1
|
Giovannelli G, Giacomazzi G, Grosemans H, Sampaolesi M. Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limb-girdle muscular dystrophy type 2E. Muscle Nerve 2018; 58:133-144. [PMID: 29476695 PMCID: PMC6099247 DOI: 10.1002/mus.26112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. METHODS In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). RESULTS We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. DISCUSSION The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Gaia Giovannelli
- Department of Neurosciences and Imaging“G. d'Annunzio” UniversityChietiItaly
- Translational Cardiomyology, Stem Cell Research InstituteCatholic University of LeuvenHerestraat 49 O&N4–Bus 814LeuvenB‐3000Belgium
| | - Giorgia Giacomazzi
- Translational Cardiomyology, Stem Cell Research InstituteCatholic University of LeuvenHerestraat 49 O&N4–Bus 814LeuvenB‐3000Belgium
| | - Hanne Grosemans
- Translational Cardiomyology, Stem Cell Research InstituteCatholic University of LeuvenHerestraat 49 O&N4–Bus 814LeuvenB‐3000Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology, Stem Cell Research InstituteCatholic University of LeuvenHerestraat 49 O&N4–Bus 814LeuvenB‐3000Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic MedicineUniversity of PaviaPaviaItaly
| |
Collapse
|
2
|
Vandenboom R. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation. Compr Physiol 2016; 7:171-212. [PMID: 28135003 DOI: 10.1002/cphy.c150044] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The striated muscle sarcomere is a highly organized and complex enzymatic and structural organelle. Evolutionary pressures have played a vital role in determining the structure-function relationship of each protein within the sarcomere. A key part of this multimeric assembly is the light chain-binding domain (LCBD) of the myosin II motor molecule. This elongated "beam" functions as a biological lever, amplifying small interdomain movements within the myosin head into piconewton forces and nanometer displacements against the thin filament during the cross-bridge cycle. The LCBD contains two subunits known as the essential and regulatory myosin light chains (ELC and RLC, respectively). Isoformic differences in these respective species provide molecular diversity and, in addition, sites for phosphorylation of serine residues, a highly conserved feature of striated muscle systems. Work on permeabilized skeletal fibers and thick filament systems shows that the skeletal myosin light chain kinase catalyzed phosphorylation of the RLC alters the "interacting head motif" of myosin motor heads on the thick filament surface, with myriad consequences for muscle biology. At rest, structure-function changes may upregulate actomyosin ATPase activity of phosphorylated cross-bridges. During activation, these same changes may increase the Ca2+ sensitivity of force development to enhance force, work, and power output, outcomes known as "potentiation." Thus, although other mechanisms may contribute, RLC phosphorylation may represent a form of thick filament activation that provides a "molecular memory" of contraction. The clinical significance of these RLC phosphorylation mediated alterations to contractile performance of various striated muscle systems are just beginning to be understood. © 2017 American Physiological Society. Compr Physiol 7:171-212, 2017.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| |
Collapse
|
3
|
von Wegner F, Schurmann S, Fink RHA, Vogel M, Friedrich O. Motor protein function in skeletal muscle-a multiple scale approach to contractility. IEEE TRANSACTIONS ON MEDICAL IMAGING 2009; 28:1632-1642. [PMID: 19574163 DOI: 10.1109/tmi.2009.2026171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present an approach to skeletal muscle contractility and its regulation over different scales ranging from biomechanical studies in intact muscle fibers down to the motility and interaction of single motor protein molecules. At each scale, shortening velocities as a measure for weak cross-bridge cycling rates are extracted and compared. Experimental approaches include transmitted light microscopy, second harmonic generation imaging of contracting myofibrils, and fluorescence microscopy of single molecule motility. Each method yields image sequences that are analyzed with automated image processing algorithms to extract the contraction velocity. Using this approach, we show how to isolate the contribution of the motor proteins actin and myosin and their modulation by regulatory proteins from the concerted action of electro-mechanical activation on a more complex cellular scale. The advantage of this approach is that averaged contraction velocities can be determined on the different scales ranging from isolated motor proteins to sarcomere levels in myofibrils and myofibril arrays within the cellular architecture. Our results show that maximum shortening velocities during in situ electrical activation of sarcomere contraction in intact single muscle cells can substantially deviate from sliding velocities obtained in oriented in vitro motility assays of isolated motor proteins showing that biophysical contraction kinetics not simply translate linearly between contractility scales. To adequately resolve the very fast initial mechanical activation kinetics of shortening at each scale, it was necessary to implement high-speed imaging techniques. In the case of intact fibers and single molecule motility, we achieved a major increase in temporal resolution up to frame rates of 200-1000 fps using CMOS image sensor technology. The data we obtained at this unprecedented temporal resolution and the parameters extracted can be used to validate results obtained from computational models of motor protein interaction and skeletal muscle contractility in health and muscle disease. Our approach is feasible to explain the possible underlying mechanisms that contribute to different shortening velocities at different scales and complexities.
Collapse
Affiliation(s)
- Frederic von Wegner
- Medical Biophysics Group, Institute of Physiology, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
4
|
Smith DA, Geeves MA, Sleep J, Mijailovich SM. Towards a unified theory of muscle contraction. I: foundations. Ann Biomed Eng 2008; 36:1624-40. [PMID: 18642081 DOI: 10.1007/s10439-008-9536-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
Molecular models of contractility in striated muscle require an integrated description of the action of myosin motors, firstly in the filament lattice of the half-sarcomere. Existing models do not adequately reflect the biochemistry of the myosin motor and its sarcomeric environment. The biochemical actin-myosin-ATP cycle is reviewed, and we propose a model cycle with two 4- to 5-nm working strokes, where phosphate is released slowly after the first stroke. A smaller third stroke is associated with ATP-induced detachment from actin. A comprehensive model is defined by applying such a cycle to all myosin-S1 heads in the half-sarcomere, subject to generic constraints as follows: (a) all strain-dependent kinetics required for actin-myosin interactions are derived from reaction-energy landscapes and applied to dimeric myosin, (b) actin-myosin interactions in the half-sarcomere are controlled by matching rules derived from the structure of the filaments, so that each dimer may be associated with a target zone of three actin sites, and (c) the myosin and actin filaments are treated as elastically extensible. Numerical predictions for such a model are presented in the following paper.
Collapse
Affiliation(s)
- D A Smith
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| | | | | | | |
Collapse
|
5
|
Measuring mechanical properties, including isotonic fatigue, of fast and slow MLC/mIgf-1 transgenic skeletal muscle. Ann Biomed Eng 2008; 36:1281-90. [PMID: 18415017 DOI: 10.1007/s10439-008-9496-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 04/02/2008] [Indexed: 10/22/2022]
Abstract
Contractile properties of fast-twitch (EDL) and slow-twitch (soleus) skeletal muscles were measured in MLC/mIgf-1 transgenic and wild-type mice. MLC/mIgf-1 mice express the local factor mIgf-1 under the transcriptional control of MLC promoter, selectively activated in fast-twitch muscle fibers. Isolated muscles were studied in vitro in both isometric and isotonic conditions. We used a rapid "ad hoc" testing protocol that measured, in a single procedure, contraction time, tetanic force, Hill's (F-v) curve, power curve and isotonic muscle fatigue. Transgenic soleus muscles did not differ from wild-type with regard to any measured variable. In contrast, transgenic EDL muscles displayed a hypertrophic phenotype, with a mass increase of 29.2% compared to wild-type. Absolute tetanic force increased by 21.5% and absolute maximum power by 34.1%. However, when normalized to muscle cross-sectional area and mass, specific force and normalized power were the same in transgenic and wild-type EDL muscles, revealing that mIgf-1 expression induces a functional hypertrophy without altering fibrotic tissue accumulation. Isotonic fatigue behavior did not differ between transgenic and wild-type muscles, suggesting that the ability of mIgf-1 transgenic muscle to generate a considerable higher absolute power did not affect its resistance to fatigue.
Collapse
|
6
|
Zhang W, Chung CS, Kovács SJ. Derivation and Left Ventricular Pressure Phase Plane Based Validation of a Time Dependent Isometric Crossbridge Attachment Model. ACTA ACUST UNITED AC 2006; 6:132-44. [PMID: 17111228 DOI: 10.1007/s10558-006-9020-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Huxley's crossbridge attachment model predicts tension (contractile force) development in isometric (fixed length) cells using constant attachment and detachment rates. Alternative models incorporating time-varying calcium concentrations are complex (coupled linear differential equations) and use time-dependent inputs (calcium, elastance, etc.) to model multiple states. We hypothesize that by incorporating the known significant rise and fall in intracellular calcium, via either an asymmetric damped function or a symmetric Gaussian function, into a time-varying, rather than constant, attachment rate function, the Huxley model prediction for tension (i.e., chamber pressure) in isovolumic (isometric) non-ejecting beats will improve. To test the hypothesis that the time-dependent model-predicted (TDM) pressure fits the in vivo isometric (isovolumic) LV pressure phase-plane (PPP) contour better than the constant attachment rate predicted pressure, we used the TDM to fit non-ejecting, premature ventricular contraction (PVC) PPP contours in 6 subjects. Conventional model fit was poor (relative error 74.0%+/-12.5%), while the asymmetric damped TDM rate function provided slight improvement relative to the conventional time-independent model (relative error 55.4%+/-9.8%). The symmetric Gaussian rate function TDM provided the best PPP fit to all non-ejecting beats tested (relative error 19.8%+/-4.8%). We conclude that approximating the lumped attachment rate via a time-varying, rather than constant, rate function generates a physiologically viable model of crossbridge behavior. The PPP provides the optimal arena for alternate mathematical formulation assessment of LVP contour prediction by time-dependent attachment rate functions and facilitates modeling of cardiac contraction and relaxation.
Collapse
Affiliation(s)
- Wei Zhang
- Cardiovascular Biophysics Laboratory, Cardiovascular Division, Washington University School of Medicine, 660 South Euclid Ave, Box 8086, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
7
|
Vandenboom R, Weihe EK, Hannon JD. Dynamics of crossbridge-mediated activation in the heart. J Muscle Res Cell Motil 2005; 26:247-57. [PMID: 16322913 DOI: 10.1007/s10974-005-9042-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Both intracellular calcium and strongly bound crossbridges contribute to thin filament activation in the heart, but the magnitude and the duration of the effects due to crossbridges are not well characterized. In this study, crossbridge attachment was altered in tetanized ferret papillary muscles and changes in the rate constant for the recovery of force (k (TR)) and unloaded shortening velocity (V (U)) were measured to track thin filament activation. k (TR) decreased as the time the muscles spent at low levels of crossbridge attachment (shortening deactivation) increased (0.02 s=17.9+/-2.3 s(-1), 0.32 s=3.3+/-0.4 s(-1); half-time=0.052 s; P<0.05). Furthermore, the deactivation was reversible and k (TR) recovered when muscles were allowed to regenerate force isometrically during the same tetanus. V (U) also decreased when the preceding load was lower (isometric load, V (U)=1.93+/-0.26 muscle lengths/s (ML/s); zero load, V (U)=0.93+/-0.14 ML/s, P<0.05) and as the length of time the muscle spent unloaded increased (>60% decline after 0.3 s). In addition, V (U) recovered when the muscle was allowed to regenerate force isometrically. These results indicate that crossbridge attachment increases thin filament activation as reflected in measurements of V (U) and k (TR). This 'extra' activation by crossbridges appears to be a dynamic process that decays during unloaded shortening and redevelops during isometric contraction.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
8
|
Burton K, White H, Sleep J. Kinetics of muscle contraction and actomyosin NTP hydrolysis from rabbit using a series of metal-nucleotide substrates. J Physiol 2004; 563:689-711. [PMID: 15611022 PMCID: PMC1665623 DOI: 10.1113/jphysiol.2004.078907] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mechanical properties of skinned single fibres from rabbit psoas muscle have been correlated with biochemical steps in the cross-bridge cycle using a series of metal-nucleotide (Me.NTP) substrates (Mn(2+) or Ni(2+) substituted for Mg(2+); CTP or ITP for ATP) and inorganic phosphate. Measurements were made of the rate of force redevelopment following (1) slack tests in which force recovery followed a period of unloaded shortening, or (2) ramp shortening at low load terminated by a rapid restretch. The form and rate of force recovery were described as the sum of two exponential functions. Actomyosin-Subfragment 1 (acto-S1) Me.NTPase activity and Me.NDP release were monitored under the same conditions as the fibre experiments. Mn.ATP and Mg.CTP both supported contraction well and maintained good striation order. Relative to Mg.ATP, they increased the rates and Me.NTPase activity of cross-linked acto-S1 and the fast component of a double-exponential fit to force recovery by approximately 50% and 10-35%, respectively, while shortening velocity was moderately reduced (by 20-30%). Phosphate also increased the rate of the fast component of force recovery. In contrast to Mn(2+) and CTP, Ni.ATP and Mg.ITP did not support contraction well and caused striations to become disordered. The rates of force recovery and Me.NTPase activity were less than for Mg.ATP (by 40-80% and 50-85%, respectively), while shortening velocity was greatly reduced (by approximately 80%). Dissociation of ADP from acto-S1 was little affected by Ni(2+), suggesting that Ni.ADP dissociation does not account for the large reduction in shortening velocity. The different effects of Ni(2+) and Mn(2+) were also observed during brief activations elicited by photolytic release of ATP. These results confirm that at least one rate-limiting step is shared by acto-S1 ATPase activity and force development. Our results are consistent with a dual rate-limitation model in which the rate of force recovery is limited by both NTP cleavage and phosphate release, with their relative contributions and apparent rate constants influenced by an intervening rapid force-generating transition.
Collapse
Affiliation(s)
- Kevin Burton
- The Randall Centre, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | | |
Collapse
|
9
|
Abstract
The basis for all biological movement is the conversion of chemical energy to mechanical energy by different classes of motor proteins. In skeletal muscle this motor protein is myosin II, a thick filament-based molecule that harnesses the free energy furnished by ATP hydrolysis to perform mechanical work against actin proteins of the thin filament. The cyclic attachment and detachment of myosin with actin that generates muscle force and shortening is Ca2+ regulated. Intense muscle activity may lead to metabolically induced inhibitions to the function of these myofibrillar proteins when Ca2+ regulation is normal, a phenomenon referred to as myofibrillar fatigue. Studies using single muscle fibers at room temperature or lower have shown that myosin motor function is inhibited by the accumulation of the ATP-hydrolysis products ADP, Pi, and H+ as well as by excess generation of reactive oxygen species (ROS). These metabolically induced impairments to myosin motor function reduce muscle work and power output by impairing maximal Ca2+ activated force, the Ca2+ sensitivity of force, and/or unloaded shortening velocity. Based on uncertainties about their inhibitory effect on muscle function at more physiological temperatures, the influence of ATP-hydrolysis product and ROS accumulation on myofibrillar protein function of human skeletal muscle remains to be clarified. Key words: actin, myosin, muscle contraction
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, 48190, USA
| |
Collapse
|