1
|
Paulhus K, Glasscock E. Novel Genetic Variants Expand the Functional, Molecular, and Pathological Diversity of KCNA1 Channelopathy. Int J Mol Sci 2023; 24:8826. [PMID: 37240170 PMCID: PMC10219020 DOI: 10.3390/ijms24108826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The KCNA1 gene encodes Kv1.1 voltage-gated potassium channel α subunits, which are crucial for maintaining healthy neuronal firing and preventing hyperexcitability. Mutations in the KCNA1 gene can cause several neurological diseases and symptoms, such as episodic ataxia type 1 (EA1) and epilepsy, which may occur alone or in combination, making it challenging to establish simple genotype-phenotype correlations. Previous analyses of human KCNA1 variants have shown that epilepsy-linked mutations tend to cluster in regions critical for the channel's pore, whereas EA1-associated mutations are evenly distributed across the length of the protein. In this review, we examine 17 recently discovered pathogenic or likely pathogenic KCNA1 variants to gain new insights into the molecular genetic basis of KCNA1 channelopathy. We provide the first systematic breakdown of disease rates for KCNA1 variants in different protein domains, uncovering potential location biases that influence genotype-phenotype correlations. Our examination of the new mutations strengthens the proposed link between the pore region and epilepsy and reveals new connections between epilepsy-related variants, genetic modifiers, and respiratory dysfunction. Additionally, the new variants include the first two gain-of-function mutations ever discovered for KCNA1, the first frameshift mutation, and the first mutations located in the cytoplasmic N-terminal domain, broadening the functional and molecular scope of KCNA1 channelopathy. Moreover, the recently identified variants highlight emerging links between KCNA1 and musculoskeletal abnormalities and nystagmus, conditions not typically associated with KCNA1. These findings improve our understanding of KCNA1 channelopathy and promise to enhance personalized diagnosis and treatment for individuals with KCNA1-linked disorders.
Collapse
Affiliation(s)
| | - Edward Glasscock
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA;
| |
Collapse
|
2
|
Bhattacharjee S, Deenadayalu A, Paramanandam V. Interictal Headache, Pseudodystonia, and Persistent Ataxia in Episodic Ataxia Type 1 Due to a Novel
KCNA1
Gene Mutation. Mov Disord Clin Pract 2021; 9:272-274. [DOI: 10.1002/mdc3.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Shakya Bhattacharjee
- Autonomic Neurology The National Hospital for Neurology & Neurosurgery London United Kingdom
| | - Anu Deenadayalu
- Internal Medicine Limerick University Hospital Limerick Ireland
| | | |
Collapse
|
3
|
Mei C, Dong H, Nisenbaum E, Thielhelm T, Nourbakhsh A, Yan D, Smeal M, Lundberg Y, Hoffer ME, Angeli S, Telischi F, Nie G, Blanton SH, Liu X. Genetics and the Individualized Therapy of Vestibular Disorders. Front Neurol 2021; 12:633207. [PMID: 33613440 PMCID: PMC7892966 DOI: 10.3389/fneur.2021.633207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Vestibular disorders (VDs) are a clinically divergent group of conditions that stem from pathology at the level of the inner ear, vestibulocochlear nerve, or central vestibular pathway. No etiology can be identified in the majority of patients with VDs. Relatively few families have been reported with VD, and so far, no causative genes have been identified despite the fact that more than 100 genes have been identified for inherited hearing loss. Inherited VDs, similar to deafness, are genetically heterogeneous and follow Mendelian inheritance patterns with all modes of transmission, as well as multifactorial inheritance. With advances in genetic sequencing, evidence of familial clustering in VD has begun to highlight the genetic causes of these disorders, potentially opening up new avenues of treatment, particularly in Meniere's disease and disorders with comorbid hearing loss, such as Usher syndrome. In this review, we aim to present recent findings on the genetics of VDs, review the role of genetic sequencing tools, and explore the potential for individualized medicine in the treatment of these disorders. Methods: A search of the PubMed database was performed for English language studies relevant to the genetic basis of and therapies for vestibular disorders, using search terms including but not limited to: “genetics,” “genomics,” “vestibular disorders,” “hearing loss with vestibular dysfunction,” “individualized medicine,” “genome-wide association studies,” “precision medicine,” and “Meniere's syndrome.” Results: Increasing numbers of studies on vestibular disorder genetics have been published in recent years. Next-generation sequencing and new genetic tools are being utilized to unearth the significance of the genomic findings in terms of understanding disease etiology and clinical utility, with growing research interest being shown for individualized gene therapy for some disorders. Conclusions: The genetic knowledge base for vestibular disorders is still in its infancy. Identifying the genetic causes of balance problems is imperative in our understanding of the biology of normal function of the vestibule and the disease etiology and process. There is an increasing effort to use new and efficient genetic sequencing tools to discover the genetic causes for these diseases, leading to the hope for precise and personalized treatment for these patients.
Collapse
Affiliation(s)
- Christine Mei
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Hongsong Dong
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States.,Shenzhen Second People's Hospital, Shenzhen, China
| | - Eric Nisenbaum
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Torin Thielhelm
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Molly Smeal
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Yesha Lundberg
- Department of Otolaryngology, Boys Town National Research Hospital, Omaha, NE, United States
| | - Michael E Hoffer
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Simon Angeli
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Fred Telischi
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Guohui Nie
- Shenzhen Second People's Hospital, Shenzhen, China
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
4
|
Zhang L, Peng Z, Bian W, Zhu P, Tang B, Liao WP, Su T. Functional Differences Between Two Kv1.1 RNA Editing Isoforms: a Comparative Study on Neuronal Overexpression in Mouse Prefrontal Cortex. Mol Neurobiol 2021; 58:2046-2060. [PMID: 33411244 DOI: 10.1007/s12035-020-02229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The Shaker-related potassium channel Kv1.1 subunit has important implications for controlling neuronal excitabilities. A particular recoding by A-to-I RNA editing at I400 of Kv1.1 mRNA is an underestimated mechanism for fine-tuning the properties of Kv1.1-containing channels. Knowledge about functional differences between edited (I400V) and non-edited Kv1.1 isoforms is insufficient, especially in neurons. To understand their different roles, the two Kv1.1 isoforms were overexpressed in the prefrontal cortex via local adeno-associated virus-mediated gene delivery. The I400V isoform showed a higher competitiveness in membrane translocalization, but failed to reduce current-evoked discharges and showed weaker impact on spiking-frequency adaptation in the transduced neurons. The non-edited Kv1.1 overexpression led to slight elevations in both fast- and non-inactivating current components of macroscopic potassium current. By contrast, the I400V overexpression did not impact the fast-inactivating current component. Further isolation of Kv1.1-specific current by its specific blocker dendrotoxin-κ showed that both isoforms did result in significant increases in current amplitude, whereas the I400V was less efficient in contributing the fast-inactivating current component. Voltage-dependent properties of the fast-inactivating current component did not alter for both isoforms. For recovery kinetics, the I400V showed a significant acceleration of recovery from fast inactivation. The gene delivery of the I400V rather than the wild type exhibited anxiolytic activities, which was assessed by an open field test. These results suggest that the Kv1.1 RNA editing isoforms have different properties and outcomes, reflecting the functional and phenotypic significance of the Kv1.1 RNA editing in neurons.
Collapse
Affiliation(s)
- Liting Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Zetong Peng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wenjun Bian
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Pingping Zhu
- Department of Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China. .,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
5
|
Koźmiński W, Pera J. Involvement of the Peripheral Nervous System in Episodic Ataxias. Biomedicines 2020; 8:biomedicines8110448. [PMID: 33105744 PMCID: PMC7690566 DOI: 10.3390/biomedicines8110448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Episodic ataxias comprise a group of inherited disorders, which have a common hallmark—transient attacks of ataxia. The genetic background is heterogeneous and the causative genes are not always identified. Furthermore, the clinical presentation, including intraictal and interictal symptoms, as well as the retention and progression of neurological deficits, is heterogeneous. Spells of ataxia can be accompanied by other symptoms—mostly from the central nervous system. However, in some of episodic ataxias involvement of peripheral nervous system is a part of typical clinical picture. This review intends to provide an insight into involvement of peripheral nervous system in episodic ataxias.
Collapse
Affiliation(s)
- Wojciech Koźmiński
- Department of Neurology, University Hospital, ul. Jakubowskiego 2, 30-688 Krakow, Poland;
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503 Krakow, Poland
- Correspondence:
| |
Collapse
|
6
|
Yuan H, Yuan H, Wang Q, Ye W, Yao R, Xu W, Liu Y. Two novel KCNA1 variants identified in two unrelated Chinese families affected by episodic ataxia type 1 and neurodevelopmental disorders. Mol Genet Genomic Med 2020; 8:e1434. [PMID: 32705822 PMCID: PMC7549609 DOI: 10.1002/mgg3.1434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/03/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background Pathogenic KCNA1 variants have been linked to episodic ataxia type 1 (EA1), a rare neurological syndrome characterized by continuous myokymia and attacks of generalized ataxia that can be triggered by fever, abrupt movements, emotional stress, and fatigue. Currently, over 40 KCNA1 variants have been identified in individuals with EA1. Methods A male patient displayed partial seizures in addition to EA1 symptoms, often triggered by fever. A sibling presented with typical EA1 symptoms, seizures, and learning difficulties. In addition, the older brother displayed cognitive impairment, developmental delay, and slurred speech, which were absent in his younger sister. Whole‐exome sequencing was performed for the patients. Results A novel de novo missense variant in KCNA1 (p.Ala261Thr) was identified in the male patient, which is located in a base of the 3rd transmembrane domain (S3). The other novel KCNA1 variant (p.Gly376Ser) was identified in the sibling and was inherited from an unaffected father with low‐level mosaicism. The variant was located in the S5–S6 extracellular linker of the voltage sensor domain of the Kv channel. Next, we systematically reviewed the available clinical phenotypes of individuals with EA1 and observed that individuals with KCNA1 variants at the C‐terminus were more likely to suffer from seizures and neurodevelopmental disorders than those with variants at the N‐terminus. Conclusion Our study expands the mutation spectrum of KCNA1 and improves our understanding of the genotype–phenotype correlations of KCNA1. Definitive genetic diagnosis is beneficial for the genetic counseling and clinical management of individuals with EA1.
Collapse
Affiliation(s)
- Haiming Yuan
- Dongguan Maternal and Child Health Care HospitalDongguanChina
- Dongguan Institute of Reproductive and Genetic ResearchDongguanChina
| | - Huihua Yuan
- Dongguan Maternal and Child Health Care HospitalDongguanChina
| | - Qingming Wang
- Dongguan Maternal and Child Health Care HospitalDongguanChina
- Dongguan Institute of Reproductive and Genetic ResearchDongguanChina
| | - Wanhua Ye
- Dongguan Maternal and Child Health Care HospitalDongguanChina
- Dongguan Institute of Reproductive and Genetic ResearchDongguanChina
| | - Ruixia Yao
- Dongguan Maternal and Child Health Care HospitalDongguanChina
- Dongguan Institute of Reproductive and Genetic ResearchDongguanChina
| | - Wanfang Xu
- Dongguan Maternal and Child Health Care HospitalDongguanChina
- Dongguan Institute of Reproductive and Genetic ResearchDongguanChina
| | - Yanhui Liu
- Dongguan Maternal and Child Health Care HospitalDongguanChina
- Dongguan Institute of Reproductive and Genetic ResearchDongguanChina
| |
Collapse
|
7
|
D’Adamo MC, Liantonio A, Rolland JF, Pessia M, Imbrici P. Kv1.1 Channelopathies: Pathophysiological Mechanisms and Therapeutic Approaches. Int J Mol Sci 2020; 21:ijms21082935. [PMID: 32331416 PMCID: PMC7215777 DOI: 10.3390/ijms21082935] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.
Collapse
Affiliation(s)
- Maria Cristina D’Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
| | - Antonella Liantonio
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | | | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain Po Box 17666, UAE
| | - Paola Imbrici
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Correspondence:
| |
Collapse
|
8
|
Clinical Spectrum of KCNA1 Mutations: New Insights into Episodic Ataxia and Epilepsy Comorbidity. Int J Mol Sci 2020; 21:ijms21082802. [PMID: 32316562 PMCID: PMC7215408 DOI: 10.3390/ijms21082802] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the KCNA1 gene, which encodes voltage-gated Kv1.1 potassium channel α-subunits, cause a variety of human diseases, complicating simple genotype–phenotype correlations in patients. KCNA1 mutations are primarily associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1). However, some patients have EA1 in combination with epilepsy, whereas others have epilepsy alone. KCNA1 mutations can also cause hypomagnesemia and paroxysmal dyskinesia in rare cases. Why KCNA1 variants are associated with such phenotypic heterogeneity in patients is not yet understood. In this review, literature databases (PubMed) and public genetic archives (dbSNP and ClinVar) were mined for known pathogenic or likely pathogenic mutations in KCNA1 to examine whether patterns exist between mutation type and disease manifestation. Analyses of the 47 deleterious KCNA1 mutations that were identified revealed that epilepsy or seizure-related variants tend to cluster in the S1/S2 transmembrane domains and in the pore region of Kv1.1, whereas EA1-associated variants occur along the whole length of the protein. In addition, insights from animal models of KCNA1 channelopathy were considered, as well as the possible influence of genetic modifiers on disease expressivity and severity. Elucidation of the complex relationship between KCNA1 variants and disease will enable better diagnostic risk assessment and more personalized therapeutic strategies for KCNA1 channelopathy.
Collapse
|
9
|
Zhu P, Li J, Zhang L, Liang Z, Tang B, Liao WP, Yi YH, Su T. Development-related aberrations in Kv1.1 α-subunit exert disruptive effects on bioelectrical activities of neurons in a mouse model of fragile X syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:140-151. [PMID: 29481897 DOI: 10.1016/j.pnpbp.2018.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 10/18/2022]
Abstract
Kv1.1, a Shaker homologue potassium channel, plays a critical role in homeostatic regulation of neuronal excitability. Aberrations in the functional properties of Kv1.1 have been implicated in several neurological disorders featured by neuronal hyperexcitability. Fragile X syndrome (FXS), the most common form of inherited mental retardation, is characterized by hyperexcitability in neural network and intrinsic membrane properties. The Kv1.1 channel provides an intriguing mechanistic candidate for FXS. We investigated the development-related expression pattern of the Kv1.1 α-subunit by using a Fmr1 knockout (KO) mouse model of FXS. Markedly decreased protein expression of Kv1.1 was found in neonatal and adult stages when compared to age-matched wild-type (WT) mice. Immunohistochemical investigations supported the delayed development-related increases in Kv1.1 expression, especially in CA3 pyramidal neurons. By applying a Kv1.1-specific blocker, dendrotoxin-κ (DTX-κ), we isolated the Kv1.1-mediated currents in the CA3 pyramidal neurons. The isolated DTX-κ-sensitive current of neurons from KO mice exhibited decreased amplitude, lower threshold of activation, and faster recovery from inactivation. The equivalent reduction in potassium current in the WT neurons following application of the appropriate amount of DTX-κ reproduced the enhanced firing abilities of KO neurons, suggesting the Kv1.1 channel as a critical contributor to the hyperexcitability of KO neurons. The role of Kv1.1 in controlling neuronal discharges was further supported by the parallel developmental trajectories of Kv1.1 expression, current amplitude, and discharge impacts, with a significant correlation between the amplitude of Kv1.1-mediated currents and Kv1.1-blocking-induced firing enhancement. These data suggest that the expression of the Kv1.1 α-subunit has a profound pathological relevance to hyperexcitability in FXS, as well as implications for normal development, maintenance, and control of neuronal activities.
Collapse
Affiliation(s)
- Pingping Zhu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China; Department of Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Jialing Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Liting Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Zhanrong Liang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
10
|
Hasan S, Bove C, Silvestri G, Mantuano E, Modoni A, Veneziano L, Macchioni L, Hunter T, Hunter G, Pessia M, D'Adamo MC. A channelopathy mutation in the voltage-sensor discloses contributions of a conserved phenylalanine to gating properties of Kv1.1 channels and ataxia. Sci Rep 2017; 7:4583. [PMID: 28676720 PMCID: PMC5496848 DOI: 10.1038/s41598-017-03041-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/21/2017] [Indexed: 01/21/2023] Open
Abstract
Channelopathy mutations prove informative on disease causing mechanisms and channel gating dynamics. We have identified a novel heterozygous mutation in the KCNA1 gene of a young proband displaying typical signs and symptoms of Episodic Ataxia type 1 (EA1). This mutation is in the S4 helix of the voltage-sensing domain and results in the substitution of the highly conserved phenylalanine 303 by valine (p.F303V). The contributions of F303 towards K+ channel voltage gating are unclear and here have been assessed biophysically and by performing structural analysis using rat Kv1.2 coordinates. We observed significant positive shifts of voltage-dependence, changes in the activation, deactivation and slow inactivation kinetics, reduced window currents, and decreased current amplitudes of both Kv1.1 and Kv1.1/1.2 channels. Structural analysis revealed altered interactions between F303V and L339 and I335 of the S5 helix of a neighboring subunit. The substitution of an aromatic phenylalanine with an aliphatic valine within the voltage-sensor destabilizes the open state of the channel. Thus, F303 fine-tunes the Kv1.1 gating properties and contributes to the interactions between the S4 segment and neighboring alpha helices. The resulting channel's loss of function validates the clinical relevance of the mutation for EA1 pathogenesis.
Collapse
Affiliation(s)
- Sonia Hasan
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat, 13110, Kuwait
| | - Cecilia Bove
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy
| | - Gabriella Silvestri
- Institute of Neurology, Catholic University of Sacred Heart, Fondazione Gemelli, Rome, Italy
| | - Elide Mantuano
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Anna Modoni
- Institute of Neurology, Catholic University of Sacred Heart, Fondazione Gemelli, Rome, Italy
| | - Liana Veneziano
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Lara Macchioni
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy
| | - Therese Hunter
- Faculty of Medicine & Surgery, Department of Physiology & Biochemistry, University of Malta, MSD 2080, Msida, Malta
| | - Gary Hunter
- Faculty of Medicine & Surgery, Department of Physiology & Biochemistry, University of Malta, MSD 2080, Msida, Malta
| | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy.,Faculty of Medicine & Surgery, Department of Physiology & Biochemistry, University of Malta, MSD 2080, Msida, Malta
| | - Maria Cristina D'Adamo
- Faculty of Medicine & Surgery, Department of Physiology & Biochemistry, University of Malta, MSD 2080, Msida, Malta.
| |
Collapse
|
11
|
Imbrici P, Altamura C, Gualandi F, Mangiatordi GF, Neri M, De Maria G, Ferlini A, Padovani A, D'Adamo MC, Nicolotti O, Pessia M, Conte D, Filosto M, Desaphy JF. A novel KCNA1 mutation in a patient with paroxysmal ataxia, myokymia, painful contractures and metabolic dysfunctions. Mol Cell Neurosci 2017; 83:6-12. [PMID: 28666963 DOI: 10.1016/j.mcn.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/05/2017] [Accepted: 06/25/2017] [Indexed: 11/26/2022] Open
Abstract
Episodic ataxia type 1 (EA1) is a human dominant neurological syndrome characterized by continuous myokymia, episodic attacks of ataxic gait and spastic contractions of skeletal muscles that can be triggered by emotional stress and fatigue. This rare disease is caused by missense mutations in the KCNA1 gene coding for the neuronal voltage gated potassium channel Kv1.1, which contributes to nerve cell excitability in the cerebellum, hippocampus, cortex and peripheral nervous system. We identified a novel KCNA1 mutation, E283K, in an Italian proband presenting with paroxysmal ataxia and myokymia aggravated by painful contractures and metabolic dysfunctions. The E283K mutation is located in the S3-S4 extracellular linker belonging to the voltage sensor domain of Kv channels. In order to test whether the E283K mutation affects Kv1.1 biophysical properties we transfected HEK293 cells with WT or mutant cDNAs alone or in a 1:1 combination, and recorded relative potassium currents in the whole-cell configuration of patch-clamp. Mutant E283K channels display voltage-dependent activation shifted by 10mV toward positive potentials and kinetics of activation slowed by ~2 fold compared to WT channels. Potassium currents resulting from heteromeric WT/E283K channels show voltage-dependent gating and kinetics of activation intermediate between WT and mutant homomeric channels. Based on homology modeling studies of the mutant E283K, we propose a molecular explanation for the reduced voltage sensitivity and slow channel opening. Overall, our results suggest that the replacement of a negatively charged residue with a positively charged lysine at position 283 in Kv1.1 causes a drop of potassium current that likely accounts for EA-1 symptoms in the heterozygous carrier.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | - Concetta Altamura
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Gualandi
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | | | - Marcella Neri
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | | | - Alessandra Ferlini
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | - Alessandro Padovani
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST "Spedali Civili", and University of Brescia, Brescia, Italy
| | - Maria Cristina D'Adamo
- Faculty of Medicine, Department of Physiology and Biochemistry, University of Malta, MSD-2080 Msida, Malta
| | - Orazio Nicolotti
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mauro Pessia
- Faculty of Medicine, Department of Physiology and Biochemistry, University of Malta, MSD-2080 Msida, Malta; Department of Experimental Medicine, Section of Physiology & Biochemistry, University of Perugia School of Medicine, Perugia, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST "Spedali Civili", and University of Brescia, Brescia, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
12
|
Noebels J. Precision physiology and rescue of brain ion channel disorders. J Gen Physiol 2017; 149:533-546. [PMID: 28428202 PMCID: PMC5412535 DOI: 10.1085/jgp.201711759] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
Ion channel genes, originally implicated in inherited excitability disorders of muscle and heart, have captured a major role in the molecular diagnosis of central nervous system disease. Their arrival is heralded by neurologists confounded by a broad phenotypic spectrum of early-onset epilepsy, autism, and cognitive impairment with few effective treatments. As detection of rare structural variants in channel subunit proteins becomes routine, it is apparent that primary sequence alone cannot reliably predict clinical severity or pinpoint a therapeutic solution. Future gains in the clinical utility of variants as biomarkers integral to clinical decision making and drug discovery depend on our ability to unravel complex developmental relationships bridging single ion channel structure and human physiology.
Collapse
Affiliation(s)
- Jeffrey Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030 .,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
13
|
Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization. Proc Natl Acad Sci U S A 2017; 114:2395-2400. [PMID: 28193892 PMCID: PMC5338558 DOI: 10.1073/pnas.1608763114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog-digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization. We recorded instead from small boutons supplied by intact axons identified with scanning ion conductance microscopy in primary hippocampal cultures and asked how distinct potassium channels interact in determining the basal spike width and its modulation by subthreshold somatic depolarization. Pharmacological or genetic deletion of Kv1.1 broadened presynaptic spikes without preventing further prolongation by brief depolarizing somatic prepulses. A heterozygous mouse model of episodic ataxia type 1 harboring a dominant Kv1.1 mutation had a similar broadening effect on basal spike shape as deletion of Kv1.1; however, spike modulation by somatic prepulses was abolished. These results argue that the Kv1.1 subunit is not necessary for subthreshold modulation of spike width. However, a disease-associated mutant subunit prevents the interplay of analog and digital transmission, possibly by disrupting the normal stoichiometry of presynaptic potassium channels.
Collapse
|
14
|
Begum R, Bakiri Y, Volynski KE, Kullmann DM. Action potential broadening in a presynaptic channelopathy. Nat Commun 2016; 7:12102. [PMID: 27381274 PMCID: PMC4935806 DOI: 10.1038/ncomms12102] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/27/2016] [Indexed: 12/31/2022] Open
Abstract
Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. Episodic ataxia type 1 is caused by mutations in the potassium channel Kv1.1, which is found in cerebellar basket cells. Here, the authors use electrophysiology techniques to characterize these mutant channels, and observe that the changes result in decreased spontaneous Purkinje cell firing with no evidence for developmental compensation.
Collapse
Affiliation(s)
- Rahima Begum
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Yamina Bakiri
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Kirill E Volynski
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
15
|
Ovsepian SV, LeBerre M, Steuber V, O'Leary VB, Leibold C, Oliver Dolly J. Distinctive role of KV1.1 subunit in the biology and functions of low threshold K+ channels with implications for neurological disease. Pharmacol Ther 2016; 159:93-101. [DOI: 10.1016/j.pharmthera.2016.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Chen SH, Fu SJ, Huang JJ, Tang CY. The episodic ataxia type 1 mutation I262T alters voltage-dependent gating and disrupts protein biosynthesis of human Kv1.1 potassium channels. Sci Rep 2016; 6:19378. [PMID: 26778656 PMCID: PMC4726062 DOI: 10.1038/srep19378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
Voltage-gated potassium (Kv) channels are essential for setting neuronal membrane excitability. Mutations in human Kv1.1 channels are linked to episodic ataxia type 1 (EA1). The EA1-associated mutation I262T was identified from a patient with atypical phenotypes. Although a previous report has characterized its suppression effect, several key questions regarding the impact of the I262T mutation on Kv1.1 as well as other members of the Kv1 subfamily remain unanswered. Herein we show that the dominant-negative effect of I262T on Kv1.1 current expression is not reversed by co-expression with Kvβ1.1 or Kvβ2 subunits. Biochemical examinations indicate that I262T displays enhanced protein degradation and impedes membrane trafficking of Kv1.1 wild-type subunits. I262T appears to be the first EA1 mutation directly associated with impaired protein stability. Further functional analyses demonstrate that I262T changes the voltage-dependent activation and Kvβ1.1-mediated inactivation, uncouples inactivation from activation gating, and decelerates the kinetics of cumulative inactivation of Kv1.1 channels. I262T also exerts similar dominant effects on the gating of Kv1.2 and Kv1.4 channels. Together our data suggest that I262T confers altered channel gating and reduced functional expression of Kv1 channels, which may account for some of the phenotypes of the EA1 patient.
Collapse
Affiliation(s)
- Szu-Han Chen
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Jia Huang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
D'Adamo MC, Hasan S, Guglielmi L, Servettini I, Cenciarini M, Catacuzzeno L, Franciolini F. New insights into the pathogenesis and therapeutics of episodic ataxia type 1. Front Cell Neurosci 2015; 9:317. [PMID: 26347608 PMCID: PMC4541215 DOI: 10.3389/fncel.2015.00317] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Episodic ataxia type 1 (EA1) is a K+channelopathy characterized by a broad spectrum of symptoms. Generally, patients may experience constant myokymia and dramatic episodes of spastic contractions of the skeletal muscles of the head, arms, and legs with loss of both motor coordination and balance. During attacks additional symptoms may be reported such as vertigo, blurred vision, diplopia, nausea, headache, diaphoresis, clumsiness, stiffening of the body, dysarthric speech, and difficulty in breathing. These episodes may be precipitated by anxiety, emotional stress, fatigue, startle response or sudden postural changes. Epilepsy is overrepresented in EA1. The disease is inherited in an autosomal dominant manner, and genetic analysis of several families has led to the discovery of a number of point mutations in the voltage-dependent K+ channel gene KCNA1 (Kv1.1), on chromosome 12p13. To date KCNA1 is the only gene known to be associated with EA1. Functional studies have shown that these mutations impair Kv1.1 channel function with variable effects on channel assembly, trafficking and biophysics. Despite the solid evidence obtained on the molecular mechanisms underlying EA1, how these cause dysfunctions within the central and peripheral nervous systems circuitries remains elusive. This review summarizes the main breakthrough findings in EA1, discusses the neurophysiological mechanisms underlying the disease, current therapies, future challenges and opens a window onto the role of Kv1.1 channels in central nervous system (CNS) and peripheral nervous system (PNS) functions.
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Sonia Hasan
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Luca Guglielmi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Ilenio Servettini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Marta Cenciarini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| |
Collapse
|
18
|
D’Adamo MC, Di Giovanni G, Pessia M. Animal Models of Episodic Ataxia Type 1 (EA1). Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
19
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shah NH, Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 2013; 5:38-58. [PMID: 24323720 DOI: 10.1007/s12975-013-0297-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K(+) efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Niyathi Hegde Shah
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, E1456 BST, Pittsburgh, PA, 15261, USA,
| | | |
Collapse
|
21
|
Martínez-Mármol R, Pérez-Verdaguer M, Roig SR, Vallejo-Gracia A, Gotsi P, Serrano-Albarrás A, Bahamonde MI, Ferrer-Montiel A, Fernández-Ballester G, Comes N, Felipe A. A non-canonical di-acidic signal at the C-terminus of Kv1.3 determines anterograde trafficking and surface expression. J Cell Sci 2013; 126:5681-91. [PMID: 24144698 DOI: 10.1242/jcs.134825] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Impairment of Kv1.3 expression at the cell membrane in leukocytes and sensory neuron contributes to the pathophysiology of autoimmune diseases and sensory syndromes. Molecular mechanisms underlying Kv1.3 channel trafficking to the plasma membrane remain elusive. We report a novel non-canonical di-acidic signal (E483/484) at the C-terminus of Kv1.3 essential for anterograde transport and surface expression. Notably, homologous motifs are conserved in neuronal Kv1 and Shaker channels. Biochemical analysis revealed interactions with the Sec24 subunit of the coat protein complex II. Disruption of this complex retains the channel at the endoplasmic reticulum. A molecular model of the Kv1.3-Sec24a complex suggests salt-bridges between the di-acidic E483/484 motif in Kv1.3 and the di-basic R750/752 sequence in Sec24. These findings identify a previously unrecognized motif of Kv channels essential for their expression on the cell surface. Our results contribute to our understanding of how Kv1 channels target to the cell membrane, and provide new therapeutic strategies for the treatment of pathological conditions.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sedarous M, Lange DJ. Can white matter changes occur in disorders of peripheral nerve hyperexcitability? Mult Scler Relat Disord 2013; 2:388-90. [PMID: 25877851 DOI: 10.1016/j.msard.2013.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Mary Sedarous
- Department of Neurology, Hospital for Special Surgery and Weill Cornel Medical Center, New York, NY, USA.
| | - Dale J Lange
- Department of Neurology, Hospital for Special Surgery and Weill Cornel Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, Tsai PC, Ichikawa Y, Goto J, Monin ML, Li JZ, Chung MY, Mundwiller E, Shakkottai V, Liu TT, Tesson C, Lu YC, Brice A, Tsuji S, Burmeister M, Stevanin G, Soong BW. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol 2013; 72:859-69. [PMID: 23280837 DOI: 10.1002/ana.23701] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To identify the causative gene in spinocerebellar ataxia (SCA) 22, an autosomal dominant cerebellar ataxia mapped to chromosome 1p21-q23. METHODS We previously characterized a large Chinese family with progressive ataxia designated SCA22, which overlaps with the locus of SCA19. The disease locus in a French family and an Ashkenazi Jewish American family was also mapped to this region. Members from all 3 families were enrolled. Whole exome sequencing was performed to identify candidate mutations, which were narrowed by linkage analysis and confirmed by Sanger sequencing and cosegregation analyses. Mutational analyses were also performed in 105 Chinese and 55 Japanese families with cerebellar ataxia. Mutant gene products were examined in a heterologous expression system to address the changes in protein localization and electrophysiological functions. RESULTS We identified heterozygous mutations in the voltage-gated potassium channel Kv4.3-encoding gene KCND3: an in-frame 3-nucleotide deletion c.679_681delTTC p.F227del in both the Chinese and French pedigrees, and a missense mutation c.1034G>T p.G345V in the Ashkenazi Jewish family. Direct sequencing of KCND3 further identified 3 mutations, c.1034G>T p.G345V, c.1013T>C p.V338E, and c.1130C>T p.T377M, in 3 Japanese kindreds. Immunofluorescence analyses revealed that the mutant p.F227del Kv4.3 subunits were retained in the cytoplasm, consistent with the lack of A-type K(+) channel conductance in whole cell patch-clamp recordings. INTERPRETATION Our data identify the cause of SCA19/22 in patients of diverse ethnic origins as mutations in KCND3. These findings further emphasize the important role of ion channels as key regulators of neuronal excitability in the pathogenesis of cerebellar degeneration.
Collapse
Affiliation(s)
- Yi-Chung Lee
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vacher H, Trimmer JS. Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia 2013; 53 Suppl 9:21-31. [PMID: 23216576 DOI: 10.1111/epi.12032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Voltage-gated ion channels are diverse and fundamental determinants of neuronal intrinsic excitability. Voltage-gated K(+) (Kv) and Na(+) (Nav) channels play complex yet fundamentally important roles in determining intrinsic excitability. The Kv and Nav channels located at the axon initial segment (AIS) play a unique and especially important role in generating neuronal output in the form of anterograde axonal and backpropagating action potentials. Aberrant intrinsic excitability in individual neurons within networks contributes to synchronous neuronal activity leading to seizures. Mutations in ion channel genes give rise to a variety of seizure-related "channelopathies," and many of the ion channel subunits associated with epilepsy mutations are localized at the AIS, making this a hotspot for epileptogenesis. Here we review the cellular mechanisms that underlie the trafficking of Kv and Nav channels found at the AIS, and how Kv and Nav channel mutations associated with epilepsy can alter these processes.
Collapse
Affiliation(s)
- Helene Vacher
- CRN2M CNRS UMR7286, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
25
|
Channelopathies. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Gazquez I, Lopez-Escamez JA. Genetics of recurrent vertigo and vestibular disorders. Curr Genomics 2011; 12:443-50. [PMID: 22379397 PMCID: PMC3178912 DOI: 10.2174/138920211797248600] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022] Open
Abstract
We present recent advances in the genetics of recurrent vertigo, including familial episodic ataxias, migraneous vertigo, bilateral vestibular hypofunction and Meniere's disease.Although several vestibular disorders are more common within families, the genetics of vestibulopathies is largely not known. Genetic loci and clinical features of familial episodic ataxias have been defined in linkage disequilibrium studies with mutations in neuronal genes KCNA1 and CACNA1A. Migrainous vertigo is a clinical disorder with a high comorbidity within families much more common in females with overlapping features with episodic ataxia and migraine. Bilateral vestibular hypofunction is a heterogeneous clinical group defined by episodes of vertigo leading to progressive loss of vestibular function which also can include migraine. Meniere's disease is a clinical syndrome characterized by spontaneous episodes of recurrent vertigo, sensorineural hearing loss, tinnitus and aural fullness and familial Meniere's disease in around 10-20% of cases. An international collaborative effort to define the clinical phenotype and recruiting patients with migrainous vertigo and Meniere's disease is ongoing for genome-wide association studies.
Collapse
Affiliation(s)
- Irene Gazquez
- Otology & Neurotology Group, CTS495, Centro de Genómica e Investigación Oncológica –GENyO Pfizer-Universidad de Granada- Junta de Andalucia, Granada
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group, CTS495, Centro de Genómica e Investigación Oncológica –GENyO Pfizer-Universidad de Granada- Junta de Andalucia, Granada
- Department of Otolaryngology, Hospital de Poniente, El Ejido, Almería, Spain
| |
Collapse
|
27
|
Uncovering genomic causes of co-morbidity in epilepsy: gene-driven phenotypic characterization of rare microdeletions. PLoS One 2011; 6:e23182. [PMID: 21858020 PMCID: PMC3157359 DOI: 10.1371/journal.pone.0023182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/07/2011] [Indexed: 12/13/2022] Open
Abstract
Background Patients with epilepsy often suffer from other important conditions. The existence of such co-morbidities is frequently not recognized and their relationship with epilepsy usually remains unexplained. Methodology/Principal Findings We describe three patients with common, sporadic, non-syndromic epilepsies in whom large genomic microdeletions were found during a study of genetic susceptibility to epilepsy. We performed detailed gene-driven clinical investigations in each patient. Disruption of the function of genes in the deleted regions can explain co-morbidities in these patients. Conclusions/Significance Co-morbidities in patients with epilepsy can be part of a genomic abnormality even in the absence of (known) congenital malformations or intellectual disabilities. Gene-driven phenotype examination can also reveal clinically significant unsuspected condition.
Collapse
|
28
|
Imbrici P, D'Adamo MC, Grottesi A, Biscarini A, Pessia M. Episodic ataxia type 1 mutations affect fast inactivation of K+ channels by a reduction in either subunit surface expression or affinity for inactivation domain. Am J Physiol Cell Physiol 2011; 300:C1314-22. [PMID: 21307345 DOI: 10.1152/ajpcell.00456.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Episodic ataxia type 1 (EA1) is an autosomal dominant disorder characterized by continuous myokymia and episodic attacks of ataxia. Mutations in the gene KCNA1 that encodes the voltage-gated potassium channel Kv1.1 are responsible for EA1. In several brain areas, Kv1.1 coassembles with Kv1.4, which confers N-type inactivating properties to heteromeric channels. It is therefore likely that the rate of inactivation will be determined by the number of Kv1.4 inactivation particles, as set by the precise subunit stoichiometry. We propose that EA1 mutations affect the rate of N-type inactivation either by reduced subunit surface expression, giving rise to a reduced number of Kv1.1 subunits in heterotetramer Kv1.1-Kv1.4 channels, or by reduced affinity for the Kv1.4 inactivation domain. To test this hypothesis, quantified amounts of mRNA for Kv1.4 or Kv1.1 containing selected EA1 mutations either in the inner vestibule of Kv1.1 on S6 or in the transmembrane regions were injected into Xenopus laevis oocytes and the relative rates of inactivation and stoichiometry were determined. The S6 mutations, V404I and V408A, which had normal surface expression, reduced the rate of inactivation by a decreased affinity for the inactivation domain while the mutations I177N in S1 and E325D in S5, which had reduced subunit surface expression, increased the rate of N-type inactivation due to a stoichiometric increase in the number of Kv1.4 subunits.
Collapse
Affiliation(s)
- Paola Imbrici
- Section of Human Physiology, Dept. of Internal Medicine, University of Perugia School of Medicine, Via del Giochetto, Perugia, Italy
| | | | | | | | | |
Collapse
|
29
|
Heeroma JH, Henneberger C, Rajakulendran S, Hanna MG, Schorge S, Kullmann DM. Episodic ataxia type 1 mutations differentially affect neuronal excitability and transmitter release. Dis Model Mech 2009; 2:612-9. [PMID: 19779067 DOI: 10.1242/dmm.003582] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heterozygous mutations of KCNA1, the gene encoding potassium channel Kv1.1 subunits, cause episodic ataxia type 1 (EA1), which is characterized by paroxysmal cerebellar incoordination and interictal myokymia. Some mutations are also associated with epilepsy. Although Kv1.1-containing potassium channels play important roles in neuronal excitability and neurotransmitter release, it is not known how mutations associated with different clinical features affect the input-output relationships of individual neurons. We transduced rat hippocampal neurons, which were cultured on glial micro-islands, with lentiviruses expressing wild-type or mutant human KCNA1, and injected either depolarizing currents to evoke action potentials or depolarizing voltage commands to evoke autaptic currents. alpha-Dendrotoxin and tetraethylammonium allowed a pharmacological dissection of potassium currents underlying excitability and neurotransmission. Overexpression of wild-type Kv1.1 decreased both neuronal excitability and neurotransmitter release. By contrast, the C-terminus-truncated R417stop mutant, which is associated with severe drug-resistant EA1, had the opposite effect: increased excitability and release probability. Another mutant, T226R, which is associated with EA1 that is complicated by contractures and epilepsy, had no detectable effect on neuronal excitability; however, in common with R417stop, it markedly enhanced neurotransmitter release. The results provide direct evidence that EA1 mutations increase neurotransmitter release, and provide an insight into mechanisms underlying the phenotypic differences that are associated with different mutations.
Collapse
Affiliation(s)
- Joost H Heeroma
- Department of Clinical and Experimental Epilepsy, Department of Molecular Neuroscience and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | | | | | | | | | | |
Collapse
|
30
|
Tomlinson SE, Hanna MG, Kullmann DM, Tan SV, Burke D. Clinical neurophysiology of the episodic ataxias: insights into ion channel dysfunction in vivo. Clin Neurophysiol 2009; 120:1768-76. [PMID: 19734086 DOI: 10.1016/j.clinph.2009.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 07/03/2009] [Accepted: 07/03/2009] [Indexed: 01/02/2023]
Abstract
Clinical neurophysiology has become an invaluable tool in the diagnosis of muscle channelopathies, but the situation is less clear cut with neuronal channelopathies. The genetic episodic ataxias are a group of disorders with heterogeneous phenotype and genotype, but share in common the feature of intermittent cerebellar dysfunction. Episodic ataxia (EA) types 1 and 2 are the most widely recognised of the autosomal dominant episodic ataxias and are caused by dysfunction of neuronal voltage-gated ion channels. There are central and peripheral nervous system manifestations in both conditions, and they are therefore good models of neuronal channelopathies to study neurophysiologically. To date most work has focussed upon characterising the electrophysiological properties of mutant channels in vitro. This review summarises the role of voltage-gated potassium and calcium channels, mutations of which underlie the main types of episodic ataxia types 1 and 2. The clinical, genetic and electrophysiological features of EA1 and EA2 are outlined, and a protocol for the assessment of these patients is proposed.
Collapse
Affiliation(s)
- Susan E Tomlinson
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
31
|
Mechanisms of human inherited epilepsies. Prog Neurobiol 2009; 87:41-57. [DOI: 10.1016/j.pneurobio.2008.09.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/25/2008] [Accepted: 09/29/2008] [Indexed: 12/19/2022]
|
32
|
Imbrici P, Gualandi F, D'Adamo MC, Masieri MT, Cudia P, De Grandis D, Mannucci R, Nicoletti I, Tucker SJ, Ferlini A, Pessia M. A novel KCNA1 mutation identified in an Italian family affected by episodic ataxia type 1. Neuroscience 2008; 157:577-87. [PMID: 18926884 DOI: 10.1016/j.neuroscience.2008.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/11/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
Abstract
Episodic ataxia type 1 (EA1) is a rare human neurological syndrome characterized by continuous myokymia and attacks of generalized ataxia that can be triggered by abrupt movements, emotional stress and fatigue. An Italian family has been identified where related members displayed continuous myokymia, episodes of ataxia, attacks characterized by myokymia only, and neuromyotonia. A novel missense mutation (F414C), in the C-terminal region of the K(+) channel Kv1.1, was identified in the affected individuals. The mutant homotetrameric channels were non-functional in Xenopus laevis oocytes. In addition, heteromeric channels resulting from the co-expression of wild-type Kv1.1 and Kv1.1(F414C), or wild-type Kv1.2 and Kv1.1(F414C) subunits displayed reduced current amplitudes and altered gating properties. This indicates that the pathogenic effect of this KCNA1 mutation is likely to be related to the defective functional properties we have identified.
Collapse
Affiliation(s)
- P Imbrici
- Section of Human Physiology, Department of Internal Medicine, University of Perugia School of Medicine, Via del Giochetto, I-06126 Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Zhu J, Gomez B, Watanabe I, Thornhill WB. Kv1 potassium channel C-terminus constant HRETE region: arginine substitution affects surface protein level and conductance level of subfamily members differentially. Mol Membr Biol 2007; 24:194-205. [PMID: 17520476 DOI: 10.1080/09687860601066309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We have shown previously that truncating all of the variable cytoplasmic C-terminus of Kv1.1 potassium channels to G421stop had only a small inhibitory effect on their cell surface conductance density levels and cell surface protein levels. Here we investigated the role of a highly conserved cytoplasmic C-terminal charged region of five amino acids (HRETE) of the S6 transmembrane domain in the protein and conductance expression of Kv1.1, Kv1.2, and Kv1.4 channels. For Kv1.1 we found that E420stop, T419stop, and E418stop showed cell surface conductance densities and cell surface protein levels similar to full length control, whereas R417stop and H416stop exhibited essentially no conductance but their surface protein levels were similar to full length control. A bulky non-negatively charged hydrophilic amino acid at position 417 appeared to be critical for wild type gating of Kv1.1 because R417K and R417Q rescued conductance levels whereas R417A or R417E did not. The R417A mutation in the full length Kv1.1 also exhibited surface protein levels similar to control but it did not exhibit significant conductance. In contrast, mutation of the equivalent arginine to alanine in full length Kv1.2 and Kv1.4 appeared to have little or no effect on channel conductance but rather decreased cell surface protein levels by inducing partial high ER retention. These findings are consistent with the notion that the arginine amino acid in the HRETE region plays a different role in affecting conductance levels or cell surface protein levels of very closely related Kv1 potassium channels.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Biological Sciences, Fordham University, Bronx, New York 10458, USA
| | | | | | | |
Collapse
|
35
|
Rajakulendran S, Schorge S, Kullmann DM, Hanna MG. Episodic ataxia type 1: a neuronal potassium channelopathy. Neurotherapeutics 2007; 4:258-66. [PMID: 17395136 DOI: 10.1016/j.nurt.2007.01.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Episodic ataxia type 1 is a paroxysmal neurological disorder characterized by short-lived attacks of recurrent midline cerebellar dysfunction and continuous motor activity. Mutations in KCN1A, the gene encoding Kv1.1, a voltage-gated neuronal potassium channel, are associated with the disorder. Although rare, the syndrome highlights the fundamental features of genetic ion-channel diseases and serves as a useful model for understanding more common paroxysmal disorders, such as epilepsy and migraine. This review examines our current understanding of episodic ataxia type 1, focusing on its clinical and genetic features, pathophysiology, and treatment.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- Department of Molecular Neuroscience, Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | | |
Collapse
|
36
|
Imbrici P, D'Adamo MC, Kullmann DM, Pessia M. Episodic ataxia type 1 mutations in the KCNA1 gene impair the fast inactivation properties of the human potassium channels Kv1.4-1.1/Kvbeta1.1 and Kv1.4-1.1/Kvbeta1.2. Eur J Neurosci 2007; 24:3073-83. [PMID: 17156368 DOI: 10.1111/j.1460-9568.2006.05186.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by constant muscle rippling movements (myokymia) and episodic attacks of ataxia. Several heterozygous point mutations have been found in the coding sequence of the voltage-gated potassium channel gene KCNA1 (hKv1.1), which alter the delayed-rectifier function of the channel. Shaker-like channels of different cell types may be formed by unique hetero-oligomeric complexes comprising Kv1.1, Kv1.4 and Kvbeta1.x subunits. Here we show that the human Kvbeta1.1 and Kvbeta1.2 subunits modulated the functional properties of tandemly linked Kv1.4-1.1 wild-type channels expressed in Xenopus laevis oocytes by (i) increasing the rate and amount of N-type inactivation, (ii) slowing the recovery rate from inactivation, (iii) accelerating the cumulative inactivation of the channel and (iv) negatively shifting the voltage dependence of inactivation. To date, the role of the human Kv1.4-1.1, Kv1.4-1.1/Kvbeta1.1 and Kv1.4-1.1/Kvbeta1.2 channels in the aetiopathogenesis of EA1 has not been investigated. Here we also show that the EA1 mutations E325D, V404I and V408A, which line the ion-conducting pore, and I177N, which resides within the S1 segment, alter the fast inactivation and repriming properties of the channels by decreasing both the rate and degree of N-type inactivation and by accelerating the recovery from fast inactivation. Furthermore, the E325D, V404I and I177N mutations shifted the voltage dependence of the steady-state inactivation to more positive potentials. The results demonstrate that the human Kvbeta1.1 and Kvbeta1.2 subunits regulate the proportion of wild-type Kv1.4-1.1 channels that are available to open. Furthermore, EA1 mutations alter heteromeric channel availability which probably modifies the integration properties and firing patterns of neurones controlling cognitive processes and body movements.
Collapse
Affiliation(s)
- Paola Imbrici
- University of Perugia School of Medicine, Department of Internal Medicine, Section of Human Physiology, Via del Giochetto, I-06126 Perugia, Italy
| | | | | | | |
Collapse
|
37
|
Falace A, Striano P, Manganelli F, Coppola A, Striano S, Minetti C, Zara F. Inherited neuromyotonia: A clinical and genetic study of a family. Neuromuscul Disord 2007; 17:23-7. [PMID: 17140792 DOI: 10.1016/j.nmd.2006.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 09/11/2006] [Accepted: 09/20/2006] [Indexed: 10/23/2022]
Abstract
Neuromyotonia is a disorder of peripheral nerve hyperexcitability characterized by myokymia, muscle cramps and stiffness, delayed muscle relaxation after contraction (pseudomyotonia), and hyperhidrosis, associated with well described spontaneous electromyographic features. It is usually an acquired disorder associated with autoantibodies against neuronal voltage-gated potassium channels. However, mutations of KCNA1, encoding the K(+) channel subunit hKv1.1, have been reported in rare families with neuromyotonia, and mutations in KCNQ2, encoding voltage-gated potassium M channel subunit, in families with benign neonatal seizures and myokymia. We report a three-generation family with inherited neuromyotonia without evidence of immunological involvement. Genetic study excluded mutations in KCNA1, KCNA2, KCNA6 and KCNQ2 genes. Our study does not completely exclude the involvement of other genes encoding ion channels subunits in the pathogenesis of this disorder. Further studies of familial cases will shed light on the molecular basis of inherited neuromyotonia.
Collapse
Affiliation(s)
- Antonio Falace
- Neuromuscular and Neurodegenerative Disease Unit, University of Genova, G Gaslini Institute, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Hanna MG. Genetic neurological channelopathies. ACTA ACUST UNITED AC 2006; 2:252-63. [PMID: 16932562 DOI: 10.1038/ncpneuro0178] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 03/09/2006] [Indexed: 12/14/2022]
Abstract
Ion channels are crucial for the normal function of excitable tissues such as neurons and skeletal muscle. Since the discovery that the paroxysmal muscle disorder periodic paralysis is caused by mutations in genes that encode voltage-gated ion channels, many genetic neurological channelopathies have been defined. These channelopathies include epilepsy syndromes that show a mendelian pattern of inheritance, certain forms of migraine and disorders of cerebellar function, as well as periodic paralysis. The clinical diversity of these disorders relates in part to the tissue-specific expression of the dysfunctional channel, but is probably influenced by other, as yet unidentified, genetic and non-genetic factors. The complementary disciplines of molecular genetics and cellular and in vitro electrophysiology have resulted in significant advances in understanding of the basic molecular pathophysiology of some of these disorders. The single-gene neurological channelopathies are generally regarded as a paradigm for understanding common human paroxysmal disorders, such as epilepsy and migraine. This article reviews the clinical and molecular features of some of the single-gene channelopathies that affect muscle and brain. The possible role of ion-channel functional and genetic variation in predisposing individuals to common forms of human epilepsy and migraine are also considered. The implications for accurate genetic diagnosis and therapeutic intervention are highlighted.
Collapse
Affiliation(s)
- Michael G Hanna
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
39
|
Imbrici P, D'Adamo MC, Cusimano A, Pessia M. Episodic ataxia type 1 mutation F184C alters Zn2+-induced modulation of the human K+ channel Kv1.4-Kv1.1/Kvbeta1.1. Am J Physiol Cell Physiol 2006; 292:C778-87. [PMID: 16956965 DOI: 10.1152/ajpcell.00259.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Episodic ataxia type 1 (EA1) is a Shaker-like channelopathy characterized by continuous myokymia and attacks of imbalance with jerking movements of the head, arms, and legs. Although altered expression and gating properties of Kv1.1 channels underlie EA1, several disease-causing mechanisms remain poorly understood. It is likely that Kv1.1, Kv1.4, and Kvbeta1.1 subunits form heteromeric channels at hippocampal mossy fiber boutons from which Zn(2+) ions are released into the synaptic cleft in a Ca(2+)-dependent fashion. The sensitivity of this macromolecular channel complex to Zn(2+) is unknown. Here, we show that this heteromeric channel possesses a high-affinity (<10 muM) and a low-affinity (<0.5 mM) site for Zn(2+), which are likely to regulate channel availability at distinct presynaptic membranes. Furthermore, the EA1 mutation F184C, located within the S1 segment of the Kv1.1 subunit, markedly decreased the equilibrium dissociation constants for Zn(2+) binding to the high- and low-affinity sites. The functional characterization of the Zn(2+) effects on heteromeric channels harboring the F184C mutation also showed that this ion significantly 1) slowed the activation rate of the channel, 2) increased the time to reach peak current amplitude, 3) decreased the rate and amount of current undergoing N-type inactivation, and 4) slowed the repriming of the channel compared with wild-type channels. These results demonstrate that the EA1 mutation F184C will not only sensitize the homomeric Kv1.1 channel to extracellular Zn(2+), but it will also endow heteromeric channels with a higher sensitivity to this metal ion. During the vesicular release of Zn(2+), its effects will be in addition to the intrinsic gating defects caused by the mutation, which is likely to exacerbate the symptoms by impairing the integration and transmission of signals within specific brain areas.
Collapse
Affiliation(s)
- Paola Imbrici
- Section of Human Physiology, Dept. of Internal Medicine, Univ. of Perugia School of Medicine, Via del Giochetto, I-06126 Perugia, Italy
| | | | | | | |
Collapse
|
40
|
Persson AS, Klement G, Almgren M, Sahlholm K, Nilsson J, Petersson S, Århem P, Schalling M, Lavebratt C. A truncated Kv1.1 protein in the brain of the megencephaly mouse: expression and interaction. BMC Neurosci 2005; 6:65. [PMID: 16305740 PMCID: PMC1322225 DOI: 10.1186/1471-2202-6-65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 11/23/2005] [Indexed: 11/10/2022] Open
Abstract
Background The megencephaly mouse, mceph/mceph, is epileptic and displays a dramatically increased brain volume and neuronal count. The responsible mutation was recently revealed to be an eleven base pair deletion, leading to a frame shift, in the gene encoding the potassium channel Kv1.1. The predicted MCEPH protein is truncated at amino acid 230 out of 495. Truncated proteins are usually not expressed since nonsense mRNAs are most often degraded. However, high Kv1.1 mRNA levels in mceph/mceph brain indicated that it escaped this control mechanism. Therefore, we hypothesized that the truncated Kv1.1 would be expressed and dysregulate other Kv1 subunits in the mceph/mceph mice. Results We found that the MCEPH protein is expressed in the brain of mceph/mceph mice. MCEPH was found to lack mature (Golgi) glycosylation, but to be core glycosylated and trapped in the endoplasmic reticulum (ER). Interactions between MCEPH and other Kv1 subunits were studied in cell culture, Xenopus oocytes and the brain. MCEPH can form tetramers with Kv1.1 in cell culture and has a dominant negative effect on Kv1.2 and Kv1.3 currents in oocytes. However, it does not retain Kv1.2 in the ER of neurons. Conclusion The megencephaly mice express a truncated Kv1.1 in the brain, and constitute a unique tool to study Kv1.1 trafficking relevant for understanding epilepsy, ataxia and pathologic brain overgrowth.
Collapse
Affiliation(s)
- Ann-Sophie Persson
- Neurogenetic Unit, Department of Molecular Medicine and Surgery, CMM, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Göran Klement
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Malin Almgren
- Neurogenetic Unit, Department of Molecular Medicine and Surgery, CMM, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Kristoffer Sahlholm
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Nilsson
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Petersson
- Neurogenetic Unit, Department of Molecular Medicine and Surgery, CMM, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
- The Ludwig Institute for Cancer Research, Stockholm Branch, Stockholm, Sweden
| | - Peter Århem
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- Neurogenetic Unit, Department of Molecular Medicine and Surgery, CMM, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Catharina Lavebratt
- Neurogenetic Unit, Department of Molecular Medicine and Surgery, CMM, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
41
|
Khanna R, Lee EJ, Papazian DM. Transient calnexin interaction confers long-term stability on folded K+ channel protein in the ER. J Cell Sci 2004; 117:2897-908. [PMID: 15161937 DOI: 10.1242/jcs.01141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently showed that an unglycosylated form of the Shaker potassium channel protein is retained in the endoplasmic reticulum (ER) and degraded by proteasomes in mammalian cells despite apparently normal folding and assembly. These results suggest that channel proteins with a native structure can be substrates for ER-associated degradation. We have now tested this hypothesis using the wild-type Shaker protein. Wild-type Shaker is degraded by cytoplasmic proteasomes when it is trapped in the ER and prevented from interacting with calnexin. Neither condition alone is sufficient to destabilize the protein. Proteasomal degradation of the wild-type protein is abolished when ER mannosidase I trimming of the core glycan is inhibited. Our results indicate that transient interaction with calnexin provides long-term protection from ER-associated degradation.
Collapse
Affiliation(s)
- Rajesh Khanna
- Department of Physiology and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1751, USA
| | | | | |
Collapse
|
42
|
Abstract
Mutations in over 70 genes now define biological pathways leading to epilepsy, an episodic dysrhythmia of the cerebral cortex marked by abnormal network synchronization. Some of the inherited errors destabilize neuronal signaling by inflicting primary disorders of membrane excitability and synaptic transmission, whereas others do so indirectly by perturbing critical control points that balance the developmental assembly of inhibitory and excitatory circuits. The genetic diversity is now sufficient to discern short- and long-range functional convergence of epileptogenic molecular pathways, reducing the broad spectrum of primary molecular defects to a few common processes regulating cortical synchronization. Synaptic inhibition appears to be the most frequent target; however, each gene mutation retains unique phenotypic features. This review selects exemplary members of several gene families to illustrate principal categories of the disease and trace the biological pathways to epileptogenesis in the developing brain.
Collapse
Affiliation(s)
- Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Varshney A, Mathew MK. A tale of two tails: cytosolic termini and K(+) channel function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:153-70. [PMID: 12887978 DOI: 10.1016/s0079-6107(03)00054-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The enormous variety of neuronal action potential waveforms can be ascribed, in large part, to the sculpting of their falling phases by currents through voltage-gated potassium channels. These proteins play several additional roles in other tissues such as the regulation of heartbeat and of insulin release from pancreatic cells as well as auditory signal processing in the cochlea. The functional channel is a tetramer with either six or two transmembrane segments per monomer. Selectivity filters, voltage sensors and gating elements have been mapped to residues within the transmembrane region. Cytoplasmic residues, which are accessible targets for signal transduction cascades and provide attractive means of regulation of channel activity, are now seen to be capable of modulating various aspects of channel function. Here we review structural studies on segments of the cytoplasmic tails of K(+) channels, as well as the range of modulatory activities of these tails.
Collapse
Affiliation(s)
- Anurag Varshney
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, 560 065 Bangalore, India
| | | |
Collapse
|
44
|
Ahmed SN, Bertorini TE, Narayanaswami P, Senthilkumar K. Clinical approach to a patient presenting with muscle stiffness. J Clin Neuromuscul Dis 2003; 4:150-160. [PMID: 19078707 DOI: 10.1097/00131402-200303000-00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Shameela N Ahmed
- Memphis, TN From the University of Tennessee, Memphis, Department of Neurology, Memphis, Tennessee; and Wesley Neurology Clinic, Memphis, Tennessee
| | | | | | | |
Collapse
|
45
|
Abstract
In the past decade, the genetic etiologies accounting for most cases of adult-onset dominant cerebellar ataxia have been discovered. This group of disorders, generally referred to as the spinocerebellar ataxias (SCAs), can now be classified by a simple genetic nosology, essentially a sequential list in which each new SCA is given a number. However, recent advances in the elucidation of SCA pathogenesis provide the opportunity to subclassify the disorders into three discrete groups based on pathogenesis: 1) the polyglutamine disorders, SCAs 1, 2, 3, 7, and 17, which result from proteins with toxic stretches of polyglutamine; 2) the channelopathies, SCA6 and episodic ataxia types 1 and 2 (EA1 and EA2), which result from disruption of calcium or potassium channel function; and 3) the gene expression disorders, SCAs 8, 10, and 12, which result from repeat expansions outside of coding regions that may quantitatively alter gene expression. SCAs 4, 5, 9, 11, 13-16, 19, 21, and 22 are of unknown etiology, and may or may not fit into one of these three groups. At present, most diagnostic and therapeutic strategies apply equally to all of the SCAs. Therapy specific for individual diseases or types of diseases is a realistic goal in the foreseeable future.
Collapse
Affiliation(s)
- Russell L Margolis
- Laboratory of Genetic Neurobiology, Division of Neurobiology, Department of Psychiatry and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
46
|
Episodic ataxia type 1 mutations in the human Kv1.1 potassium channel alter hKvbeta 1-induced N-type inactivation. J Neurosci 2002. [PMID: 12077175 DOI: 10.1523/jneurosci.22-12-04786.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder affecting both central and peripheral nerve function, causing attacks of imbalance and uncontrolled movements. Genetic linkage studies have identified mutations in the gene encoding the voltage-gated delayed rectifier potassium channel Kv1.1 as underlying EA1. The EA1 mutations E325D and V408A, residing near the cytoplasmic ends of S5 and S6, respectively, induce an unstable open state, resulting in an approximately 10-fold increase in deactivation rates compared with wild-type (WT) channels. Coexpression of EA1 mutations with human Kvbeta1 (hKvbeta1) subunits in Xenopus oocytes yielded channels with altered rapid N-type inactivation. Compared with WT channels, inactivation was approximately twofold slower for homomeric E325D or V408A channels and 1.5-fold slower for heteromeric channels composed of two WT and two E325D or V408A subunits. Recovery from inactivation was approximately 10-fold faster for homomeric E325D or V408A channels and threefold to fourfold faster for heteromeric WT and E325D or V408A channels compared with WT channels. Currents during successive pulses 3 msec in duration given at a rate of 40 kHz decayed e-fold in approximately four pulses for homomeric E325D or V408A and approximately 2.5 pulses for heteromeric channels compared with approximately one pulse for WT channels. These results show that channels containing E325D or V408A subunits, which destabilize the open state, increase the rate of recovery from inactivation. The slower onset and more rapid recovery of hKvbeta1-induced inactivation in channels containing these EA1 subunits may affect temporal integration of action potential firing rates.
Collapse
|
47
|
Abstract
Several neurological diseases-including neuromuscular disorders, movement disorders, migraine, and epilepsy-are caused by inherited mutations of ion channels. The list of these "channelopathies" is expanding rapidly, as is the phenotypic range associated with each channel. At present the best understood channelopathies are those that affect muscle-fibre excitability. These channelopathies produce a range of disorders which include: periodic paralysis, myotonias, malignant hyperthermia, and congenital myasthenic syndromes. By contrast, the mechanisms of diseases caused by mutations of ion channels that are expressed in neurons are less well understood. However, as for the muscle channelopathies, a striking feature is that many neuronal channelopathies cause paroxysmal symptoms. This review summarises the clinical features of the known neurological channelopathies, within the context of the functions of the individual ion channels.
Collapse
Affiliation(s)
- Dimitri M Kullmann
- Institute of Neurology, University College London, and the National Hospital for Neurology and Neurosurgery, London, UK.
| | | |
Collapse
|
48
|
Maylie B, Bissonnette E, Virk M, Adelman JP, Maylie JG. Episodic ataxia type 1 mutations in the human Kv1.1 potassium channel alter hKvbeta 1-induced N-type inactivation. J Neurosci 2002; 22:4786-93. [PMID: 12077175 PMCID: PMC6757728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder affecting both central and peripheral nerve function, causing attacks of imbalance and uncontrolled movements. Genetic linkage studies have identified mutations in the gene encoding the voltage-gated delayed rectifier potassium channel Kv1.1 as underlying EA1. The EA1 mutations E325D and V408A, residing near the cytoplasmic ends of S5 and S6, respectively, induce an unstable open state, resulting in an approximately 10-fold increase in deactivation rates compared with wild-type (WT) channels. Coexpression of EA1 mutations with human Kvbeta1 (hKvbeta1) subunits in Xenopus oocytes yielded channels with altered rapid N-type inactivation. Compared with WT channels, inactivation was approximately twofold slower for homomeric E325D or V408A channels and 1.5-fold slower for heteromeric channels composed of two WT and two E325D or V408A subunits. Recovery from inactivation was approximately 10-fold faster for homomeric E325D or V408A channels and threefold to fourfold faster for heteromeric WT and E325D or V408A channels compared with WT channels. Currents during successive pulses 3 msec in duration given at a rate of 40 kHz decayed e-fold in approximately four pulses for homomeric E325D or V408A and approximately 2.5 pulses for heteromeric channels compared with approximately one pulse for WT channels. These results show that channels containing E325D or V408A subunits, which destabilize the open state, increase the rate of recovery from inactivation. The slower onset and more rapid recovery of hKvbeta1-induced inactivation in channels containing these EA1 subunits may affect temporal integration of action potential firing rates.
Collapse
Affiliation(s)
- Brooke Maylie
- Department of Obstetrics and Gynecology and Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|