skeletal Muscle. Int J Mol Sci 2024; 25:6191. [PMID: 38892380 PMCID: PMC11172453 DOI: 10.3390/ijms25116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.
Collapse
Affiliation(s)
- Michael Haug
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Mena Michael
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Paul Ritter
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Larisa Kovbasyuk
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
| | - Maria Eleni Vazakidou
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
- School of Biomedical Sciences, University of New South Wales, Wallace Wurth Building, 18 High St., Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Tang J, Liu W, Li X, Peng Y, Zhang Y, Hou S. Linking myosin heavy chain isoform shift to mechanical properties and fracture modes in skeletal muscle tissue. Biomech Model Mechanobiol 2024; 23:103-116. [PMID: 37568047 DOI: 10.1007/s10237-023-01761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Muscle fibers play a crucial role in the mechanical action of skeletal muscle tissue. However, it is unclear how the histological variations affect the mechanical properties of tissues. In this study, the shift of myosin heavy chain (MHC) isoforms is used for the first time to establish a linkage between tissue histological variation and passive mechanical properties. The shift of MHC isoform is found not only to induce significant differences in skeletal muscle passive mechanical properties, but also to lead to differences in strain rate responses. Non-negligible rate dependence is observed even in the conventionally defined quasi-static regime. Fidelity in the estimated constitutive parameters, which can be impacted due to variation in MHC isoforms and hence in rate sensitivity, is enhanced using a Bayesian inference framework. Subsequently, scanning electron microscopy and fluorescence microscopy are used to characterize the fracture morphology of muscle tissues and fibers. The fracture mode of both MHC I and II muscle fibers exhibited shearing of endomysium. Results show that the increase in strain rate only leads to stronger rebounding of the muscle fibers during tissue rupture without changing fracture modes.
Collapse
Affiliation(s)
- Jiabao Tang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Wenyang Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China.
| | - Xuhong Li
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Shujuan Hou
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Walter F, Seydewitz R, Mitterbach P, Siebert T, Böl M. On a three-dimensional model for the description of the passive characteristics of skeletal muscle tissue. Biomech Model Mechanobiol 2023; 22:1499-1514. [PMID: 36550242 PMCID: PMC10511390 DOI: 10.1007/s10237-022-01664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
In this work, a three-dimensional model was developed to describe the passive mechanical behaviour of anisotropic skeletal muscle tissue. To validate the model, orientation-dependent axial ([Formula: see text], [Formula: see text], [Formula: see text]) and semi-confined compression experiments (mode I, II, III) were performed on soleus muscle tissue from rabbits. In the latter experiments, specimen deformation is prescribed in the loading direction and prevented in an additional spatial direction, fibre compression at [Formula: see text] (mode I), fibre elongation at [Formula: see text] (mode II) and a neutral state of the fibres at [Formula: see text] where their length is kept constant (mode III). Overall, the model can adequately describe the mechanical behaviour with a relatively small number of model parameters. The stiffest tissue response during orientation-dependent axial compression ([Formula: see text] kPa) occurs when the fibres are oriented perpendicular to the loading direction ([Formula: see text]) and are thus stretched during loading. Semi-confined compression experiments yielded the stiffest tissue ([Formula: see text] kPa) in mode II when the muscle fibres are stretched. The extensive data set collected in this study allows to study the different error measures depending on the deformation state or the combination of deformation states.
Collapse
Affiliation(s)
- Fabian Walter
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Robert Seydewitz
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Philipp Mitterbach
- Mechanical Engineering, Eindhoven University of Technology, NLD-5612, Eindhoven, The Netherlands
| | - Tobias Siebert
- Institute of Sport and Motion Science, University of Stuttgart, D-70569, Stuttgart, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
| |
Collapse
|
4
|
Pus K, Paravlic AH, Šimunič B. The use of tensiomyography in older adults: a systematic review. Front Physiol 2023; 14:1213993. [PMID: 37398907 PMCID: PMC10311920 DOI: 10.3389/fphys.2023.1213993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Aging of skeletal muscles results in a cascade of events negatively affecting muscle mass, strength, and function, leading to reduced mobility, increased risk of falls, disability, and loss of independence. To date, different methods are used to assess muscle mechanical function, tensiomyography (TMG) being one of them. The aim of this review was twofold: to summarize the evidence-based usefulness of tensiomyography in older adults and to establish reference values for the main tensiomyography parameters in older adults. Methods: The PubMed, Web of Science, SPORTDiscus, and tensiomyography databases were searched from inception until 25 December 2022. Studies investigating older adults (aged 60+ years) that reported tensiomyography-derived parameters such as contraction time (Tc) and/or maximal displacement (Dm) were included. Methodological quality was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Results: In total, eight studies satisfied the inclusion criteria. Tensiomyography has been used on different groups of older adults, including asymptomatic, master athletes, patients with peripheral arterial disease, and patients with end-stage knee osteoarthritis with a mean age of 71.5 ± 5.38 (55.7% male subjects). The most evaluated were leg muscles such as vastus lateralis (VL), gastrocnemius medialis (GM), and biceps femoris (BF). The present review demonstrates that tensiomyography is used to assess neuromuscular function in asymptomatic and diseased older adults. When compared to asymptomatic individuals, power master athletes, knee osteoarthritis patients, and patients diagnosed with peripheral arterial disease have the shortest Tc in BF, VL, and GM muscles, respectively. On the other hand, endurance master athletes showed the longest Tc in all three evaluated muscles. Less mobile, nursing-home residents showed higher Dm in VL and BF, while lower Dm in GM than the asymptomatic group. The knee osteoarthritis group showed the largest Dm in BF and VL while having the smallest Dm in GM. Conclusion: Tensiomyography can serve as a valuable tool for assessing neuromuscular function in older adults. The method is sensitive to muscle composition, architecture, and (pre) atrophic changes of the skeletal muscles and might be responsive to muscle quality changes in aging and diseased populations. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=402345, identifier CRD42023402345.
Collapse
Affiliation(s)
- Katarina Pus
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Health Sciences, Alma Mater Europaea—ECM, Maribor, Slovenia
| | - Armin H. Paravlic
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Sports Studies, Masaryk University, Brno, Czechia
| | - Boštjan Šimunič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
5
|
Zhang J, Zhang C, Yan L, Zhang L, Wan Y, Wang Q, Wang P, Xu J. Shear wave elastography of the diaphragm in acute exacerbation of chronic obstructive pulmonary disease: A prospective observational study. Medicine (Baltimore) 2023; 102:e33329. [PMID: 36930088 PMCID: PMC10019183 DOI: 10.1097/md.0000000000033329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
Patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) are prone to diaphragmatic dysfunction. However, dynamic assessment of diaphragmatic function is complex and difficult, and whether the assessment of diaphragmatic function can reflect clinical indicators such as lung function in AECOPD patients remains unclear. We studied diaphragm stiffness and diaphragm stiffening rate (DSR) in AECOPD patients with acute exacerbations ≥ 2 times within 1 year and their correlation with clinical data, the diaphragmatic thickening fraction (DTF), lung function, and blood gas values. In total, 112 AECOPD patients in group C and Group D who had acute exacerbations ≥ 2 times within 1 year in the Global Initiative for Chronic Obstructive Lung Disease Guideline A (low risk, few symptoms), B (low risk, many symptoms), C (High risk, few symptoms), D (High risk, many symptoms) grouping system were included in the study. Their general clinical data, chronic obstructive pulmonary disease assessment test (CAT), modified medical research council (mMRC), number of acute exacerbations in 1 year, DTF, lung function, and blood gas analysis were collected. The diaphragm shear wave elasticity at functional residual capacity (DsweFRC) and DSR were measured by ultrasound. The DsweFRC and DSR of Group D were higher than those of Group C (P < .05). DsweFRC, DSR were negatively correlated with DTF, forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC) and FEV1/FVC (r ranged from -0.293 to -0.697, all P < .05), and positively correlated with CAT score, mMRC score, and arterial carbon dioxide pressure (r ranged from 0.274 to 0.462, all P < .05) in both groups; the correlation coefficients of DsweFRC, DSR and DTF, FEV1/FVC in group D were greater than those in group C. There was no correlation between DsweFRC, DSR and arterial oxygen partial pressure in both groups (P > .05). The DsweFRC, DSR increased with the number of acute exacerbations per year in both groups. We found that diaphragmatic stiffness in AECOPD patients increased with the number of acute exacerbations within 1 year, correlated with DTF, CAT, mMRC, lung function, and arterial carbon dioxide pressure and provides a simple and practical method for dynamically assessing diaphragmatic function and disease severity in AECOPD patients.
Collapse
Affiliation(s)
- Jingfeng Zhang
- Department of Ultrasound, Baoji High-Tech Hospital, Shaanxi, China
| | - Chunfeng Zhang
- Department of Respiratory and Critical Care Medicine, Baoji High-Tech Hospital, Shaanxi, China
| | - Lijuan Yan
- Department of Ultrasound, Baoji Central Hospital, Shaanxi, China
| | - Lei Zhang
- Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
- Department of Radiology, Baoji High-Tech Hospital, Shaanxi, China
| | - Yanping Wan
- Department of Ultrasound, Baoji High-Tech Hospital, Shaanxi, China
| | - Qi Wang
- Department of Ultrasound, Baoji High-Tech Hospital, Shaanxi, China
| | - Peng Wang
- Department of Respiratory and Critical Care Medicine, Baoji High-Tech Hospital, Shaanxi, China
| | - Jinzhi Xu
- Department of Respiratory and Critical Care Medicine, Baoji High-Tech Hospital, Shaanxi, China
| |
Collapse
|
6
|
Redox Balance Differentially Affects Biomechanics in Permeabilized Single Muscle Fibres-Active and Passive Force Assessments with the Myorobot. Cells 2022; 11:cells11233715. [PMID: 36496975 PMCID: PMC9740451 DOI: 10.3390/cells11233715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
An oxidizing redox state imposes unique effects on the contractile properties of muscle. Permeabilized fibres show reduced active force generation in the presence of H2O2. However, our knowledge about the muscle fibre's elasticity or flexibility is limited due to shortcomings in assessing the passive stress-strain properties, mostly due to technically limited experimental setups. The MyoRobot is an automated biomechatronics platform that is well-capable of not only investigating calcium responsiveness of active contraction but also features precise stretch actuation to examine the passive stress-strain behaviour. Both were carried out in a consecutive recording sequence on the same fibre for 10 single fibres in total. We denote a significantly diminished maximum calcium-saturated force for fibres exposed to ≥500 µM H2O2, with no marked alteration of the pCa50 value. In contrast to active contraction (e.g., maximum isometric force activation), passive restoration stress (force per area) significantly increases for fibres exposed to an oxidizing environment, as they showed a non-linear stress-strain relationship. Our data support the idea that a highly oxidizing environment promotes non-linear fibre stiffening and confirms that our MyoRobot platform is a suitable tool for investigating redox-related changes in muscle biomechanics.
Collapse
|
7
|
Xue B, Wen X, Kuwar R, Sun D, Zhang N. Age-dependent viscoelastic characterization of rat brain cortex. BRAIN MULTIPHYSICS 2022; 3. [DOI: 10.1016/j.brain.2022.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
8
|
Xu JH, Wu ZZ, Tao FY, Zhu ST, Chen SP, Cai C, Liang ZH, Shi BB, Chen B, Xie YP. Ultrasound Shear Wave Elastography for Evaluation of Diaphragm Stiffness in Patients with Stable COPD: A Pilot Trial. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2655-2663. [PMID: 33615538 DOI: 10.1002/jum.15655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 05/24/2023]
Abstract
OBJECTIVES Skeletal muscle dysfunction is one of the most common comorbidities in chronic obstructive pulmonary disease (COPD). The occurrence of respiratory failure in COPD is common and leads to the patient's death. The diaphragm is the most important muscle in the respiratory system and plays a key role in the onset of respiratory failure. This study explores the feasibility of ultrasound shear wave elastography (SWE) to measure diaphragmatic stiffness and evaluates its changes in COPD patients. METHODS In total, 77 participants (43 patients with stable COPD and 34 healthy controls) were enrolled. All subjects underwent complete diaphragmatic ultrasound SWE measurements and pulmonary function tests. The diaphragmatic stiffness was indicated via diaphragmatic shear wave velocity (SWV) at functional residual capacity (FRC). A trained operator performed the ultrasound SWE examinations of the first 15 healthy controls thrice to assess the reliability of diaphragmatic SWE. RESULTS A good to excellent reliability was found in diaphragmatic SWV at FRC (ICC = 0.93, 95%CI 0.82-0.98). As compared to the control group, the diaphragmatic SWV at FRC was considerably high in the COPD group (median 2.5 m/s versus 2.1 m/s, P = .008). Diaphragmatic SWV at FRC was linked to forced expiratory volume in one second (r = -0.30, P = .009), forced vital capacity (r = -0.33, P = .003), modified Medical Research Council score (r = 0.30, P = .001), and COPD assessment test score (r = 0.48, P < .001). CONCLUSIONS Ultrasound SWE may be employed as an effective tool for quantitative evaluation of diaphragm stiffness and can help in personalized management of COPD, such as treatment guidance and follow-up monitoring.
Collapse
Affiliation(s)
- Jing-Hong Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Zhen-Zhou Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang-Yi Tao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Shu-Ting Zhu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Shun-Ping Chen
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Chang Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeng-Hui Liang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Bin-Bin Shi
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Bin Chen
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Yu-Peng Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Wu Z, Wang Y, Ye Z, Guan Y, Ye X, Chen Z, Li C, Chen G, Zhu Y, Du J, Chen G, Liu W, Xu X. Effects of Age and Sex on Properties of Lumbar Erector Spinae in Healthy People: Preliminary Results From a Pilot Study. Front Physiol 2021; 12:718068. [PMID: 34616306 PMCID: PMC8488426 DOI: 10.3389/fphys.2021.718068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The influences of age and sex on properties of lumbar erector spinae have not been previously studied. Changes in the performance of lumbar erector spinae properties associated with age represent a valuable indicator of risk for lower-back-related disease. Objective: To investigate the lumbar erector spinae properties with regard to age and sex to provide a reference dataset. Methods: We measured muscle tone and stiffness of the lumbar erector spinae (at the L3–4 level) in healthy men and women (50 young people, aged 20–30 years; 50 middle-aged people, aged 40–50 years; and 50 elderly people, aged 65–75 years) using a MyotonPRO device. Results: In general, there are significant differences in muscle tone and stiffness among young, middle-aged, and elderly participants, and there were significant differences in muscle tone and stiffness between men and women, and there was no interaction between age and sex. The muscle tone and stiffness of the elderly participants were significantly higher than those of the middle-aged and young participants (P < 0.01), and the muscle tone and stiffness of the middle-aged participants were significantly higher than those of the young participants (P < 0.01). In addition, the muscle tone and stiffness of men participants were significantly higher than that of women participants (P < 0.01). Conclusion: Our results indicate that muscle tone and stiffness of the lumbar erector spinae increase with age. The muscle tone and stiffness of the lumbar erector spinae in men are significantly higher than in women. The present study highlights the importance of considering age and sex differences when assessing muscle characteristics of healthy people or patients.
Collapse
Affiliation(s)
- Zugui Wu
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixuan Ye
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingxing Guan
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangling Ye
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zehua Chen
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congcong Li
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoqian Chen
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Yue Zhu
- Baishui Health Center, Qujing, China
| | - Jianping Du
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Guocai Chen
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wengang Liu
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xuemeng Xu
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| |
Collapse
|
10
|
Enomoto S, Oda T, Sugisaki N, Toeda M, Kurokawa S, Kaga M. Muscle stiffness of the rectus femoris and vastus lateralis in children with Osgood-Schlatter disease. Knee 2021; 32:140-147. [PMID: 34507092 DOI: 10.1016/j.knee.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The relevance of the mechanical properties of muscles in relation to Osgood-Schlatter disease (OSD) remains unclear. The present study aimed to examine rectus femoris (RF) and vastus lateralis (VL) muscle stiffness in children with OSD. METHODS A total of 28 legs affected by OSD and 26 legs without OSD were assessed. The shear-wave velocity (SWV) of the RF and VL (in m/s) during passive knee flexion (0° (i.e., fully extended position), 45°, and 90° knee joint flexion) and isometric contraction (50% of maximal voluntary contraction) was measured using shear-wave elastography. RESULTS The SWV of the RF was higher in subjects with OSD than in those without OSD at 45° and 90° flexion (P = 0.033 and P = 0.035, respectively); however, the SWV of the RF did not significantly differ at 0° flexion (P = 0.469). Similarly, the SWV of the VL exhibited no significant difference between the tested groups (P > 0.05). No significant difference in the SWV of both muscles during isometric contraction was observed between the two groups (P > 0.05). CONCLUSIONS The results suggest that a stiffer RF under stretched conditions (45° and 90° flexion) is related to the presence of OSD. Furthermore, both muscles under unstretched and contracted conditions and the VL under stretched conditions have limited association with the presence of OSD. These results have important implications for understanding the association between the mechanical properties of muscles and OSD.
Collapse
Affiliation(s)
- Shota Enomoto
- Center for Liberal Arts, Meiji Gakuin University, Yokohama, Japan; Joint Graduate School in Science of School Education, Hyogo University of Teacher Education, Hyogo, Japan.
| | - Toshiaki Oda
- Graduate School of Education, Hyogo University of Teacher Education, Hyogo, Japan
| | | | - Misaki Toeda
- Department of Clothing, Faculty of Human sciences and Design, Japan Women's University, Tokyo, Japan
| | - Sadao Kurokawa
- Center for Liberal Arts, Meiji Gakuin University, Yokohama, Japan
| | - Masaru Kaga
- Graduate School of Education, Okayama University, Okayama, Japan
| |
Collapse
|
11
|
Haug M, Ritter P, Michael M, Reischl B, Schurmann S, Prols G, Friedrich O. Structure-Function Relationships in Muscle Fibres: MyoRobot online Assessment of Muscle Fibre Elasticity and Sarcomere Length Distributions. IEEE Trans Biomed Eng 2021; 69:148-155. [PMID: 34133271 DOI: 10.1109/tbme.2021.3089739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Muscle biomechanics is set by the spacing of repetitive striation patterns of individual sarcomeres within single muscle fibres of stacked myofibrils. Sarcomere lengths (SL) are rather unequally distributed than of equal distance. This non-uniformity may affect both, force production as well as passive-elastic deformation. However, online recording of SL during axially imposed strains is cumbersome due to a lack of compact technologies. METHODS To fuse SL pattern recognition with restoration force assessments during quasi-static axial stretch, we implemented live tracking of SL distributions simultaneous to voice-coil actuated stretch and restoration force recordings in our MyoRobot 2.0 automated biomechatronics platform. Both were obtained online during stretchrelaxation cycles of murine single muscle fibres. RESULTS Under quasi-static stretch conditions (∼1 μm/s fibre length changes), almost no apparent hysteresis was detected in single fibres. SL showed a non-uniform distribution. While mean SL varied between 2.6 μm and 3.4 μm upon 140% stretch, two populations of fibres were noticed: one showing a minor change in SL distribution with stretch, and one becoming more equally distributed upon stretch. CONCLUSION A roughly 5% SL variability under rest either diminishes or remains almost unaltered upon elastic axial deformation. This may reflect differential impact of mostly extra-sarcomeric components to stretch in this stretch range. SIGNIFICANCE The augmented functionality of the MyoRobot 2.0 towards online sarcomere analyses within single fibres shall provide a valuable tool for the muscle community to study the contribution of serial elastic and force producing elements in health and disease models.
Collapse
|
12
|
Relationship between resting medial gastrocnemius stiffness and drop jump performance. J Electromyogr Kinesiol 2021; 58:102549. [PMID: 33915270 DOI: 10.1016/j.jelekin.2021.102549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022] Open
Abstract
Although the influence of the series elastic element of the muscle-tendon unit on jump performance has been investigated, the corresponding effect of the parallel elastic element remains unclear. This study examined the relationship between the resting calf muscle stiffness and drop jump performance. Twenty-four healthy men participated in this study. The shear moduli of the medial gastrocnemius and the soleus were measured at rest as an index of muscle stiffness using ultrasound shear wave elastography. The participants performed drop jumps from a 15 cm high box. The Spearman rank correlation coefficient was used to examine the relationships between shear moduli of the muscles and drop jump performance. The medial gastrocnemius shear modulus showed a significant correlation with the drop jump index (jump height/contact time) (r = 0.414, P = 0.044) and jump height (r = 0.411, P = 0.046), but not with contact time (P > 0.05). The soleus shear modulus did not correlate with these jump parameters (P > 0.05). These results suggest that the resting medial gastrocnemius stiffness can be considered as one of the factors that influence drop jump performance. Therefore, increase in resting muscle stiffness should enhance explosive athletic performance in training regimens.
Collapse
|
13
|
Fabiani E, Herc M, Šimunič B, Brix B, Löffler K, Weidinger L, Ziegl A, Kastner P, Kapel A, Goswami N. Correlation between timed up and go test and skeletal muscle tensiomyography in female nursing home residents. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:247-254. [PMID: 34059569 PMCID: PMC8185258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Tensiomyography (TMG) derived contraction time (Tc) and amplitude (Dm) are related to muscle fibre composition and to muscle atrophy/tone, respectively. However, the link between mobility and TMG-derived skeletal muscle contractile properties in older persons is unknown. The aim of the study was to correlate lower limb skeletal muscle contractile properties with balance and mobility measures in senior female residents of retirement homes in Austria. METHODS Twenty-eight female participants (aged from 67-99 years) were included in measurements of contractile properties (TMG) of four skeletal muscles: vastus lateralis, vastus medialis, biceps femoris and gastrocnemius medialis. Their balance and mobility performance was measured using a timed up and go test (TUG). RESULTS Time needed to complete TUG is negatively correlated to biceps femoris (r= -0.490; p= 0.008), vastus lateralis (r= -0.414; p=0.028) and vastus medialis (r= -0.353; p=0.066) Dm and positively correlated to vastus lateralis Tc (r=0.456; p=0.015). Overall, vastus lateralis Tc and vastus medialis Dm explained 37% of TUG time variance. CONCLUSIONS Our study demonstrates that TMG-derived quadriceps muscle contractile parameters are correlated with the balance and mobility function in female nursing home residents.
Collapse
Affiliation(s)
- Ester Fabiani
- Alma Mater Europaea ECM, Maribor, Slovenia,Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Boštjan Šimunič
- Alma Mater Europaea ECM, Maribor, Slovenia,Science and Research Centre Koper, Koper, Slovenia,Corresponding authors: Boštjan Šimunič, Science and Research Centre Koper, Garibaldijeva 1, Koper, Slovenia E-mail:
| | - Bianca Brix
- Head of Gravitational Physiology and Medicine Research Unit, Physiology Division, Medical University of Graz, Graz, Austria
| | - Kerstin Löffler
- Geriatrische Gesundheitszentren der Stadt Graz, Graz Austria
| | - Lisa Weidinger
- Geriatrische Gesundheitszentren der Stadt Graz, Graz Austria
| | - Andreas Ziegl
- AIT Austrian Institute of Technology GmbH, Graz, Austria,Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Peter Kastner
- AIT Austrian Institute of Technology GmbH, Graz, Austria
| | - Alen Kapel
- Alma Mater Europaea ECM, Maribor, Slovenia,Modus Medical, Maribor, Slovenia
| | - Nandu Goswami
- Alma Mater Europaea ECM, Maribor, Slovenia,Head of Gravitational Physiology and Medicine Research Unit, Physiology Division, Medical University of Graz, Graz, Austria,Nandu Goswami, Medical University of Graz, Neue Stitftingtalstrasse 6, 5-D, Graz, Austria E-mail:
| |
Collapse
|
14
|
Pollmann C, Haug M, Reischl B, Prölß G, Pöschel T, Rupitsch SJ, Clemen CS, Schröder R, Friedrich O. Growing Old Too Early: Skeletal Muscle Single Fiber Biomechanics in Ageing R349P Desmin Knock-in Mice Using the MyoRobot Technology. Int J Mol Sci 2020; 21:ijms21155501. [PMID: 32752098 PMCID: PMC7432536 DOI: 10.3390/ijms21155501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Muscle biomechanics relies on active motor protein assembly and passive strain transmission through cytoskeletal structures. The desmin filament network aligns myofibrils at the z-discs, provides nuclear–sarcolemmal anchorage and may also serve as memory for muscle repositioning following large strains. Our previous analyses of R349P desmin knock-in mice, an animal model for the human R350P desminopathy, already depicted pre-clinical changes in myofibrillar arrangement and increased fiber bundle stiffness. As the effect of R349P desmin on axial biomechanics in fully differentiated single muscle fibers is unknown, we used our MyoRobot to compare passive visco-elasticity and active contractile biomechanics in single fibers from fast- and slow-twitch muscles from adult to senile mice, hetero- or homozygous for the R349P desmin mutation with wild type littermates. We demonstrate that R349P desmin presence predominantly increased axial stiffness in both muscle types with a pre-aged phenotype over wild type fibers. Axial viscosity and Ca2+-mediated force were largely unaffected. Mutant single fibers showed tendencies towards faster unloaded shortening over wild type fibers. Effects of aging seen in the wild type appeared earlier in the mutant desmin fibers. Our single-fiber experiments, free of extracellular matrix, suggest that compromised muscle biomechanics is not exclusively attributed to fibrosis but also originates from an impaired intermediate filament network.
Collapse
Affiliation(s)
- Charlotte Pollmann
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Bavaria, Germany; (C.P.); (B.R.); (G.P.); (O.F.)
| | - Michael Haug
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Bavaria, Germany; (C.P.); (B.R.); (G.P.); (O.F.)
- Graduate School in Advanced Optical Technologies, Paul-Gordan-Str. 6, 91052 Erlangen, Bavaria, Germany
- School of Medical Sciences, University of New South Wales, Wallace Wurth Building, 18 High St, Sydney, NSW 2052, Australia
- Correspondence:
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Bavaria, Germany; (C.P.); (B.R.); (G.P.); (O.F.)
| | - Gerhard Prölß
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Bavaria, Germany; (C.P.); (B.R.); (G.P.); (O.F.)
| | - Thorsten Pöschel
- Institute of Multi Scale Simulation of Particulate Systems, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelbachstr. 49b, 91052 Erlangen, Bavaria, Germany;
| | - Stefan J Rupitsch
- Institute of Sensor Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3/5, 91052 Erlangen, Bavaria, Germany;
| | - Christoph S Clemen
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Höhe, 51147 Cologne, North Rhine-Westphalia, Germany;
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Bavaria, Germany;
- Insitute of Vegetative Physiology, Medical Faculty, University of Cologne, Center of Physiology and Pathophysiology, Robert-Koch-Street 39, 50931 Cologne, North Rhine-Westphalia, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Bavaria, Germany;
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Bavaria, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Bavaria, Germany; (C.P.); (B.R.); (G.P.); (O.F.)
- Graduate School in Advanced Optical Technologies, Paul-Gordan-Str. 6, 91052 Erlangen, Bavaria, Germany
- School of Medical Sciences, University of New South Wales, Wallace Wurth Building, 18 High St, Sydney, NSW 2052, Australia
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Bavaria, Germany
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Sydney, NSW 2010, Australia
- Optical Imaging Centre Erlangen OICE, Cauerstr. 3, 91058 Erlangen, Bavaria, Germany
| |
Collapse
|
15
|
Liu CL, Zhou JP, Sun PT, Chen BZ, Zhang J, Tang CZ, Zhang ZJ. Influence of different knee and ankle ranges of motion on the elasticity of triceps surae muscles, Achilles tendon, and plantar fascia. Sci Rep 2020. [DOI: https://doi.org/10.1038/s41598-020-63730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractStiffness is a valuable indicator of the functional capabilities of muscle-tendon-fascia. Twenty healthy subjects participated in this study in which the passive elastic properties of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus muscles (SOL), Achilles tendon (AT, at 0 cm, 3 cm and 6 cm proximal to the calcaneus tubercle, corresponding to AT0cm, AT3cm and AT6cm, respectively) and plantar fascia (PF) were quantified when their knee was fully extended or flexed to 90° using shear wave elastography at 25° of dorsiflexion (DF25°), 0° (neutral position) of flexion, and 50° of plantar flexion (PF50°) of the ankle joint. The stiffnesses of the AT, MG, LG, SOL and the fascia with the knee fully extended were significantly higher than those with the knee flexed to 90° (p < 0.05), while the stiffness of the PF showed the opposite relationship (p < 0.05). When the knee was fully extended, the stiffness was higher in the LG than in the MG at PF50° and 0° (p < 0.01), and it was higher in the MG than in the LG at DF25° (p = 0.009). Nevertheless, regardless of the knee angle, the stiffness decreased from AT3cm > AT0cm > AT6cm at PF50° and 0° (p < 0.001), while the stiffness decreased from AT0cm > AT3cm > AT6cm at DF25°. Regardless of the knee and ankle angles, the stiffness of the PF increased in a proximal-to-distal direction (p < 0.001). These insights can be used to gain a more intuitive understanding of the relationships between the elastic properties of the muscle-tendon unit and its function.
Collapse
|
16
|
Liu CL, Zhou JP, Sun PT, Chen BZ, Zhang J, Tang CZ, Zhang ZJ. Influence of different knee and ankle ranges of motion on the elasticity of triceps surae muscles, Achilles tendon, and plantar fascia. Sci Rep 2020. [DOI: doi.org/10.1038/s41598-020-63730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractStiffness is a valuable indicator of the functional capabilities of muscle-tendon-fascia. Twenty healthy subjects participated in this study in which the passive elastic properties of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus muscles (SOL), Achilles tendon (AT, at 0 cm, 3 cm and 6 cm proximal to the calcaneus tubercle, corresponding to AT0cm, AT3cm and AT6cm, respectively) and plantar fascia (PF) were quantified when their knee was fully extended or flexed to 90° using shear wave elastography at 25° of dorsiflexion (DF25°), 0° (neutral position) of flexion, and 50° of plantar flexion (PF50°) of the ankle joint. The stiffnesses of the AT, MG, LG, SOL and the fascia with the knee fully extended were significantly higher than those with the knee flexed to 90° (p < 0.05), while the stiffness of the PF showed the opposite relationship (p < 0.05). When the knee was fully extended, the stiffness was higher in the LG than in the MG at PF50° and 0° (p < 0.01), and it was higher in the MG than in the LG at DF25° (p = 0.009). Nevertheless, regardless of the knee angle, the stiffness decreased from AT3cm > AT0cm > AT6cm at PF50° and 0° (p < 0.001), while the stiffness decreased from AT0cm > AT3cm > AT6cm at DF25°. Regardless of the knee and ankle angles, the stiffness of the PF increased in a proximal-to-distal direction (p < 0.001). These insights can be used to gain a more intuitive understanding of the relationships between the elastic properties of the muscle-tendon unit and its function.
Collapse
|
17
|
Liu CL, Zhou JP, Sun PT, Chen BZ, Zhang J, Tang CZ, Zhang ZJ. Influence of different knee and ankle ranges of motion on the elasticity of triceps surae muscles, Achilles tendon, and plantar fascia. Sci Rep 2020; 10:6643. [PMID: 32313166 PMCID: PMC7171074 DOI: 10.1038/s41598-020-63730-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Stiffness is a valuable indicator of the functional capabilities of muscle-tendon-fascia. Twenty healthy subjects participated in this study in which the passive elastic properties of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus muscles (SOL), Achilles tendon (AT, at 0 cm, 3 cm and 6 cm proximal to the calcaneus tubercle, corresponding to AT0cm, AT3cm and AT6cm, respectively) and plantar fascia (PF) were quantified when their knee was fully extended or flexed to 90° using shear wave elastography at 25° of dorsiflexion (DF25°), 0° (neutral position) of flexion, and 50° of plantar flexion (PF50°) of the ankle joint. The stiffnesses of the AT, MG, LG, SOL and the fascia with the knee fully extended were significantly higher than those with the knee flexed to 90° (p < 0.05), while the stiffness of the PF showed the opposite relationship (p < 0.05). When the knee was fully extended, the stiffness was higher in the LG than in the MG at PF50° and 0° (p < 0.01), and it was higher in the MG than in the LG at DF25° (p = 0.009). Nevertheless, regardless of the knee angle, the stiffness decreased from AT3cm > AT0cm > AT6cm at PF50° and 0° (p < 0.001), while the stiffness decreased from AT0cm > AT3cm > AT6cm at DF25°. Regardless of the knee and ankle angles, the stiffness of the PF increased in a proximal-to-distal direction (p < 0.001). These insights can be used to gain a more intuitive understanding of the relationships between the elastic properties of the muscle-tendon unit and its function.
Collapse
Affiliation(s)
- Chun-Long Liu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ji-Ping Zhou
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Nan'ao people's Hospital, Dapeng New District, Shenzhen, China
| | - Peng-Tao Sun
- Department of Medical Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bai-Zhen Chen
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Zhi Tang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Jie Zhang
- Luoyang Orthopedics Hospital of Henan Province, Luoyang, China.
| |
Collapse
|
18
|
Liu CL, Zhou JP, Sun PT, Chen BZ, Zhang J, Tang CZ, Zhang ZJ. Influence of different knee and ankle ranges of motion on the elasticity of triceps surae muscles, Achilles tendon, and plantar fascia. Sci Rep 2020; 10:6643. [DOI: https:/doi.org/10.1038/s41598-020-63730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/31/2020] [Indexed: 09/11/2023] Open
Abstract
AbstractStiffness is a valuable indicator of the functional capabilities of muscle-tendon-fascia. Twenty healthy subjects participated in this study in which the passive elastic properties of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus muscles (SOL), Achilles tendon (AT, at 0 cm, 3 cm and 6 cm proximal to the calcaneus tubercle, corresponding to AT0cm, AT3cm and AT6cm, respectively) and plantar fascia (PF) were quantified when their knee was fully extended or flexed to 90° using shear wave elastography at 25° of dorsiflexion (DF25°), 0° (neutral position) of flexion, and 50° of plantar flexion (PF50°) of the ankle joint. The stiffnesses of the AT, MG, LG, SOL and the fascia with the knee fully extended were significantly higher than those with the knee flexed to 90° (p < 0.05), while the stiffness of the PF showed the opposite relationship (p < 0.05). When the knee was fully extended, the stiffness was higher in the LG than in the MG at PF50° and 0° (p < 0.01), and it was higher in the MG than in the LG at DF25° (p = 0.009). Nevertheless, regardless of the knee angle, the stiffness decreased from AT3cm > AT0cm > AT6cm at PF50° and 0° (p < 0.001), while the stiffness decreased from AT0cm > AT3cm > AT6cm at DF25°. Regardless of the knee and ankle angles, the stiffness of the PF increased in a proximal-to-distal direction (p < 0.001). These insights can be used to gain a more intuitive understanding of the relationships between the elastic properties of the muscle-tendon unit and its function.
Collapse
|
19
|
MyoRobot 2.0: An advanced biomechatronics platform for automated, environmentally controlled skeletal muscle single fiber biomechanics assessment employing inbuilt real-time optical imaging. Biosens Bioelectron 2019; 138:111284. [DOI: 10.1016/j.bios.2019.04.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/24/2019] [Indexed: 11/23/2022]
|
20
|
The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice. Sci Rep 2019; 9:10769. [PMID: 31341183 PMCID: PMC6656739 DOI: 10.1038/s41598-019-46723-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/03/2019] [Indexed: 01/05/2023] Open
Abstract
Mutations in the Des gene coding for the muscle-specific intermediate filament protein desmin lead to myopathies and cardiomyopathies. We previously generated a R349P desmin knock-in mouse strain as a patient-mimicking model for the corresponding most frequent human desmin mutation R350P. Since nothing is known about the age-dependent changes in the biomechanics of affected muscles, we investigated the passive and active biomechanics of small fiber bundles from young (17–23 wks), adult (25–45 wks) and aged (>60 wks) heterozygous and homozygous R349P desmin knock-in mice in comparison to wild-type littermates. We used a novel automated biomechatronics platform, the MyoRobot, to perform coherent quantitative recordings of passive (resting length-tension curves, visco-elasticity) and active (caffeine-induced force transients, pCa-force, ‘slack-tests’) parameters to determine age-dependent effects of the R349P desmin mutation in slow-twitch soleus and fast-twitch extensor digitorum longus small fiber bundles. We demonstrate that active force properties are not affected by this mutation while passive steady-state elasticity is vastly altered in R349P desmin fiber bundles compatible with a pre-aged phenotype exhibiting stiffer muscle preparations. Visco-elasticity on the other hand, was not altered. Our study represents the first systematic age-related characterization of small muscle fiber bundle preparation biomechanics in conjunction with inherited desminopathy.
Collapse
|
21
|
Böl M, Iyer R, Dittmann J, Garcés-Schröder M, Dietzel A. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling. Acta Biomater 2019; 92:277-289. [PMID: 31077887 DOI: 10.1016/j.actbio.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Characterisation of the skeletal muscle's passive properties is a challenging task since its structure is dominated by a highly complex and hierarchical arrangement of fibrous components at different scales. The present work focuses on the micromechanical characterisation of skeletal muscle fibres, which consist of myofibrils, by realising three different deformation states, namely, axial tension, axial compression, and transversal compression. To the best of the authors' knowledge, the present study provides a novel comprehensive data set representing of different deformation states. These data allow for a better understanding of muscle fibre load transfer mechanisms and can be used for meaningful modelling approaches. As the present study shows, axial tension and compression experiments reveal a strong tension-compression asymmetry at fibre level. In comparison to the tissue level, this asymmetric behaviour is more pronounced at the fibre scale, elucidating the load transfer mechanism in muscle tissue and aiding in the development of future modelling strategies. Further, a Bayesian hierarchical modelling approach was used to consider the experimental fluctuations in a parameter identification scheme, leading to more comprehensive parameter distributions that reflect the entire observed experimental uncertainty. STATEMENT OF SIGNIFICANCE: This article examines for the first time the mechanical properties of skeletal muscle fibres under axial tension, axial compression, and transversal compression, leading to a highly comprehensive data set. Moreover, a Bayesian hierarchical modelling concept is presented to identify model parameters in a broad way. The results of the deformation states allow a new and comprehensive understanding of muscle fibres' load transfer mechanisms; one example is the effect of tension-compression asymmetry. On the one hand, the results of this study contribute to the understanding of muscle mechanics and thus to the muscle's functional understanding during daily activity. On the other hand, they are relevant in the fields of skeletal muscle multiscale, constitutive modelling.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| | - Rahul Iyer
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Johannes Dittmann
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Mayra Garcés-Schröder
- Institute of Micro Technology, Technische Universität Braunschweig, Braunschweig D-38124, Germany
| | - Andreas Dietzel
- Institute of Micro Technology, Technische Universität Braunschweig, Braunschweig D-38124, Germany
| |
Collapse
|
22
|
Relationship between age, BMI, head posture and superficial neck muscle stiffness and elasticity in adult women. Sci Rep 2019; 9:8515. [PMID: 31186509 PMCID: PMC6559965 DOI: 10.1038/s41598-019-44837-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
This study determined relationships between age, BMI and cranio-vertebral angle (CVA) (independent variables) and stiffness and elasticity of sternocleidomasteoid [SCM] and upper trapezius [UT] (dependent variables) muscles in sitting posture in 95 women across adult life. Moreover, a stepwise regression was performed to determine to what extent the dependent variables are explained by age, BMI and CVA. Age was moderately correlated with BMI (r = 0.41), and both age and BMI were moderately negatively correlated with CVA (r = −0.54 and −0.55, respectively). High (r = 0.73) and moderate (r = 0.53) linear relationships were present between age and logarithmic decrement (inversely related to elasticity) and stiffness of SCM muscle, respectively. Low (r = 0.36) and moderate (r = 0.47) relationships were present between age and logarithmic decrement and stiffness of UT muscle, respectively. Age accounted for 53% variance in elasticity and 28.5% variance in stiffness of SCM, and for 13% variance in elasticity and 22% variance in stiffness of UT muscle. Introduction of BMI but not CVA to the model explained the variance of these parameters by additional 0–8%. Among the studied factors age is the major correlate of stiffness and elasticity of neck muscles across the adult life.
Collapse
|
23
|
Huang J, Qin K, Tang C, Zhu Y, Klein CS, Zhang Z, Liu C. Assessment of Passive Stiffness of Medial and Lateral Heads of Gastrocnemius Muscle, Achilles Tendon, and Plantar Fascia at Different Ankle and Knee Positions Using the MyotonPRO. Med Sci Monit 2018; 24:7570-7576. [PMID: 30352050 PMCID: PMC6402278 DOI: 10.12659/msm.909550] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to assess the passive stiffness of the medial and lateral gastrocnemius (MG and LG), Achilles tendon (AT), and plantar fascia (PF) at different ankle and knee positions. Material/Methods Stiffness was assessed using a portable hand-held device (MyotonPRO). In 30 healthy participants (15 males, 15 females) with the knee fully extended or flexed 90°, stiffness of the MG, LG, AT, and PF was measured at 50° plantar flexion, 0° (neutral position), and 25° dorsiflexion (not for AT) of the ankle joint by passive joint rotation. Results With the knee fully extended, passive dorsiflexion caused significant increase in muscle stiffness (P<0.001), whereas AT and PF stiffness increased with passive ankle dorsiflexion regardless of knee position (P<0.001). Increased stiffness was observed in MG compared to LG (P<0.001) and at the 3-cm site of AT compared to the 6-cm site (P<0.05). Stiffness was greater in LG compared to MG at −50° plantar flexion (P<0.001) and was greater in MG compared to LG at 25° dorsiflexion (P<0.05). Stiffness of AT increased in a distal-to-proximal pattern: 0 cm >3 cm >6 cm (P<0.001). Conclusions Stiffness assessed by use of the MyotonPRO was similar assessments using other techniques, suggesting that the MyotonPRO is capable of detecting the variations in stiffness of MG, LG, AT, and PF at different ankle and knee positions.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Rehabilitation, Clinical Medicine College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Kun Qin
- Department of Rehabilitation, Clinical Medicine College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Chunzhi Tang
- Department of Rehabilitation, Clinical Medicine College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Yi Zhu
- Rehabilitation Therapy Center, Hainan Province Nongken Genernal Hospital, Haikou, Hainan, China (mainland)
| | - Cliff S Klein
- Guangdong Work Injury Rehabilitation Center, Guangzhou, Guangdong, China (mainland)
| | - Zhijie Zhang
- Guangzhou, Guangdong, Luoyang Orthopedic Hospital of Henan Province, Louyang, Henan, China (mainland)
| | - Chunlong Liu
- Department of Rehabilitation, Clinical Medicine College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
24
|
Satkunskiene D, Ratkevicius A, Kamandulis S, Venckunas T. Effects of myostatin on the mechanical properties of muscles during repeated active lengthening in the mouse. Appl Physiol Nutr Metab 2018; 44:381-388. [PMID: 30222937 DOI: 10.1139/apnm-2018-0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to investigate how myostatin dysfunction affects fast and slow muscle stiffness and viscosity during severe repeated loading. Isolated extensor digitorum longus (EDL) and soleus muscles of young adult female mice of the BEH (dysfunctional myostatin) and BEH+/+ (functional myostatin) strains were subjected to 100 contraction-stretching loading cycles during which contractile and mechanical properties were assessed. BEH mice exhibited greater exercise-induced muscle damage, although the effect was muscle- and age-dependent and limited to the early phases of simulated exercise. The relative reduction of the EDL muscle isometric force recorded during the initial 10-30 loading cycles was greater in BEH mice than in BEH+/+ mice and exceeded that of the soleus muscle of either strain. The induced damage was associated with lower muscle stiffness. The effects of myostatin on the mechanical properties of muscles depend on muscle type and maturity.
Collapse
Affiliation(s)
- Danguole Satkunskiene
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania.,Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| | - Aivaras Ratkevicius
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania.,Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania.,Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckunas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania.,Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
25
|
The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca 2+ biosensors and active/passive biomechanics in muscle and biomaterials. Biosens Bioelectron 2017; 102:589-599. [PMID: 29245144 DOI: 10.1016/j.bios.2017.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/11/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022]
Abstract
We engineered an automated biomechatronics system, MyoRobot, for robust objective and versatile assessment of muscle or polymer materials (bio-)mechanics. It covers multiple levels of muscle biosensor assessment, e.g. membrane voltage or contractile apparatus Ca2+ ion responses (force resolution 1µN, 0-10mN for the given sensor; [Ca2+] range ~ 100nM-25µM). It replaces previously tedious manual protocols to obtain exhaustive information on active/passive biomechanical properties across various morphological tissue levels. Deciphering mechanisms of muscle weakness requires sophisticated force protocols, dissecting contributions from altered Ca2+ homeostasis, electro-chemical, chemico-mechanical biosensors or visco-elastic components. From whole organ to single fibre levels, experimental demands and hardware requirements increase, limiting biomechanics research potential, as reflected by only few commercial biomechatronics systems that can address resolution, experimental versatility and mostly, automation of force recordings. Our MyoRobot combines optical force transducer technology with high precision 3D actuation (e.g. voice coil, 1µm encoder resolution; stepper motors, 4µm feed motion), and customized control software, enabling modular experimentation packages and automated data pre-analysis. In small bundles and single muscle fibres, we demonstrate automated recordings of (i) caffeine-induced-, (ii) electrical field stimulation (EFS)-induced force, (iii) pCa-force, (iv) slack-tests and (v) passive length-tension curves. The system easily reproduces results from manual systems (two times larger stiffness in slow over fast muscle) and provides novel insights into unloaded shortening velocities (declining with increasing slack lengths). The MyoRobot enables automated complex biomechanics assessment in muscle research. Applications also extend to material sciences, exemplarily shown here for spider silk and collagen biopolymers.
Collapse
|
26
|
Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur J Appl Physiol 2016; 116:911-8. [PMID: 26945574 DOI: 10.1007/s00421-016-3349-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/24/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE It remains unclear whether the acute effect of stretching on passive muscle stiffness differs among the synergists. We examined the muscle stiffness responses of the medial (MG) and lateral gastrocnemii (LG), and soleus (Sol) during passive dorsiflexion before and after a static stretching by using ultrasound shear wave elastography. METHODS Before and after a 5-min static stretching by passive dorsiflexion, shear modulus of the triceps surae and the Achilles tendon (AT) during passive dorsiflexion in the knee extended position were measured in 12 healthy subjects. RESULTS Before the static stretching, shear modulus was the greatest in MG and smallest in Sol. The stretching induced significant reductions in shear modulus of MG, but not in shear modulus of LG and Sol. The slack angle was observed at more plantar flexed position in the following order: AT, MG, LG, and Sol. After the stretching, the slack angles of each muscle and AT were significantly shifted to more dorsiflexed positions with a similar extent. When considering the shift in slack angle, the change in MG shear modulus became smaller. CONCLUSION The present study indicates that passive muscle stiffness differs among the triceps surae, and that the acute effect of a static stretching is observed only in the stiff muscle. However, a large part of the reduction of passive muscle stiffness at a given joint angle could be due to an increase in the slack length.
Collapse
|
27
|
Yoshitake Y, Miyamoto N, Taniguchi K, Katayose M, Kanehisa H. The Skin Acts to Maintain Muscle Shear Modulus. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:674-682. [PMID: 26738629 DOI: 10.1016/j.ultrasmedbio.2015.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
It is not clear how the tissues covering the skeletal muscles affect the muscles' mechanical properties. The main purpose of this study was to examine changes in muscle shear modulus as a representative mechanical property of muscle with and without the covering tissues of skin and epimysium (fascia). Shear modulus of the medial gastrocnemius (MG) muscle was determined using ultrasound shear-wave elastography in the Thiel's embalmed cadavers under three different conditions: original (intact cadavers), removal of the skin on the MG and subsequent removal of the epimysium. Muscle shear modulus significantly decreased by 50% after removal of the skin, whereas no additional changes in shear modulus were observed after subsequent removal of the epimysium. This study suggests that the skin is a main contributor for maintaining the muscle mechanical properties among tissues covering the skeletal muscle.
Collapse
Affiliation(s)
- Yasuhide Yoshitake
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kanoya, Japan.
| | - Naokazu Miyamoto
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kanoya, Japan
| | - Keigo Taniguchi
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Hiroaki Kanehisa
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kanoya, Japan
| |
Collapse
|
28
|
Mahaudens P, Detrembleur C. Increase of passive stiffness in adolescent idiopathic scoliosis. Comput Methods Biomech Biomed Engin 2015; 18 Suppl 1:1992-3. [PMID: 26317640 DOI: 10.1080/10255842.2015.1069587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ph Mahaudens
- a Rehabilitation and Physical Medicine Unit , Cliniques universitaires Saint-Luc, Université catholique de Louvain , Brussels , Belgium.,b Institute of NeuroScience , Université catholique de Louvain , Brussels , Belgium.,c Service d'Orthopédie et de Traumatologie de l'appareil locomoteur , Cliniques universitaires Saint-Luc, Université catholique de Louvain , Brussels , Belgium
| | - Ch Detrembleur
- b Institute of NeuroScience , Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|
29
|
Use it or lose it: multiscale skeletal muscle adaptation to mechanical stimuli. Biomech Model Mechanobiol 2014; 14:195-215. [PMID: 25199941 DOI: 10.1007/s10237-014-0607-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/15/2014] [Indexed: 01/25/2023]
Abstract
Skeletal muscle undergoes continuous turnover to adapt to changes in its mechanical environment. Overload increases muscle mass, whereas underload decreases muscle mass. These changes are correlated with, and enabled by, structural alterations across the molecular, subcellular, cellular, tissue, and organ scales. Despite extensive research on muscle adaptation at the individual scales, the interaction of the underlying mechanisms across the scales remains poorly understood. Here, we present a thorough review and a broad classification of multiscale muscle adaptation in response to a variety of mechanical stimuli. From this classification, we suggest that a mathematical model for skeletal muscle adaptation should include the four major stimuli, overstretch, understretch, overload, and underload, and the five key players in skeletal muscle adaptation, myosin heavy chain isoform, serial sarcomere number, parallel sarcomere number, pennation angle, and extracellular matrix composition. Including this information in multiscale computational models of muscle will shape our understanding of the interacting mechanisms of skeletal muscle adaptation across the scales. Ultimately, this will allow us to rationalize the design of exercise and rehabilitation programs, and improve the long-term success of interventional treatment in musculoskeletal disease.
Collapse
|
30
|
Rehorn MR, Schroer AK, Blemker SS. The passive properties of muscle fibers are velocity dependent. J Biomech 2013; 47:687-93. [PMID: 24360198 DOI: 10.1016/j.jbiomech.2013.11.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 11/19/2022]
Abstract
The passive properties of skeletal muscle play an important role in muscle function. While the passive quasi-static elastic properties of muscle fibers have been well characterized, the dynamic visco-elastic passive behavior of fibers has garnered less attention. In particular, it is unclear how the visco-elastic properties are influenced by lengthening velocity, in particular for the range of physiologically relevant velocities. The goals of this work were to: (i) measure the effects of lengthening velocity on the peak stresses within single muscle fibers to determine how passive behavior changes over a range of physiologically relevant lengthening rates (0.1-10Lo/s), and (ii) develop a mathematical model of fiber viscoelasticity based on these measurements. We found that passive properties depend on strain rate, in particular at the low loading rates (0.1-3Lo/s), and that the measured behavior can be predicted across a range of loading rates and time histories with a quasi-linear viscoelastic model. In the future, these results can be used to determine the impact of viscoelastic behavior on intramuscular stresses and forces during a variety of dynamic movements.
Collapse
Affiliation(s)
- Michael R Rehorn
- Biomedical Engineering, University of Virginia, PO Box 800759, Health system, Charlottesville, VA 22908, United States
| | - Alison K Schroer
- Biomedical Engineering, University of Virginia, PO Box 800759, Health system, Charlottesville, VA 22908, United States
| | - Silvia S Blemker
- Biomedical Engineering, University of Virginia, PO Box 800759, Health system, Charlottesville, VA 22908, United States; Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
31
|
Abstract
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
32
|
Mustalampi S, Häkkinen A, Kautiainen H, Weir A, Ylinen J. Responsiveness of Muscle Tone Characteristics to Progressive Force Production. J Strength Cond Res 2013; 27:159-65. [DOI: 10.1519/jsc.0b013e3182518023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Cannavan D, Coleman DR, Blazevich AJ. Lack of effect of moderate-duration static stretching on plantar flexor force production and series compliance. Clin Biomech (Bristol, Avon) 2012; 27:306-12. [PMID: 22047756 DOI: 10.1016/j.clinbiomech.2011.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND The effects of an acute bout of moderate-duration static stretching on plantar flexor force production, series compliance of the muscle-tendon unit, and levels of neuromuscular activation were examined. METHODS Eighteen active individuals (9 men and 9 women) performed four 45-s static plantar flexor stretches and a time-matched control of no stretch (where subjects remained seated in the dynamometer for 4 min with no stretch being performed). Measures of peak isometric moment, rate of force development, neuromuscular activation (interpolated twitch technique and electromyography), twitch force characteristics, passive moment during stretch, and tendon elongation during maximal voluntary contractions were taken before and after the stretching. FINDINGS Despite a significant stress-relaxation response during stretch (9.3%, P<0.01) there were no significant differences in peak isometric moment (P=0.35; effect size 0.13), rate of force development (P=0.93; effect size 0.01), neuromuscular activation (interpolated twitch: P=0.86; electromyography: P=0.09; effect size 0.02), or tendon elongation (P=0.61; effect size 0.07) after stretching. Twitch characteristics were also unchanged after stretching, although there was a reduction in the rate of twitch torque relaxation (RR(t); P<0.01). INTERPRETATION The acute bout of moderate-duration static stretching did not impair the force generating capacity of the plantar flexors or negatively affect muscle-tendon mechanical properties. Static stretching may not always have detrimental consequences for force production. Thus, clinicians may be able to apply moderate-duration stretches to patients without risk of reducing muscular performance.
Collapse
Affiliation(s)
- Dale Cannavan
- Physical Education and Exercise Science, College of Arts and Sciences, Seattle Pacific University, 3307 3rd Avenue West, Seattle, WA 98119, USA.
| | | | | |
Collapse
|
34
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
35
|
Palmer ML, Claflin DR, Faulkner JA, Panchangam A. Non-uniform distribution of strain during stretch of relaxed skeletal muscle fibers from rat soleus muscle. J Muscle Res Cell Motil 2011; 32:39-48. [PMID: 21710358 PMCID: PMC3184522 DOI: 10.1007/s10974-011-9250-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Tension and regional average sarcomere length (L(s)) behavior were examined during repeated stretches of single, permeabilized, relaxed muscle fibers isolated from the soleus muscles of rats. We tested the hypothesis that during stretches of single permeabilized fibers, the global fiber strain is distributed non-uniformly along the length of a relaxed fiber in a repeatable pattern. Each fiber was subjected to eight constant-velocity stretch and release cycles with a strain of 32% and strain rate of 54% s(-1). Stretch-release cycles were separated by a 4.5 min interval. Throughout each stretch-release cycle, sarcomere lengths were measured using a laser diffraction technique in which 20 contiguous sectors along the entire length of a fiber segment were scanned within 2 ms. The results revealed that: (1) the imposed length change was not distributed uniformly along the fiber, (2) the first stretch-release cycle differed from subsequent cycles in passive tension and in the distribution of global fiber strain, and (3) a characteristic "signature" for the L(s) response emerged after cycle 3. The findings support the conclusions that longitudinal heterogeneity exists in the passive stiffness of individual muscle fibers and that preconditioning of fibers with stretch-release cycles produces a stable pattern of sarcomere strains.
Collapse
Affiliation(s)
- Mark L Palmer
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
36
|
Ramsey KA, Bakker AJ, Pinniger GJ. Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle. Muscle Nerve 2010; 42:769-77. [PMID: 20976780 DOI: 10.1002/mus.21744] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
When an active muscle is stretched, the force increases due to strain of contractile and noncontractile proteins. We examined this force enhancement in rat extensor digitorum longus (EDL) and soleus muscles, which differ in their composition of these proteins, and their susceptibility to damage. Small stretches were applied at different velocities during isometric contractions from which we quantified the velocity-dependent contractile and velocity-independent noncontractile contributions to force enhancement. Whereas the contractile contribution was significantly greater in soleus than EDL, the noncontractile force enhancement was significantly greater in EDL than soleus, and increased ≈6-fold after damaging eccentric contractions. The increased contractile stiffness may be functionally beneficial in slow muscle, as resistance to lengthening is fundamental to maintaining posture. Following stretch-induced muscle damage this capacity is compromised, leading to increased strain of noncontractile proteins that may facilitate the activation of signaling pathways involved in muscle adaptation to injury.
Collapse
Affiliation(s)
- Kathryn A Ramsey
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | | | | |
Collapse
|
37
|
Hoskins AC, Jacques A, Bardswell SC, McKenna WJ, Tsang V, dos Remedios CG, Ehler E, Adams K, Jalilzadeh S, Avkiran M, Watkins H, Redwood C, Marston SB, Kentish JC. Normal passive viscoelasticity but abnormal myofibrillar force generation in human hypertrophic cardiomyopathy. J Mol Cell Cardiol 2010; 49:737-45. [PMID: 20615414 PMCID: PMC2954357 DOI: 10.1016/j.yjmcc.2010.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/02/2010] [Accepted: 06/20/2010] [Indexed: 01/13/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, increased ventricular stiffness and impaired diastolic filling. We investigated to what extent myocardial functional defects can be explained by alterations in the passive and active properties of human cardiac myofibrils. Skinned ventricular myocytes were prepared from patients with obstructive HCM (two patients with MYBPC3 mutations, one with a MYH7 mutation, and three with no mutation in either gene) and from four donors. Passive stiffness, viscous properties, and titin isoform expression were similar in HCM myocytes and donor myocytes. Maximal Ca2+-activated force was much lower in HCM myocytes (14 ± 1 kN/m2) than in donor myocytes (23 ± 3 kN/m2; P < 0.01), though cross-bridge kinetics (ktr) during maximal Ca2+ activation were 10% faster in HCM myocytes. Myofibrillar Ca2+ sensitivity in HCM myocytes (pCa50 = 6.40 ± 0.05) was higher than for donor myocytes (pCa50 = 6.09 ± 0.02; P < 0.001) and was associated with reduced phosphorylation of troponin-I (ser-23/24) and MyBP-C (ser-282) in HCM myocytes. These characteristics were common to all six HCM patients and may therefore represent a secondary consequence of the known and unknown underlying genetic variants. Some HCM patients did however exhibit an altered relationship between force and cross-bridge kinetics at submaximal Ca2+ concentrations, which may reflect the primary mutation. We conclude that the passive viscoelastic properties of the myocytes are unlikely to account for the increased stiffness of the HCM ventricle. However, the low maximum Ca2+-activated force and high Ca2+ sensitivity of the myofilaments are likely to contribute substantially to any systolic and diastolic dysfunction, respectively, in hearts of HCM patients.
Collapse
Affiliation(s)
- Anita C Hoskins
- Cardiovascular Division, King's College London British Heart Foundation Centre, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chaturvedi RR, Herron T, Simmons R, Shore D, Kumar P, Sethia B, Chua F, Vassiliadis E, Kentish JC. Passive Stiffness of Myocardium From Congenital Heart Disease and Implications for Diastole. Circulation 2010; 121:979-88. [DOI: 10.1161/circulationaha.109.850677] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rajiv R. Chaturvedi
- From the King’s College London British Heart Foundation Centre (R.R.C., T.H., R.S., E.V., J.C.K.); Royal Brompton Hospital (R.R.C., D.S., P.K., B.S.); and Centre for Respiratory Research, University College (F.C.), London, UK. Dr Chaturvedi is currently at the Division of Cardiology, Hospital for Sick Children, Toronto, Canada. Dr Herron is currently at the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Dr Kumar is currently at the Cardiac Centre, Morriston
| | - Todd Herron
- From the King’s College London British Heart Foundation Centre (R.R.C., T.H., R.S., E.V., J.C.K.); Royal Brompton Hospital (R.R.C., D.S., P.K., B.S.); and Centre for Respiratory Research, University College (F.C.), London, UK. Dr Chaturvedi is currently at the Division of Cardiology, Hospital for Sick Children, Toronto, Canada. Dr Herron is currently at the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Dr Kumar is currently at the Cardiac Centre, Morriston
| | - Robert Simmons
- From the King’s College London British Heart Foundation Centre (R.R.C., T.H., R.S., E.V., J.C.K.); Royal Brompton Hospital (R.R.C., D.S., P.K., B.S.); and Centre for Respiratory Research, University College (F.C.), London, UK. Dr Chaturvedi is currently at the Division of Cardiology, Hospital for Sick Children, Toronto, Canada. Dr Herron is currently at the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Dr Kumar is currently at the Cardiac Centre, Morriston
| | - Darryl Shore
- From the King’s College London British Heart Foundation Centre (R.R.C., T.H., R.S., E.V., J.C.K.); Royal Brompton Hospital (R.R.C., D.S., P.K., B.S.); and Centre for Respiratory Research, University College (F.C.), London, UK. Dr Chaturvedi is currently at the Division of Cardiology, Hospital for Sick Children, Toronto, Canada. Dr Herron is currently at the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Dr Kumar is currently at the Cardiac Centre, Morriston
| | - Pankaj Kumar
- From the King’s College London British Heart Foundation Centre (R.R.C., T.H., R.S., E.V., J.C.K.); Royal Brompton Hospital (R.R.C., D.S., P.K., B.S.); and Centre for Respiratory Research, University College (F.C.), London, UK. Dr Chaturvedi is currently at the Division of Cardiology, Hospital for Sick Children, Toronto, Canada. Dr Herron is currently at the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Dr Kumar is currently at the Cardiac Centre, Morriston
| | - Babulal Sethia
- From the King’s College London British Heart Foundation Centre (R.R.C., T.H., R.S., E.V., J.C.K.); Royal Brompton Hospital (R.R.C., D.S., P.K., B.S.); and Centre for Respiratory Research, University College (F.C.), London, UK. Dr Chaturvedi is currently at the Division of Cardiology, Hospital for Sick Children, Toronto, Canada. Dr Herron is currently at the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Dr Kumar is currently at the Cardiac Centre, Morriston
| | - Felix Chua
- From the King’s College London British Heart Foundation Centre (R.R.C., T.H., R.S., E.V., J.C.K.); Royal Brompton Hospital (R.R.C., D.S., P.K., B.S.); and Centre for Respiratory Research, University College (F.C.), London, UK. Dr Chaturvedi is currently at the Division of Cardiology, Hospital for Sick Children, Toronto, Canada. Dr Herron is currently at the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Dr Kumar is currently at the Cardiac Centre, Morriston
| | - Efstathios Vassiliadis
- From the King’s College London British Heart Foundation Centre (R.R.C., T.H., R.S., E.V., J.C.K.); Royal Brompton Hospital (R.R.C., D.S., P.K., B.S.); and Centre for Respiratory Research, University College (F.C.), London, UK. Dr Chaturvedi is currently at the Division of Cardiology, Hospital for Sick Children, Toronto, Canada. Dr Herron is currently at the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Dr Kumar is currently at the Cardiac Centre, Morriston
| | - Jonathan C. Kentish
- From the King’s College London British Heart Foundation Centre (R.R.C., T.H., R.S., E.V., J.C.K.); Royal Brompton Hospital (R.R.C., D.S., P.K., B.S.); and Centre for Respiratory Research, University College (F.C.), London, UK. Dr Chaturvedi is currently at the Division of Cardiology, Hospital for Sick Children, Toronto, Canada. Dr Herron is currently at the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Dr Kumar is currently at the Cardiac Centre, Morriston
| |
Collapse
|
39
|
Meyer GA, Kiss B, Ward SR, Morgan DL, Kellermayer MS, Lieber RL. Theoretical predictions of the effects of force transmission by desmin on intersarcomere dynamics. Biophys J 2010; 98:258-66. [PMID: 20338847 PMCID: PMC2808486 DOI: 10.1016/j.bpj.2009.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 10/02/2009] [Accepted: 10/07/2009] [Indexed: 11/28/2022] Open
Abstract
Desmin is an intermediate filament protein in skeletal muscle that forms a meshlike network around Z-disks. A model of a muscle fiber was developed to investigate the mechanical role of desmin. A two-dimensional mesh of viscoelastic sarcomere elements was connected laterally by elastic elements representing desmin. The equations of motion for each sarcomere boundary were evaluated at quasiequilibrium to determine sarcomere stresses and strains. Simulations of passive stretch and fixed-end contractions yielded values for sarcomere misalignment and stress in wild-type and desmin null fibers. Passive sarcomere misalignment increased nonlinearly with fiber strain in both wild-type and desmin null simulations and was significantly larger without desmin. During fixed-end contraction, desmin null simulations also demonstrated greater sarcomere misalignment and reduced stress production compared with wild-type. In simulations with only a fraction of wild-type desmin present, fixed-end stress increased as a function of desmin concentration and this relationship was influenced by the cellular location of the desmin filaments. This model suggests that desmin stabilizes Z-disks and enables greater stress production by providing a mechanical tether between adjacent myofibrils and to the extracellular matrix and that the significance of the tether is a function of its location within the cell.
Collapse
Affiliation(s)
- Gretchen A. Meyer
- Departments of Bioengineering and Orthopaedic Surgery, University of California, San Diego, and Veterans Affairs Medical Center, La Jolla, California
| | - Balázs Kiss
- Department of Biophysics, University of Pécs, Faculty of Medicine Szigeti, Pécs, Hungary
| | - Samuel R. Ward
- Department of Radiology, University of California, San Diego, California
| | - David L. Morgan
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | - Miklós S.Z. Kellermayer
- Department of Biophysics, University of Pécs, Faculty of Medicine Szigeti, Pécs, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Richard L. Lieber
- Departments of Bioengineering and Orthopaedic Surgery, University of California, San Diego, and Veterans Affairs Medical Center, La Jolla, California
| |
Collapse
|
40
|
Campbell KS. Short-range mechanical properties of skeletal and cardiac muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 682:223-46. [PMID: 20824529 DOI: 10.1007/978-1-4419-6366-6_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Striated muscles are disproportionately stiff for small movements. This facet of their behavior can be demonstrated by measuring the force produced when the muscle is stretched more than about 1% of its initial length. When this is done, it can be seen that force rises rapidly during the initial phases of the movement and much less rapidly during the latter stages of the stretch. Experiments performed using chemically permeabilized skeletal and cardiac muscles show that the initial stiffness of the preparations increases in proportion with isometric force as the free Ca²(+) concentration in the bathing solution is raised from a minimal to a saturating value. This is strong evidence that the short-range mechanical properties of activated muscle result from stretching myosin cross-bridges that are attached between the thick and thin filaments. Relaxed intact muscles also exhibit short-range mechanical properties but the molecular mechanisms underlying this behavior are less clear. This chapter summarizes some of the interesting features of short-range mechanical properties in different types of muscle preparation, describes some of the likely underlying mechanisms and discusses the potential physiological significance of the behavior.
Collapse
Affiliation(s)
- Kenneth S Campbell
- Department of Physiology & Center for Muscle Biology, University of Kentucky, Lexington, KY 40503, USA.
| |
Collapse
|
41
|
Quaia C, Ying HS, Optican LM. The viscoelastic properties of passive eye muscle in primates. II: testing the quasi-linear theory. PLoS One 2009; 4:e6480. [PMID: 19649257 PMCID: PMC2715107 DOI: 10.1371/journal.pone.0006480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 07/09/2009] [Indexed: 11/18/2022] Open
Abstract
We have extensively investigated the mechanical properties of passive eye muscles, in vivo, in anesthetized and paralyzed monkeys. The complexity inherent in rheological measurements makes it desirable to present the results in terms of a mathematical model. Because Fung's quasi-linear viscoelastic (QLV) model has been particularly successful in capturing the viscoelastic properties of passive biological tissues, here we analyze this dataset within the framework of Fung's theory.We found that the basic properties assumed under the QLV theory (separability and superposition) are not typical of passive eye muscles. We show that some recent extensions of Fung's model can deal successfully with the lack of separability, but fail to reproduce the deviation from superposition.While appealing for their elegance, the QLV model and its descendants are not able to capture the complex mechanical properties of passive eye muscles. In particular, our measurements suggest that in a passive extraocular muscle the force does not depend on the entire length history, but to a great extent is only a function of the last elongation to which it has been subjected. It is currently unknown whether other passive biological tissues behave similarly.
Collapse
Affiliation(s)
- Christian Quaia
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, USA.
| | | | | |
Collapse
|
42
|
Polizello JC, Carvalho LC, Freitas FC, Padula N, Shimano AC, Mattiello-Sverzut AC. Propriedades mecânicas do músculo gastrocnêmio de ratas, imobilizado e posteriormente submetido a diferentes protocolos de alongamento. REV BRAS MED ESPORTE 2009. [DOI: 10.1590/s1517-86922009000300006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O alongamento é amplamente utilizado na prática clínica da fisioterapia e no desporto, porém, as alterações mecânicas que essa técnica gera no músculo esquelético são pouco exploradas cientificamente. Este estudo avaliou as alterações mecânicas que acometem o músculo gastrocnêmio de ratas Wistar, adultas jovens, após 14 dias de imobilização e, secundariamente, submetido a alongamento manual passivo por 10 dias consecutivos, aplicado uma ou duas vezes ao dia. Foram utilizados 50 animais, sendo 10 para cada grupo: Controle (GC); Imobilizado (GI); Imobilizado e Liberado (GIL); Imobilizado e alongado uma vez ao dia (GIA1); e Imobilizado e alongado duas vezes ao dia (GIA2). O músculo gastrocnêmio foi submetido ao ensaio mecânico de tração, onde foram avaliadas as propriedades de carga e alongamento nos limites máximo e proporcional, além de rigidez e resiliência. A imobilização reduziu os valores das propriedades mecânicas de carga no limite máximo (CLM), carga no limite proporcional (CLP), alongamento no limite máximo (ALM), rigidez e resiliência, em 44,4%, 34,4%, 27,6%, 64,4% e 54%, respectivamente, quando comparados com os valores do GC. A remobilização livre e o alongamento restauraram as propriedades de CLM, CLP, ALM, rigidez e resiliência do músculo, exceto para o GIA2, que foi incapaz de restabelecer a propriedade de ALM (31,3% menor que GC). Concluí-se, portanto que, após 14 dias de imobilização segmentar, cargas individuais de alongamento e a livre movimentação permitem restituir as propriedades mecânicas do tecido muscular.
Collapse
|
43
|
Quaia C, Ying HS, Nichols AM, Optican LM. The viscoelastic properties of passive eye muscle in primates. I: static forces and step responses. PLoS One 2009; 4:e4850. [PMID: 19337381 PMCID: PMC2660417 DOI: 10.1371/journal.pone.0004850] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 02/17/2009] [Indexed: 11/18/2022] Open
Abstract
The viscoelastic properties of passive eye muscles are prime determinants of the deficits observed following eye muscle paralysis, the root cause of several types of strabismus. Our limited knowledge about such properties is hindering the ability of eye plant models to assist in formulating a patient's diagnosis and prognosis. To investigate these properties we conducted an extensive in vivo study of the mechanics of passive eye muscles in deeply anesthetized and paralyzed monkeys. We describe here the static length-tension relationship and the transient forces elicited by small step-like elongations. We found that the static force increases nonlinearly with length, as previously shown. As expected, an elongation step induces a fast rise in force, followed by a prolonged decay. The time course of the decay is however considerably more complex than previously thought, indicating the presence of several relaxation processes, with time constants ranging from 1 ms to at least 40 s. The mechanical properties of passive eye muscles are thus similar to those of many other biological passive tissues. Eye plant models, which for lack of data had to rely on (erroneous) assumptions, will have to be updated to incorporate these properties.
Collapse
Affiliation(s)
- Christian Quaia
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
44
|
Woods WA, Fusillo SJ, Trimmer BA. Dynamic properties of a locomotory muscle of the tobacco hornworm Manduca sexta during strain cycling and simulated natural crawling. ACTA ACUST UNITED AC 2008; 211:873-82. [PMID: 18310113 DOI: 10.1242/jeb.006031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caterpillars are soft-bodied terrestrial climbers that perform a wide variety of complex movements with several hundred muscles and a relatively small number of neurons. Control of movements is therefore expected to place unusual demands on the mechanical properties of the muscles. The muscles develop force slowly (1-6 s to peak) yet over a strain range extending from under 60% to more than 160% of resting length, with a length-tension relationship resembling that of supercontracting or cross-striated muscle. In passive and active sinusoidal strain cycling, muscles displayed viscoelastic qualities, with very low and stretch-velocity dependent resilience; there was a positive linear relationship between stretch velocity and the fraction of work dissipation attributable to passive muscle properties (20-80%). In linear stretches of unstimulated muscles at velocities bracketing those encountered in natural crawling, the rise in tension showed a distinct transition to a lower rate of increase, with transition tension dependent upon stretch velocity; peak force was exponentially related to stretch velocity. When stretching ceased, force decayed exponentially, with slower decay associated with lower stretch velocities; the decay time constant was exponentially related to stretch velocity. From the kinematics of caterpillars crawling horizontally we determined that the ventral interior lateral muscle (VIL) of the third abdominal segment (A3) is at or near resting length for most of the crawl cycle, with a fairly linear shortening by 25-30% and re-lengthening occupying about 45% of cycle duration. Synchronized kinematic and EMG recordings showed that during horizontal crawling A3 VIL is stimulated as the muscle shortens from about 95% to 75% of its resting length. We subjected in vitro VIL preparations to strain cycling and stimulus phase and duration similar to that of natural crawling. The resulting work loops were figure-eight shaped, with the muscle performing work during the shortest 45-65% of the strain cycle but dissipating work during the rest of the cycle. The muscle remained in the ascending limb of its length-tension relationship throughout the crawl cycle. Peak force occurred at the end of re-lengthening, nearly a full second after stimulation ceased, underscoring the importance of understanding passive muscle properties to explain caterpillar locomotion. Whether A3 VIL functions as an actuator at all during simulated natural strain cycling is highly sensitive to stimulus timing but far less so to stimulus duration. The muscle's elastomer-like properties appear to play a major role in its function.
Collapse
Affiliation(s)
- William A Woods
- Tufts University, Department of Biology, Medford, MA 02155, USA.
| | | | | |
Collapse
|
45
|
Muraoka T, Omuro K, Wakahara T, Muramatsu T, Kanehisa H, Fukunaga T, Kanosue K. Effects of Muscle Cooling on the Stiffness of the Human Gastrocnemius Muscle in vivo. Cells Tissues Organs 2008; 187:152-60. [DOI: 10.1159/000109943] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2007] [Indexed: 11/19/2022] Open
|
46
|
Brown SHM, McGill SM. How the inherent stiffness of the in vivo human trunk varies with changing magnitudes of muscular activation. Clin Biomech (Bristol, Avon) 2008; 23:15-22. [PMID: 17910898 DOI: 10.1016/j.clinbiomech.2007.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND The abdominal muscles provide stiffness to the torso in a manner that is not well understood. Their unique anatomical arrangement may modify their stiffening ability with respect to the more commonly studied long strap-like muscles of the limbs. The purpose of this study was to examine stiffness inherent to the trunk, as modified by different torso, and in particular, abdominal muscle activation levels. METHODS Nine healthy male participants were secured in a "frictionless" apparatus and subjected to applied bending moments about either the flexion/extension or lateral bend axes. Abdominal muscle activation levels were modified through biofeedback from the right external oblique muscle. Moment-angle curves were generated and characterized by an exponential function for each of flexion, extension, and right-side lateral bend, at each of four abdominal muscle activation target level conditions. FINDINGS Stiffness measured in extension increased in a linear fashion throughout the range of motion and increased with each successive rise in abdominal activation. Stiffness in flexion and lateral bend increased in an exponential fashion over the range of motion. In flexion and lateral bend, stiffness increased with each successive rise in abdominal activation from zero to approximately 40% and 60% of the range of motion, respectively. After these points, stiffness at the highest levels of activation displayed a "yielding" phenomenon whereby the torso stiffness dropped below that characterized at lower levels of activation. INTERPRETATION Increasing torso muscle co-activation leads to a rise in trunk stiffness over postures most commonly adopted by individuals through daily activities (neutral to approximately 40% of maximum range of motion). However, towards the end range of motion in both flexion and lateral bend, individuals became less stiff at the maximum abdominal muscle co-activation levels. The source and mechanism of this apparent yielding are not fully understood; future work will be directed toward elucidating the cause.
Collapse
Affiliation(s)
- Stephen H M Brown
- Spine Biomechanics Laboratory, Department of Kinesiology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1
| | | |
Collapse
|
47
|
Bianco P, Nagy A, Kengyel A, Szatmári D, Mártonfalvi Z, Huber T, Kellermayer MSZ. Interaction forces between F-actin and titin PEVK domain measured with optical tweezers. Biophys J 2007; 93:2102-9. [PMID: 17513381 PMCID: PMC1959548 DOI: 10.1529/biophysj.107.106153] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Titin is a giant protein that determines the elasticity of striated muscle and is thought to play important roles in numerous regulatory processes. Previous studies have shown that titin's PEVK domain interacts with F-actin, thereby creating viscous forces of unknown magnitude that may modulate muscle contraction. Here we measured, with optical tweezers, the forces necessary to dissociate F-actin from individual molecules of recombinant PEVK fragments rich either in polyE or PPAK motifs. Rupture forces at a stretch rate of 250 nm/s displayed a wide, nonnormal distribution with a peak at approximately 8 pN in the case of both fragments. Dynamic force spectroscopy experiments revealed low spontaneous off-rates that were increased even by low forces. The loading-rate dependence of rupture force was biphasic for polyE in contrast with the monophasic response observed for PPAK. Analysis of the molecular lengths at which rupture occurred indicated that there are numerous actin-binding regions along the PEVK fragments' contour, suggesting that the PEVK domain is a promiscuous actin-binding partner. The complexity of PEVK-actin interaction points to an adaptable viscoelastic mechanism that safeguards sarcomeric structural integrity in the relaxed state and modulates thixotropic behavior during contraction.
Collapse
Affiliation(s)
- Pasquale Bianco
- Department of Biophysics, University of Pécs, Faculty of Medicine, Szigeti út 12, Pécs H-7624, Hungary
| | | | | | | | | | | | | |
Collapse
|
48
|
Gavronski G, Veraksits A, Vasar E, Maaroos J. Evaluation of viscoelastic parameters of the skeletal muscles in junior triathletes. Physiol Meas 2007; 28:625-37. [PMID: 17664617 DOI: 10.1088/0967-3334/28/6/002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Five male triathletes of the Estonian national junior team were observed during a seven-week competition period. The Myoton-2 equipment was used to describe the viscoelastic parameters of the skeletal muscles. The frequency of damped mechanical oscillation of the muscle tissue (Hz - indicating the tension in the muscle), logarithmic decrement of the oscillations (Theta - indicating the elasticity of the muscle) and stiffness (N m(-1)) of the muscle tissue were registered bilaterally in eight muscles in both the relaxed and the contracted states: BB - biceps brachii (caput longum); TB - triceps brachii (caput longum); BF - biceps femoris (caput longum); RF - rectus femoris; TA - tibialis anterior; GC - gastrocnemius (caput mediale); LD - latissimus dorsi; PM - pectoralis major (pars sternocostalis). A portable massage table was used for the subject to rest on during the measuring. For the measurement of the anterior muscles, the subject lay supine; for the posterior muscles the prone position was used. The (isometric) contraction was standardized simply by the same measuring position of the limb-the subject raised his arm or leg to an angle of 45 degrees from the horizontal level, using a 2.3 kg dumb-bell as an additional weight for the upper limb. The tarsal dorsiflexion and plantarflexion was performed against a fixed table to contract the crural muscles. The elasticity of the skeletal muscle is higher for the contracted state with respect to the relaxed one (p < 0.0001) and is described by decline of the value of logarithmic decrement, the stiffness and the tension in the muscle increases (p < 0.0001 for both parameters). The measured skeletal muscles differ significantly (p < 0.0018) by the viscoelastic properties in the relaxed state. In the relaxed state, TA was the most elastic (mean +/- SD; Theta-0.74 +/- 0.13), stiff (mean +/- SD; 346.68 +/- 60.34 N m(-1)) and tense muscle (mean +/- SD; 18.72 +/- 1.55 Hz). In the contracted state, the elasticity of TA did not change (0.76 +/- 0.14) while the stiffness and the tension in this muscle rose significantly (93% and 38%, accordingly). Personal differences (p < 0.005) exist if pooled data from the muscles are compared between the subjects.
Collapse
Affiliation(s)
- Georg Gavronski
- Department of Sports Medicine and Rehabilitation, University of Tartu, Puusepa 1a, 50406 Tartu, Estonia
| | | | | | | |
Collapse
|
49
|
Olsson MC, Krüger M, Meyer LH, Ahnlund L, Gransberg L, Linke WA, Larsson L. Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. J Physiol 2006; 577:339-52. [PMID: 16931550 PMCID: PMC2000690 DOI: 10.1113/jphysiol.2006.116749] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Patients with spasticity typically present with an increased muscle tone that is at least partly caused by an exaggerated stretch reflex. However, intrinsic changes in the skeletal muscles, such as altered mechanical properties of the extracellular matrix or the cytoskeleton, have been reported in response to spasticity and could contribute to hypertonia, although the underlying mechanisms are poorly understood. Here we examined the vastus lateralis muscles from spinal cord-injured patients with spasticity (n = 7) for their passive mechanical properties at three different levels of structural organization, in comparison to healthy controls (n = 7). We also assessed spasticity-related alterations in muscle protein expression and muscle ultrastructure. At the whole-muscle level in vivo, we observed increased passive tension (PT) in some spasticity patients particularly at long muscle lengths, unrelated to stretch reflex activation. At the single-fibre level, elevated PT was found in cells expressing fast myosin heavy chain (MyHC) isoforms, especially MyHC-IIx, but not in those expressing slow MyHC. Type IIx fibres were present in higher than normal proportions in spastic muscles, whereas type I fibres were proportionately reduced. At the level of the isolated myofibril, however, there were no differences in PT between patients and controls. The molecular size of the giant protein titin, a main contributor to PT, was unchanged in spasticity, as was the titin : MyHC ratio and the relative desmin content. Electron microscopy revealed extensive ultrastructural changes in spastic muscles, especially expanded connective tissue, but also decreased mitochondrial volume fraction and appearance of intracellular amorphous material. Results strongly suggest that the global passive muscle stiffening in spasticity patients is caused to some degree by elevated PT of the skeletal muscles themselves. We conclude that this increased PT component arises not only from extracellular matrix remodelling, but also from structural and functional adaptations inside the muscle cells, which alter their passive mechanical properties in response to spasticity in a fibre type-dependent manner.
Collapse
Affiliation(s)
- M Charlotte Olsson
- Uppsala University, Department of Neuroscience, Clinical Neurophysiology, 75185 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Telley IA, Stüssi E, Denoth J, Stehle R, Pfitzer G, Ranatunga KW. Reply from I. A. Telley, R. Stehle, K. W. Ranatunga, G. Pfitzer, E. Stüssi and J. Denoth. J Physiol 2006. [DOI: 10.1113/jphysiol.2006.574202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|