1
|
Alvarez JAE, Jafri MS, Ullah A. Using a Failing Human Ventricular Cardiomyocyte Model to Re-Evaluate Ca 2+ Cycling, Voltage Dependence, and Spark Characteristics. Biomolecules 2024; 14:1371. [PMID: 39595549 PMCID: PMC11591732 DOI: 10.3390/biom14111371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Previous studies have observed alterations in excitation-contraction (EC) coupling during end-stage heart failure that include action potential and calcium (Ca2+) transient prolongation and a reduction of the Ca2+ transient amplitude. Underlying these phenomena are the downregulation of potassium (K+) currents, downregulation of the sarcoplasmic reticulum Ca2+ ATPase (SERCA), increase Ca2+ sensitivity of the ryanodine receptor, and the upregulation of the sodium-calcium (Na=-Ca2+) exchanger. However, in human heart failure (HF), debate continues about the relative contributions of the changes in calcium handling vs. the changes in the membrane currents. To understand the consequences of the above changes, they are incorporated into a computational human ventricular myocyte HF model that can explore the contributions of the spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). The reduction of transient outward K+ current (Ito) is the main membrane current contributor to the decrease in RyR2 open probability and L-type calcium channel (LCC) density which emphasizes its importance to phase 1 of the action potential (AP) shape and duration (APD). During current-clamp conditions, RyR2 hyperphosphorylation exhibits the least amount of Ca2+ release from the SR into the cytosol and SR Ca2+ fractional release during a dynamic slow-rapid-slow (0.5-2.5-0.5 Hz) pacing, but it displays the most abundant and more lasting Ca2+ sparks two-fold longer than a normal cell. On the other hand, under voltage-clamp conditions, HF by decreased SERCA and upregulated INCX show the least SR Ca2+ uptake and EC coupling gain, as compared to HF by hyperphosphorylated RyR2s. Overall, this study demonstrates that the (a) combined effect of SERCA and NCX, and the (b) RyR2 dysfunction, along with the downregulation of the cardiomyocyte's potassium currents, could substantially contribute to Ca2+ mishandling at the spark level that leads to heart failure.
Collapse
Affiliation(s)
- Jerome Anthony E. Alvarez
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC 20375, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
2
|
Reavette RM, Ramakrishnan A, Rowland EM, Tang MX, Mayet J, Weinberg PD. Detecting heart failure from B-mode ultrasound characterization of arterial pulse waves. Am J Physiol Heart Circ Physiol 2024; 327:H80-H88. [PMID: 38787379 PMCID: PMC11398869 DOI: 10.1152/ajpheart.00219.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
This study investigated the sensitivity and specificity of identifying heart failure with reduced ejection fraction (HFrEF) from measurements of the intensity and timing of arterial pulse waves. Previously validated methods combining ultrafast B-mode ultrasound, plane-wave transmission, singular value decomposition (SVD), and speckle tracking were used to characterize the compression and decompression ("S" and "D") waves occurring in early and late systole, respectively, in the carotid arteries of outpatients with left ventricular ejection fraction (LVEF) < 40%, determined by echocardiography, and signs and symptoms of heart failure, or with LVEF ≥ 50% and no signs or symptoms of heart failure. On average, the HFrEF group had significantly reduced S-wave intensity and energy, a greater interval between the R wave of the ECG and the S wave, a reduced interval between the S and D waves, and an increase in the S-wave shift (SWS), a novel metric that characterizes the shift in timing of the S wave away from the R wave of the ECG and toward the D wave (all P < 0.01). Receiver operating characteristics (ROCs) were used to quantify for the first time how well wave metrics classified individual participants. S-wave intensity and energy gave areas under the ROC of 0.76-0.83, the ECG-S-wave interval gave 0.85-0.88, and the S-wave shift gave 0.88-0.92. Hence the methods, which are simple to use and do not require complex interpretation, provide sensitive and specific identification of HFrEF. If similar results were obtained in primary care, they could form the basis of techniques for heart failure screening.NEW & NOTEWORTHY We show that heart failure with reduced ejection fraction can be detected with excellent sensitivity and specificity in individual patients by using B-mode ultrasound to detect altered pulse wave intensity and timing in the carotid artery.
Collapse
Affiliation(s)
- Ryan M Reavette
- Department of Bioengineering, Imperial College, London, United Kingdom
| | - Anenta Ramakrishnan
- Department of Bioengineering, Imperial College, London, United Kingdom
- Department of Cardiology, The Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ethan M Rowland
- Department of Bioengineering, Imperial College, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College, London, United Kingdom
| | - Jamil Mayet
- Department of Cardiology, The Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Peter D Weinberg
- Department of Bioengineering, Imperial College, London, United Kingdom
| |
Collapse
|
3
|
Ahmed F, Kahlon T, Mohamed TMA, Ghafghazi S, Settles D. Literature Review: Pathophysiology of Heart Failure with Preserved Ejection Fraction. Curr Probl Cardiol 2023; 48:101745. [PMID: 37087081 DOI: 10.1016/j.cpcardiol.2023.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Heart failure with preserved ejection fraction is a growing public health concern, a disease with poor health outcomes, and is showing increased prevalence globally. This review paper explores the literature with a focus on the pathophysiology and microbiology of preserved ejection fraction heart failure while drawing connections between preserved and reduced ejection fraction states. The discussion teases out the cellular level changes that affect the overall dysfunction of the cardiac tissue, including the clinical manifestations, microbiological changes (endothelial cells, fibroblasts, cardiomyocytes, and excitation-contraction coupling), and the burden of structural diastolic dysfunction. The goal of this review is to summarize the pathophysiological disease state of heart failure with preserved ejection fraction to enhance understanding, knowledge, current treatment models of this pathology.
Collapse
Affiliation(s)
- Faizan Ahmed
- Department of Anesthesiology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| | - Tani Kahlon
- Department of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tamer M A Mohamed
- Department of Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shahab Ghafghazi
- Department of Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Dana Settles
- Department of Cardiothoracic Anesthesia, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Naumenko N, Mutikainen M, Holappa L, Ruas JL, Tuomainen T, Tavi P. PGC-1α deficiency reveals sex-specific links between cardiac energy metabolism and EC-coupling during development of heart failure in mice. Cardiovasc Res 2021; 118:1520-1534. [PMID: 34086875 PMCID: PMC9074965 DOI: 10.1093/cvr/cvab188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Aims Biological sex has fundamental effects on mammalian heart physiology and pathogenesis. While it has been established that female sex is a protective factor against most cardiovascular diseases (CVDs), this beneficial effect may involve pathways associated with cardiac energy metabolism. Our aim was to elucidate the role of transcriptional coactivator PGC-1α in sex dimorphism of heart failure (HF) development. Methods and results Here, we show that mice deficient in cardiac expression of the peroxisome proliferator-activated receptor gamma (PPAR-γ) coactivator-1α (PGC-1α) develop dilated HF associated with changes in aerobic and anaerobic metabolism, calcium handling, cell structure, electrophysiology, as well as gene expression. These cardiac changes occur in both sexes, but female mice develop an earlier and more severe structural and functional phenotype associated with dyssynchronous local calcium release resulting from disruption of t-tubular structures of the cardiomyocytes. Conclusions These data reveal that the integrity of the subcellular Ca2+ release and uptake machinery is dependent on energy metabolism and that female hearts are more prone to suffer from contractile dysfunction in conditions with compromised production of cellular energy. Furthermore, these findings suggest that PGC-1α is a central mediator of sex-specific differences in heart function and CVD susceptibility.
Collapse
Affiliation(s)
- Nikolay Naumenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maija Mutikainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lari Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
5
|
Stress-driven cardiac calcium mishandling via a kinase-to-kinase crosstalk. Pflugers Arch 2021; 473:363-375. [PMID: 33590296 PMCID: PMC7940337 DOI: 10.1007/s00424-021-02533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
Calcium homeostasis in the cardiomyocyte is critical to the regulation of normal cardiac function. Abnormal calcium dynamics such as altered uptake by the sarcoplasmic reticulum (SR) Ca2+-ATPase and increased diastolic SR calcium leak are involved in the development of maladaptive cardiac remodeling under pathological conditions. Ca2+/calmodulin-dependent protein kinase II-δ (CaMKIIδ) is a well-recognized key molecule in calcium dysregulation in cardiomyocytes. Elevated cellular stress is known as a common feature during pathological remodeling, and c-jun N-terminal kinase (JNK) is an important stress kinase that is activated in response to intrinsic and extrinsic stress stimuli. Our lab recently identified specific actions of JNK isoform 2 (JNK2) in CaMKIIδ expression, activation, and CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. This review focuses on the current understanding of cardiac SR calcium handling under physiological and pathological conditions as well as the newly identified contribution of the stress kinase JNK2 in CaMKIIδ-dependent SR Ca2+ abnormal mishandling. The new findings identifying dual roles of JNK2 in CaMKIIδ expression and activation are also discussed in this review.
Collapse
|
6
|
Bull Melsom C, Cosson MV, Ørstavik Ø, Lai NC, Hammond HK, Osnes JB, Skomedal T, Nikolaev V, Levy FO, Krobert KA. Constitutive inhibitory G protein activity upon adenylyl cyclase-dependent cardiac contractility is limited to adenylyl cyclase type 6. PLoS One 2019; 14:e0218110. [PMID: 31173603 PMCID: PMC6556981 DOI: 10.1371/journal.pone.0218110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE We previously reported that inhibitory G protein (Gi) exerts intrinsic receptor-independent inhibitory activity upon adenylyl cyclase (AC) that regulates contractile force in rat ventricle. The two major subtypes of AC in the heart are AC5 and AC6. The aim of this study was to determine if this intrinsic Gi inhibition regulating contractile force is AC subtype selective. METHODS Wild-type (WT), AC5 knockout (AC5KO) and AC6 knockout (AC6KO) mice were injected with pertussis toxin (PTX) to inactivate Gi or saline (control).Three days after injection, we evaluated the effect of simultaneous inhibition of phosphodiesterases (PDE) 3 and 4 with cilostamide and rolipram respectively upon in vivo and ex vivo left ventricular (LV) contractile function. Also, changes in the level of cAMP were measured in left ventricular homogenates and at the membrane surface in cardiomyocytes obtained from the same mouse strains expressing the cAMP sensor pmEPAC1 using fluorescence resonance energy transfer (FRET). RESULTS Simultaneous PDE3 and PDE4 inhibition increased in vivo and ex vivo rate of LV contractility only in PTX-treated WT and AC5KO mice but not in saline-treated controls. Likewise, Simultaneous PDE3 and PDE4 inhibition elevated total cAMP levels in PTX-treated WT and AC5KO mice compared to saline-treated controls. In contrast, simultaneous PDE3 and PDE4 inhibition did not increase in vivo or ex vivo rate of LV contractility or cAMP levels in PTX-treated AC6KO mice compared to saline-treated controls. Using FRET analysis, an increase of cAMP level was detected at the membrane of cardiomyocytes after simultaneous PDE3 and PDE4 inhibition in WT and AC5KO but not AC6KO. These FRET data are consistent with the functional data indicating that AC6 activity and PTX inhibition of Gi is necessary for simultaneous inhibition of PDE3 and PDE4 to elicit an increase in contractility. CONCLUSIONS Together, these data suggest that AC6 is tightly regulated by intrinsic receptor-independent Gi activity, thus providing a mechanism for maintaining low basal cAMP levels in the functional compartment that regulates contractility.
Collapse
Affiliation(s)
- Caroline Bull Melsom
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | - Marie-Victoire Cosson
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | - Øivind Ørstavik
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | - Ngai Chin Lai
- Department of Veterans Affairs, San Diego Healthcare System, San Diego,
California, United States of America
- Department of Medicine, University of California, San Diego, California,
United States of America
| | - H. Kirk Hammond
- Department of Veterans Affairs, San Diego Healthcare System, San Diego,
California, United States of America
- Department of Medicine, University of California, San Diego, California,
United States of America
| | - Jan-Bjørn Osnes
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | - Tor Skomedal
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | | | - Finn Olav Levy
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | - Kurt Allen Krobert
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| |
Collapse
|
7
|
Cosson MV, Hiis HG, Moltzau LR, Levy FO, Krobert KA. Knockout of adenylyl cyclase isoform 5 or 6 differentially modifies the β 1-adrenoceptor-mediated inotropic response. J Mol Cell Cardiol 2019; 131:132-145. [PMID: 31009605 DOI: 10.1016/j.yjmcc.2019.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Although only β2-adrenergic receptors (βAR) dually couple with stimulatory G protein (Gs) and inhibitory G protein (Gi), inactivation of Gi enhances both β1AR and β2AR responsiveness. We hypothesize that Gi restrains spontaneous adenylyl cyclase (AC) activity independent of receptor activation. Subcellular localization of the AC5/6 subtypes varies contributing to the compartmentation of βAR signaling. The primary objectives were to determine: (1) if β1AR-mediated inotropic responses were dependent upon either AC5 or AC6; (2) if intrinsic Gi inhibition is AC subtype selective and (3) the role of phosphodiesterases (PDE) 3/4 to regulate β1AR responsiveness. β1AR-mediated increases in contractile force and cAMP accumulation in cardiomyocytes were measured from wild type, AC5 and AC6 knockout (KO) mice, with or without pertussis toxin (PTX) pretreatment to inactivate Gi and/or after selective inhibition of PDEs 3/4. Noradrenaline potency at β1ARs was increased in AC6 KO. PDE4 inhibition increased noradrenaline potency in wild type and AC5 KO, but not AC6 KO. PTX increased noradrenaline potency only in wild type but increased the maximal β1AR response in all mouse strains. PDE3 inhibition increased noradrenaline potency only in AC5 KO that was treated prior with PTX. β1AR-evoked cAMP accumulation was increased more by PDE4 inhibition than PDE3 inhibition in wild type and AC5 KO that was amplified by Gi inhibition. These data indicate that β1AR-mediated inotropic responses are not dependent upon either AC5 or AC6 alone. Inactivation of Gi enhanced β1AR-mediated inotropic responses despite not coupling to Gi, consistent with Gi exerting a tonic receptor independent inhibition upon AC5/6. PDE4 seems the primary regulator of β1AR signaling through AC6 in wild type. AC6 KO results in a reorganization of β1AR compartmentation characterized by signaling through AC5 regulated by Gi, PDE3 and PDE4 that maintains normal contractile function.
Collapse
Affiliation(s)
- Marie-Victoire Cosson
- Department of Pharmacology and Center for Heart Failure Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Halvard Gautefall Hiis
- Department of Pharmacology and Center for Heart Failure Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lise Román Moltzau
- Department of Pharmacology and Center for Heart Failure Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Finn Olav Levy
- Department of Pharmacology and Center for Heart Failure Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Kurt Allen Krobert
- Department of Pharmacology and Center for Heart Failure Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Tuomainen T, Tavi P. The role of cardiac energy metabolism in cardiac hypertrophy and failure. Exp Cell Res 2017; 360:12-18. [DOI: 10.1016/j.yexcr.2017.03.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
|
9
|
Gloschat CR, Koppel AC, Aras KK, Brennan JA, Holzem KM, Efimov IR. Arrhythmogenic and metabolic remodelling of failing human heart. J Physiol 2016; 594:3963-80. [PMID: 27019074 DOI: 10.1113/jp271992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/21/2016] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a major cause of morbidity and mortality worldwide. The global burden of HF continues to rise, with prevalence rates estimated at 1-2% and incidence approaching 5-10 per 1000 persons annually. The complex pathophysiology of HF impacts virtually all aspects of normal cardiac function - from structure and mechanics to metabolism and electrophysiology - leading to impaired mechanical contraction and sudden cardiac death. Pharmacotherapy and device therapy are the primary methods of treating HF, but neither is able to stop or reverse disease progression. Thus, there is an acute need to translate basic research into improved HF therapy. Animal model investigations are a critical component of HF research. However, the translation from cellular and animal models to the bedside is hampered by significant differences between species and among physiological scales. Our studies over the last 8 years show that hypotheses generated in animal models need to be validated in human in vitro models. Importantly, however, human heart investigations can establish translational platforms for safety and efficacy studies before embarking on costly and risky clinical trials. This review summarizes recent developments in human HF investigations of electrophysiology remodelling, metabolic remodelling, and β-adrenergic remodelling and discusses promising new technologies for HF research.
Collapse
Affiliation(s)
- C R Gloschat
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - A C Koppel
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - K K Aras
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - J A Brennan
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - K M Holzem
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - I R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Zhao XY, Hu SJ, Li J, Mou Y, Bian K, Sun J, Zhu ZH. rAAV-asPLB transfer attenuates abnormal sarcoplasmic reticulum Ca2+-ATPase activity and cardiac dysfunction in rats with myocardial infarction. Eur J Heart Fail 2014; 10:47-54. [PMID: 18096433 DOI: 10.1016/j.ejheart.2007.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 08/22/2007] [Accepted: 10/19/2007] [Indexed: 11/16/2022] Open
Affiliation(s)
- Xiao-Yan Zhao
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University; 79 Qingchun Road Hangzhou 310003 China
| | - Shen-Jiang Hu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University; 79 Qingchun Road Hangzhou 310003 China
- E-Institute of Shanghai Universities, Division of Nitric Oxide and Inflammatory Medicine; China
| | - Jiang Li
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University; 79 Qingchun Road Hangzhou 310003 China
| | - Yun Mou
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University; 79 Qingchun Road Hangzhou 310003 China
| | - Ka Bian
- Department of Integrative Biology and Pharmacology; The University of Texas-Houston Medical School; 6431 Fannin Houston TX 77030 USA
- E-Institute of Shanghai Universities, Division of Nitric Oxide and Inflammatory Medicine; China
| | - Jian Sun
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University; 79 Qingchun Road Hangzhou 310003 China
| | - Zhao-Hui Zhu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University; 79 Qingchun Road Hangzhou 310003 China
| |
Collapse
|
11
|
Swain JD, Fargnoli AS, Katz MG, Tomasulo CE, Sumaroka M, Richardville KC, Koch WJ, Rabinowitz JE, Bridges CR. MCARD-mediated gene transfer of GRK2 inhibitor in ovine model of acute myocardial infarction. J Cardiovasc Transl Res 2013; 6:253-62. [PMID: 23208013 PMCID: PMC3695486 DOI: 10.1007/s12265-012-9418-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/15/2012] [Indexed: 01/08/2023]
Abstract
β-Adrenergic receptor (βAR) dysfunction in acute myocardial infarction (MI) is associated with elevated levels of the G-protein-coupled receptor kinase-2 (GRK2), which plays a key role in heart failure progression. Inhibition of GRK2 via expression of a peptide βARKct transferred by molecular cardiac surgery with recirculating delivery (MCARD) may be a promising intervention. Five sheep underwent scAAV6-mediated MCARD delivery of βARKct, and five received no treatment (control). After a 3-week period, the branch of the circumflex artery (OM1) was ligated. Quantitative PCR data showed intense βARKct expression in the left ventricle (LV). Circumferential fractional shortening was 23.4 ± 7.1 % (baseline) vs. -2.9 ± 5.2 % (p < 0.05) in the control at 10 weeks. In the MCARD-βARKct group, this parameter was close to baseline. The same trend was observed with LV wall thickening. Cardiac index fully recovered in the MCARD-βARKct group. LV end-diastolic volume and LV end-diastolic pressure did not differ in both groups. MCARD-mediated βARKct gene expression results in preservation of regional and global systolic function after acute MI without arresting progressive ventricular remodeling.
Collapse
Affiliation(s)
- JaBaris D. Swain
- Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
| | - Anthony S. Fargnoli
- Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
- Sanger Heart and Vascular Institute, Cannon Research Center, Carolinas HealthCare System, Charlotte, North Carolina
| | - Michael G. Katz
- Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
- Sanger Heart and Vascular Institute, Cannon Research Center, Carolinas HealthCare System, Charlotte, North Carolina
| | - Catherine E. Tomasulo
- Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
| | - Marina Sumaroka
- Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
| | - Kyle C. Richardville
- Sanger Heart and Vascular Institute, Cannon Research Center, Carolinas HealthCare System, Charlotte, North Carolina
| | - Walter J. Koch
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph E. Rabinowitz
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles R. Bridges
- Sanger Heart and Vascular Institute, Cannon Research Center, Carolinas HealthCare System, Charlotte, North Carolina
| |
Collapse
|
12
|
Altered calsequestrin glycan processing is common to diverse models of canine heart failure. Mol Cell Biochem 2013; 377:11-21. [PMID: 23456435 DOI: 10.1007/s11010-013-1560-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/09/2013] [Indexed: 01/26/2023]
Abstract
Calsequestrin-2 (CSQ2) is a resident glycoprotein of junctional sarcoplasmic reticulum that functions in the regulation of SR Ca(2+) release. CSQ2 is biosynthesized in rough ER around cardiomyocyte nuclei and then traffics transversely across SR subcompartments. During biosynthesis, CSQ2 undergoes N-linked glycosylation and phosphorylation by protein kinase CK2. In mammalian heart, CSQ2 molecules subsequently undergo extensive mannose trimming by ER mannosidase(s), a posttranslational process that often regulates protein breakdown. We analyzed the intact purified CSQ2 from mongrel canine heart tissue by electrospray mass spectrometry. The average molecular mass of CSQ2 in normal mongrel dogs was 46,306 ± 41 Da, corresponding to glycan trimming of 3-5 mannoses, depending upon the phosphate content. We tested whether CSQ2 glycan structures would be altered in heart tissue from mongrel dogs induced into heart failure (HF) by two very different experimental treatments, rapid ventricular pacing or repeated coronary microembolizations. Similarly dramatic changes in mannose trimming were found in both types of induced HF, despite the different cardiomyopathies producing the failure. Unique to all samples analyzed from HF dog hearts, 20-40 % of all CSQ2 contained glycans that had minimal mannose trimming (Man9,8). Analyses of tissue samples showed decreases in CSQ2 protein levels per unit levels of mRNA for tachypaced heart tissue, also indicative of altered turnover. Quantitative immunofluorescence microscopy of frozen tissue sections suggested that no changes in CSQ2 levels occurred across the width of the cell. We conclude that altered processing of CSQ2 may be an adaptive response to the myocardium under stresses that are capable of inducing heart failure.
Collapse
|
13
|
Furieri LB, Fioresi M, Junior RFR, Bartolomé MV, Fernandes AA, Cachofeiro V, Lahera V, Salaices M, Stefanon I, Vassallo DV. Exposure to low mercury concentration in vivo impairs myocardial contractile function. Toxicol Appl Pharmacol 2011; 255:193-9. [PMID: 21723307 DOI: 10.1016/j.taap.2011.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 11/30/2022]
Abstract
Increased cardiovascular risk after mercury exposure has been described but cardiac effects resulting from controlled chronic treatment are not yet well explored. We analyzed the effects of chronic exposure to low mercury concentrations on hemodynamic and ventricular function of isolated hearts. Wistar rats were treated with HgCl₂ (1st dose 4.6 μg/kg, subsequent dose 0.07 μg/kg/day, im, 30 days) or vehicle. Mercury treatment did not affect blood pressure (BP) nor produced cardiac hypertrophy or changes of myocyte morphometry and collagen content. This treatment: 1) in vivo increased left ventricle end diastolic pressure (LVEDP) without changing left ventricular systolic pressure (LVSP) and heart rate; 2) in isolated hearts reduced LV isovolumic systolic pressure and time derivatives, and β-adrenergic response; 3) increased myosin ATPase activity; 4) reduced Na+-K+ ATPase (NKA) activity; 5) reduced protein expression of SERCA and phosphorylated phospholamban on serine 16 while phospholamban expression increased; as a consequence SERCA/phospholamban ratio reduced; 6) reduced sodium/calcium exchanger (NCX) protein expression and α-1 isoform of NKA, whereas α-2 isoform of NKA did not change. Chronic exposure for 30 days to low concentrations of mercury does not change BP, heart rate or LVSP but produces small but significant increase of LVEDP. However, in isolated hearts mercury treatment promoted contractility dysfunction as a result of the decreased NKA activity, reduction of NCX and SERCA and increased PLB protein expression. These findings offer further evidence that mercury chronic exposure, even at small concentrations, is an environmental risk factor affecting heart function.
Collapse
Affiliation(s)
- Lorena Barros Furieri
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Ji Y, Xing Y, Li X, Gao X. Astragalosides rescue both cardiac function and sarcoplasmic reticulum Ca²⁺ transport in rats with chronic heart failure. Phytother Res 2011; 26:231-8. [PMID: 21656599 DOI: 10.1002/ptr.3492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/10/2022]
Abstract
The study investigated the beneficial effects of astragalosides (AS) on cardiac performance in rats with chronic heart failure. Chronic heart failure was produced by left anterior descending coronary artery ligation, and the therapeutic efficacy of astragalosides at 10, 20 and 40 mg/kg was evaluated. Five weeks after the operation, cardiac function was deficient and sarcoplasmic reticulum Ca²⁺-ATPase (SERCA) activity was significantly reduced. Moreover, SERCA mRNA decreased, while expression of the SERCA down-regulator phospholamban (PLB) was significantly increased. Phosphorylated phospholamban (P-PLB), the form that does not inhibit SERCA, was also reduced by chronic heart failure. Treatment with AS improved left ventricle function and cardiac structure, reversed the depression of SERCA activity, and increased P-PLB. These results suggest that the cardioprotective effect of AS may be due to the increase in P-PLB protein, which disinhibits SERCA activity. Rescue of sarcoplasmic reticulum Ca²⁺ cycling by astragalosides could normalize excitation-contraction coupling and improve overall cardiac function.
Collapse
Affiliation(s)
- Yi Wang
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | | | | | | | | |
Collapse
|
15
|
Lou Q, Fedorov VV, Glukhov AV, Moazami N, Fast VG, Efimov IR. Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure. Circulation 2011; 123:1881-90. [PMID: 21502574 DOI: 10.1161/circulationaha.110.989707] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Excitation-contraction (EC) coupling is altered in end-stage heart failure. However, spatial heterogeneity of this remodeling has not been established at the tissue level in failing human heart. The objective of this article was to study functional remodeling of excitation-contraction coupling and calcium handling in failing and nonfailing human hearts. METHODS AND RESULTS We simultaneously optically mapped action potentials and calcium transients in coronary perfused left ventricular wedge preparations from nonfailing (n=6) and failing (n=5) human hearts. Our major findings are the following. First, calcium transient duration minus action potential duration was longer at subendocardium in failing compared with nonfailing hearts during bradycardia (40 bpm). Second, the transmural gradient of calcium transient duration was significantly smaller in failing hearts compared with nonfailing hearts at fast pacing rates (100 bpm). Third, calcium transient in failing hearts had a flattened plateau at the midmyocardium and exhibited a 2-component slow rise at the subendocardium in 3 failing hearts. Fourth, calcium transient relaxation was slower at the subendocardium than at the subepicardium in both groups. Protein expression of sarcoplasmic reticulum Ca(2+)-ATPase 2a was lower at the subendocardium than the subepicardium in both nonfailing and failing hearts. Sarcoplasmic reticulum Ca(2+)-ATPase 2a protein expression at subendocardium was lower in hearts with ischemic cardiomyopathy compared with those with nonischemic cardiomyopathy. CONCLUSIONS For the first time, we present direct experimental evidence of transmural heterogeneity of excitation-contraction coupling and calcium handling in human hearts. End-stage heart failure is associated with the heterogeneous remodeling of excitation-contraction coupling and calcium handling.
Collapse
Affiliation(s)
- Qing Lou
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
16
|
Swift F, Tovsrud N, Sjaastad I, Sejersted OM, Niggli E, Egger M. Functional coupling of α2-isoform Na+/K+-ATPase and Ca2+ extrusion through the Na+/Ca2+-exchanger in cardiomyocytes. Cell Calcium 2010; 48:54-60. [DOI: 10.1016/j.ceca.2010.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 05/10/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
|
17
|
Tang M, Zhang X, Li Y, Guan Y, Ai X, Szeto C, Nakayama H, Zhang H, Ge S, Molkentin JD, Houser SR, Chen X. Enhanced basal contractility but reduced excitation-contraction coupling efficiency and beta-adrenergic reserve of hearts with increased Cav1.2 activity. Am J Physiol Heart Circ Physiol 2010; 299:H519-28. [PMID: 20543081 DOI: 10.1152/ajpheart.00265.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac remodeling during heart failure development induces a significant increase in the activity of the L-type Ca(2+) channel (Cav1.2). However, the effects of enhanced Cav1.2 activity on myocyte excitation-contraction (E-C) coupling, cardiac contractility, and its regulation by the beta-adrenergic system are not clear. To recapitulate the increased Cav1.2 activity, a double transgenic (DTG) mouse model overexpressing the Cavbeta2a subunit in a cardiac-specific and inducible manner was established. We studied cardiac (in vivo) and myocyte (in vitro) contractility at baseline and upon beta-adrenergic stimulation. E-C coupling efficiency was evaluated in isolated myocytes as well. The following results were found: 1) in DTG myocytes, L-type Ca(2+) current (I(Ca,L)) density, myocyte fractional shortening (FS), peak Ca(2+) transients, and sarcoplasmic reticulum (SR) Ca(2+) content (caffeine-induced Ca(2+) transient peak) were significantly increased (by 100.8%, 48.8%, 49.8%, and 46.8%, respectively); and 2) cardiac contractility evaluated with echocardiography [ejection fraction (EF) and (FS)] and invasive intra-left ventricular pressure (maximum dP/dt and -dP/dt) measurements were significantly greater in DTG mice than in control mice. However, 1) the cardiac contractility (EF, FS, dP/dt, and -dP/dt)-enhancing effect of the beta-adrenergic agonist isoproterenol (2 microg/g body wt ip) was significantly reduced in DTG mice, which could be attributed to the loss of beta-adrenergic stimulation on contraction, Ca(2+) transients, I(Ca,L), and SR Ca(2+) content in DTG myocytes; and 2) E-C couplng efficiency was significantly lower in DTG myocytes. In conclusion, increasing Cav1.2 activity by promoting its high-activity mode enhances cardiac contractility but decreases E-C coupling efficiency and the adrenergic reserve of the heart.
Collapse
Affiliation(s)
- Mingxin Tang
- Cardiovascular Research Center and Dept. of Physiology, Temple Univ. School of Medicine, 3400 N. Broad St., Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fares E, Howlett SE. Effect of age on cardiac excitation-contraction coupling. Clin Exp Pharmacol Physiol 2010; 37:1-7. [DOI: 10.1111/j.1440-1681.2009.05276.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Mou Y, Ye Y, Zhao XY, Yao L, Yan LP, Sun J, Zhu ZH, Hu SJ. Partial restoration of left ventricular systolic function by asPLB gene transfer using ultrasound-mediated microbubble destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1638-1646. [PMID: 19616364 DOI: 10.1016/j.ultrasmedbio.2009.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 03/21/2009] [Accepted: 04/08/2009] [Indexed: 05/28/2023]
Abstract
In vitro and in vivo studies have demonstrated that inhibition of phospholamban (PLB) expression in myocardium can restore left ventricular systolic function in failing heart. Ultrasound mediated microbubble destruction provides a new option for noninvasive gene transfer in heart. In this study, we transferred pAAV-antisense phospholamban (pAAV-asPLB) to the hearts of myocardial infarction (MI) mice, using ultrasound mediated microbubble destruction. Then we estimated the protein levels of PLB, Ser16-PLB and cardiac sarcoplasmic reticulum Ca(2+) ATPase (SERCA). The left ventricular ejection fraction (LVEF), fraction shortening (FS) and SERCA activity were measured as well. MI mice were generated by ligating the left anterior descending coronary artery. Microbubbles were prepared by sonicated perfluorocarbon gas with dextrose and albumin. A mixture of pAAV-asPLB plasmid and microbubble was injected via tail vein while the heart was simultaneously exposed to ultrasound via transthoracic insonation. Three weeks later, LVEF (48.2+/-5.18% vs 39.1+/-5.38%, p<0.05), FS (19.6+/-2.59% vs 16.0+/-2.29%, p<0.05), SERCA activity (3.00+/-0.29 vs 2.12+/-0.30, p<0.05) and Ser16-PLB protein level (0.8+/-0.25 vs 0.46+/-0.18, p<0.05) were increased while PLB protein level (1.45+/-0.38 vs 2.05+/-0.31, p<0.05) was decreased compared with the MI mice with saline injection. The above parameters in MI mice with only pAAV-asPLB plasmid injection or pAAV-asPLB plasmid combined with ultrasound alone were not significantly improved. pAAV-LacZ was used as a reporter gene to determine the efficiency and localization of transfection. The expression of beta-galactosidase was not found in liver, lung and brain, but found only in tubular epithelial cells of kidney and found in heart. These results confirm that asPLB gene transfection can be achieved by ultrasound mediated microbubble destruction with organ specificity. The effective transfection can partly restore heart function in MI mice.
Collapse
Affiliation(s)
- Yun Mou
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ullrich ND, Fanchaouy M, Gusev K, Shirokova N, Niggli E. Hypersensitivity of excitation-contraction coupling in dystrophic cardiomyocytes. Am J Physiol Heart Circ Physiol 2009; 297:H1992-2003. [PMID: 19783774 DOI: 10.1152/ajpheart.00602.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy represents a severe inherited disease of striated muscle. It is caused by a mutation of the dystrophin gene and characterized by a progressive loss of skeletal muscle function. Most patients also develop a dystrophic cardiomyopathy, resulting in dilated hypertrophy and heart failure, but the cellular mechanisms leading to the deterioration of cardiac function remain elusive. In the present study, we tested whether defective excitation-contraction (E-C) coupling contributes to impaired cardiac performance. "E-C coupling gain" was determined in cardiomyocytes from control and dystrophin-deficient mdx mice. To this end, L-type Ca2+ currents (ICaL) were measured with the whole cell patch-clamp technique, whereas Ca2+ transients were simultaneously recorded with confocal imaging of fluo-3. Initial findings indicated subtle changes of E-C coupling in mdx cells despite matched Ca2+ loading of the sarcoplasmic reticulum (SR). However, lowering the extracellular Ca2+ concentration, a maneuver used to unmask latent E-C coupling problems, was surprisingly much better tolerated by mdx myocytes, suggesting a hypersensitive E-C coupling mechanism. Challenging the SR Ca2+ release by slow elevations of the intracellular Ca2+ concentration resulted in Ca2+ oscillations after a much shorter delay in mdx cells. This is consistent with an enhanced Ca2+ sensitivity of the SR Ca2+-release channels [ryanodine receptors (RyRs)]. The hypersensitivity could be normalized by the introduction of reducing agents, indicating that the elevated cellular ROS generation in dystrophy underlies the abnormal RyR sensitivity and hypersensitive E-C coupling. Our data suggest that in dystrophin-deficient cardiomyocytes, E-C coupling is altered due to potentially arrhythmogenic changes in the Ca2+ sensitivity of redox-modified RyRs.
Collapse
Affiliation(s)
- Nina D Ullrich
- Department of Physiology, University of Bern, Buehlplatz 5, Bern 3012, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Koivumäki JT, Korhonen T, Takalo J, Weckström M, Tavi P. Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling. BMC PHYSIOLOGY 2009; 9:16. [PMID: 19715618 PMCID: PMC2745357 DOI: 10.1186/1472-6793-9-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/31/2009] [Indexed: 12/05/2022]
Abstract
Background The cardiomyocyte is a prime example of inherently complex biological system with inter- and cross-connected feedback loops in signalling, forming the basic properties of intracellular homeostasis. Functional properties of cells and tissues have been studied e.g. with powerful tools of genetic engineering, combined with extensive experimentation. While this approach provides accurate information about the physiology at the endpoint, complementary methods, such as mathematical modelling, can provide more detailed information about the processes that have lead to the endpoint phenotype. Results In order to gain novel mechanistic information of the excitation-contraction coupling in normal myocytes and to analyze sophisticated genetically engineered heart models, we have built a mathematical model of a mouse ventricular myocyte. In addition to the fundamental components of membrane excitation, calcium signalling and contraction, our integrated model includes the calcium-calmodulin-dependent enzyme cascade and the regulation it imposes on the proteins involved in excitation-contraction coupling. With the model, we investigate the effects of three genetic modifications that interfere with calcium signalling: 1) ablation of phospholamban, 2) disruption of the regulation of L-type calcium channels by calcium-calmodulin-dependent kinase II (CaMK) and 3) overexpression of CaMK. We show that the key features of the experimental phenotypes involve physiological compensatory and autoregulatory mechanisms that bring the system to a state closer to the original wild-type phenotype in all transgenic models. A drastic phenotype was found when the genetic modification disrupts the regulatory signalling system itself, i.e. the CaMK overexpression model. Conclusion The novel features of the presented cardiomyocyte model enable accurate description of excitation-contraction coupling. The model is thus an applicable tool for further studies of both normal and defective cellular physiology. We propose that integrative modelling as in the present work is a valuable complement to experiments in understanding the causality within complex biological systems such as cardiac myocytes.
Collapse
Affiliation(s)
- Jussi T Koivumäki
- Department of Physics, University of Oulu & Biocenter Oulu, Finland.
| | | | | | | | | |
Collapse
|
22
|
Beetz N, Hein L, Meszaros J, Gilsbach R, Barreto F, Meissner M, Hoppe UC, Schwartz A, Herzig S, Matthes J. Transgenic simulation of human heart failure-like L-type Ca2+-channels: implications for fibrosis and heart rate in mice. Cardiovasc Res 2009; 84:396-406. [PMID: 19620129 DOI: 10.1093/cvr/cvp251] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Cardiac L-type Ca(2+)-currents show distinct alterations in chronic heart failure, including increased single-channel activity and blunted adrenergic stimulation, but minor changes of whole-cell currents. Expression of L-type Ca(2+)-channel beta(2)-subunits is enhanced in human failing hearts. In order to determine whether prolonged alteration of Ca(2+)-channel gating by beta(2)-subunits contributes to heart failure pathogenesis, we generated and characterized transgenic mice with cardiac overexpression of a beta(2a)-subunit or the pore Ca(v)1.2 or both, respectively. METHODS AND RESULTS Four weeks induction of cardiac-specific overexpression of rat beta(2a)-subunits shifted steady-state activation and inactivation of whole-cell currents towards more negative potentials, leading to increased Ca(2+)-current density at more negative test potentials. Activity of single Ca(2+)-channels was increased in myocytes isolated from beta(2a)-transgenic mice. Ca(2+)-current stimulation by 8-Br-cAMP and okadaic acid was blunted in beta(2a)-transgenic myocytes. In vivo investigation revealed hypotension and bradycardia upon Ca(v)1.2-transgene expression but not in mice only overexpressing beta(2a). Double-transgenics showed cardiac arrhythmia. Interstitial fibrosis was aggravated by the beta(2a)-transgene compared with Ca(v)1.2-transgene expression alone. Overt cardiac hypertrophy was not observed in any model. CONCLUSION Cardiac overexpression of a Ca(2+)-channel beta(2a)-subunit alone is sufficient to induce Ca(2+)-channel properties characteristic of chronic human heart failure. beta(2a)-overexpression by itself did not induce cardiac hypertrophy or contractile dysfunction, but aggravated the development of arrhythmia and fibrosis in Ca(v)1.2-transgenic mice.
Collapse
Affiliation(s)
- Nadine Beetz
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gusev K, Domenighetti AA, Delbridge LM, Pedrazzini T, Niggli E, Egger M. Angiotensin II–Mediated Adaptive and Maladaptive Remodeling of Cardiomyocyte Excitation–Contraction Coupling. Circ Res 2009; 105:42-50. [DOI: 10.1161/circresaha.108.189779] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac hypertrophy is associated with alterations in cardiomyocyte excitation–contraction coupling (ECC) and Ca
2+
handling. Chronic elevation of plasma angiotensin II (Ang II) is a major determinant in the pathogenesis of cardiac hypertrophy and congestive heart failure. However, the molecular mechanisms by which the direct actions of Ang II on cardiomyocytes contribute to ECC remodeling are not precisely known. This question was addressed using cardiac myocytes isolated from transgenic (TG1306/1R [TG]) mice exhibiting cardiac specific overexpression of angiotensinogen, which develop Ang II–mediated cardiac hypertrophy in the absence of hemodynamic overload. Electrophysiological techniques, photolysis of caged Ca
2+
and confocal Ca
2+
imaging were used to examine ECC remodeling at early (≈20 weeks of age) and late (≈60 weeks of age) time points during the development of cardiac dysfunction. In young TG mice, increased cardiac Ang II levels induced a hypertrophic response in cardiomyocyte, which was accompanied by an adaptive change of Ca
2+
signaling, specifically an upregulation of the Na
+
/Ca
2+
exchanger–mediated Ca
2+
transport. In contrast, maladaptation was evident in older TG mice, as suggested by reduced sarcoplasmic reticulum Ca
2+
content resulting from a shift in the ratio of plasmalemmal Ca
2+
removal and sarcoplasmic reticulum Ca
2+
uptake. This was associated with a conserved ECC gain, consistent with a state of hypersensitivity in Ca
2+
-induced Ca
2+
release. Together, our data suggest that chronic elevation of cardiac Ang II levels significantly alters cardiomyocyte ECC in the long term, and thereby contractility, independently of hemodynamic overload and arterial hypertension.
Collapse
Affiliation(s)
- Konstantin Gusev
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| | - Andrea A. Domenighetti
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| | - Lea M.D. Delbridge
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| | - Thierry Pedrazzini
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| | - Ernst Niggli
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| | - Marcel Egger
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| |
Collapse
|
24
|
Kim TH, Shin SY, Choo SM, Cho KH. Dynamical analysis of the calcium signaling pathway in cardiac myocytes based on logarithmic sensitivity analysis. Biotechnol J 2008; 3:639-47. [PMID: 18246569 DOI: 10.1002/biot.200700247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many cellular functions are regulated by the Ca(2+) signal which contains specific information in the form of frequency, amplitude, and duration of the oscillatory dynamics. Any alterations or dysfunctions of components in the calcium signaling pathway of cardiac myocytes may lead to a diverse range of cardiac diseases including hypertrophy and heart failure. In this study, we have investigated the hidden dynamics of the intracellular Ca(2+) signaling and the functional roles of its regulatory mechanism through in silico simulations and parameter sensitivity analysis based on an experimentally verified mathematical model. It was revealed that the Ca(2+) dynamics of cardiac myocytes are determined by the balance among various system parameters. Moreover, it was found through the parameter sensitivity analysis that the self-oscillatory Ca(2+) dynamics are most sensitive to the Ca(2+) leakage rate of the sarcolemmal membrane and the maximum rate of NCX, suggesting that these two components have dominant effects on circulating the cytosolic Ca(2+).
Collapse
Affiliation(s)
- Tae-Hwan Kim
- Department of Bio and Brain Engineering and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Maczewski M, Mackiewicz U. Effect of metoprolol and ivabradine on left ventricular remodelling and Ca2+ handling in the post-infarction rat heart. Cardiovasc Res 2008; 79:42-51. [DOI: 10.1093/cvr/cvn057] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Slow contractions characterize failing rat hearts. Basic Res Cardiol 2008; 103:328-44. [DOI: 10.1007/s00395-008-0719-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
|
27
|
Ding YF, Brower GL, Zhong Q, Murray D, Holland M, Janicki JS, Zhong J. Defective intracellular Ca2+ homeostasis contributes to myocyte dysfunction during ventricular remodelling induced by chronic volume overload in rats. Clin Exp Pharmacol Physiol 2008; 35:827-35. [PMID: 18346170 DOI: 10.1111/j.1440-1681.2008.04923.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Previous studies have demonstrated progressive ventricular hypertrophy, dilatation and contractile depression in response to chronic volume overload. Whether this decompensation was related to intrinsic myocyte dysfunction was not clear. The present study evaluated ventricular myocyte function at critical times during the progression of ventricular remodelling induced by volume overload. 2. Chronic volume overload was induced with an infrarenal aortocaval fistula in rats. Myocyte contraction and intracellular Ca(2+) concentrations ([Ca(2+)](i)) were evaluated using a fura-2 fluorescence and edge detection system. Protein levels of sarcoplasmic reticulum (SR) Ca(2+) transporters were determined by western blots. Progressive ventricular dilatation developed following creation of the fistula. Although myocyte function in 5 week fistula rats was comparable to that of the control group, myocytes from rats 10 weeks post-fistula demonstrated significant depression of cell shortening and peak [Ca(2+)](i). Application of isoproterenol (0.1 micromol/L) was not able to compensate for the functional deficiency in myocytes from 10 week fistula rats. Caffeine (10 mmol/L) induced SR Ca(2+) release, as well as protein expression of SR Ca(2+)-ATPase, and ryanodine receptors were reduced in myocytes obtained from the same group of 10 week fistula rats. 3. These data indicate that the transition to heart failure secondary to chronic volume overload is related to depressed myocyte contractility secondary to altered intracellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Yan-Feng Ding
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Shin SY, Choo SM, Woo SH, Cho KH. Cardiac Systems Biology and Parameter Sensitivity Analysis: Intracellular Ca2+ Regulatory Mechanisms in Mouse Ventricular Myocytes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 110:25-45. [DOI: 10.1007/10_2007_093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
29
|
Keller M, Pignier C, Egger M, Niggli E. F90927: A New Member in the Class of Cardioactive Steroids. ACTA ACUST UNITED AC 2007; 25:210-20. [DOI: 10.1111/j.1527-3466.2007.00014.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Török TL. Electrogenic Na+/Ca2+-exchange of nerve and muscle cells. Prog Neurobiol 2007; 82:287-347. [PMID: 17673353 DOI: 10.1016/j.pneurobio.2007.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/12/2007] [Accepted: 06/12/2007] [Indexed: 12/19/2022]
Abstract
The plasma membrane Na(+)/Ca(2+)-exchanger is a bi-directional electrogenic (3Na(+):1Ca(2+)) and voltage-sensitive ion transport mechanism, which is mainly responsible for Ca(2+)-extrusion. The Na(+)-gradient, required for normal mode operation, is created by the Na(+)-pump, which is also electrogenic (3Na(+):2K(+)) and voltage-sensitive. The Na(+)/Ca(2+)-exchanger operational modes are very similar to those of the Na(+)-pump, except that the uncoupled flux (Na(+)-influx or -efflux?) is missing. The reversal potential of the exchanger is around -40 mV; therefore, during the upstroke of the AP it is probably transiently activated, leading to Ca(2+)-influx. The Na(+)/Ca(2+)-exchange is regulated by transported and non-transported external and internal cations, and shows ATP(i)-, pH- and temperature-dependence. The main problem in determining the role of Na(+)/Ca(2+)-exchange in excitation-secretion/contraction coupling is the lack of specific (mode-selective) blockers. During recent years, evidence has been accumulated for co-localisation of the Na(+)-pump, and the Na(+)/Ca(2+)-exchanger and their possible functional interaction in the "restricted" or "fuzzy space." In cardiac failure, the Na(+)-pump is down-regulated, while the exchanger is up-regulated. If the exchanger is working in normal mode (Ca(2+)-extrusion) during most of the cardiac cycle, upregulation of the exchanger may result in SR Ca(2+)-store depletion and further impairment in contractility. If so, a normal mode selective Na(+)/Ca(2+)-exchange inhibitor would be useful therapy for decompensation, and unlike CGs would not increase internal Na(+). In peripheral sympathetic nerves, pre-synaptic alpha(2)-receptors may regulate not only the VSCCs but possibly the reverse Na(+)/Ca(2+)-exchange as well.
Collapse
Affiliation(s)
- Tamás L Török
- Department of Pharmacodynamics, Semmelweis University, P.O. Box 370, VIII. Nagyvárad-tér 4, H-1445 Budapest, Hungary.
| |
Collapse
|
31
|
Xu XL, Ji H, Gu SY, Shao Q, Huang QJ, Cheng YP. Modification of alterations in cardiac function and sarcoplasmic reticulum by astragaloside IV in myocardial injury in vivo. Eur J Pharmacol 2007; 568:203-12. [PMID: 17509559 DOI: 10.1016/j.ejphar.2007.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/28/2007] [Accepted: 04/01/2007] [Indexed: 11/16/2022]
Abstract
Astragaloside IV, the primary pure saponin isolated from Astragalus membranaceus has been found to have potent cardioprotective effects. In this study, we aim to investigate if the beneficial effects of astragaloside IV on cardiac function are associated with improvement in sarcoplasmic reticulum Ca(2+)-pump function in myocardial injury in vivo. Myocardial injury in rats was induced by subcutaneous injection of a high dose of isoproterenol, and the therapeutic effect of astragaloside IV was observed. Isoproterenol-treated rats showed widespread subendocardial necrosis, a rise in serum lactate dehydrogenase and creatine kinase, formation of lipid oxide product malondialdehyde and inhibition of left ventricular diastolic and systolic function, which suggested severe myocardial injury and acute heart failure. Moreover, sarcoplasmic reticulum Ca(2+)-uptake ability and Ca(2+)-ATPase (SERCA2a) activity were significantly reduced. And the level of SERCA2a mRNA and protein expression was also markedly decreased, associated with a decrease in Ser(16)-phosphorylated phospholamban protein expression, while total phospholamban level was unchanged in the isoproterenol-treated group compared with controls. However, these biochemical and hemodynamic changes in the acute failing hearts were prevented by treatment of isoproterenol-induced rats with astragaloside IV. Likewise, the observed reductions in sarcoplasmic reticulum Ca(2+)-pump function as well as in SERCA2a mRNA and protein levels and the phosphorylation level of phospholamban in the injured hearts were attenuated by astragaloside IV treatment. These results suggest that the beneficial effect of astragaloside IV on isoproterenol-induced myocardial injury may be due to its ability to prevent changes of SERCA2a and Ser(16)-phosphorylated phospholamban protein expression and, thus, may prevent the depression in sarcoplasmic reticulum Ca(2+) transport and improve cardiac function.
Collapse
Affiliation(s)
- Xiao-Le Xu
- Department of Pharmacology, China Pharmaceutical University, 24 Tong Jia Xiang, 210009, Nanjing, PR China.
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Weisleder N, Ma JJ. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy. Acta Pharmacol Sin 2006; 27:791-8. [PMID: 16787561 DOI: 10.1111/j.1745-7254.2006.00384.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ca2+ sparks are the elementary units of intracellular Ca2+ signaling in striated muscle cells revealed as localized Ca2+ release events from sarcoplasmic reticulum (SR) by confocal microscopy. While Ca2+ sparks are well defined in cardiac muscle, there has been a general belief that these localized Ca2+ release events are rare in intact adult mammalian skeletal muscle. Several laboratories determined that Ca2+ sparks in mammalian skeletal muscle could only be observed in large numbers when the sarcolemmal membranes are permeabilized or the SR Ca2+ content is artificially manipulated, thus the cellular and molecular mechanisms underlying the regulation of Ca2+ sparks in skeletal muscle remain largely unexplored. Recently, we discovered that membrane deformation generated by osmotic stress induced a robust Ca2+ spark response confined in close spatial proximity to the sarcolemmal membrane in intact mouse muscle fibers. In addition to Ca2+ sparks, prolonged Ca2+ transients, termed Ca2+ bursts, are also identified in intact skeletal muscle. These induced Ca2+ release events are reversible and repeatable, revealing a plastic nature in young muscle fibers. In contrast, induced Ca2+ sparks in aged muscle are transient and cannot be re-stimulated. Dystrophic muscle fibers display uncontrolled Ca2+ sparks, where osmotic stress-induced Ca2+ sparks are not reversible and they are no longer spatially restricted to the sarcolemmal membrane. An understanding of the mechanisms that underlie generation of osmotic stress-induced Ca2+ sparks in skeletal muscle, and how these mechanisms are altered in pathology, will contribute to our understanding of the regulation of Ca2+ homeostasis in muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Noah Weisleder
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
34
|
Pignier C, Keller M, Vié B, Vacher B, Santelli M, Niggli E, Egger M, Le Grand B. A novel steroid-like compound F90927 exerting positive-inotropic effects in cardiac muscle. Br J Pharmacol 2006; 147:772-82. [PMID: 16474419 PMCID: PMC1751512 DOI: 10.1038/sj.bjp.0706673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Here we report a novel steroid-like compound F90363, exhibiting positive inotropy in vivo and in vitro in various cardiac muscle preparations. F90363 is a racemic mixture composed of the stereoisomers (-)-F90926 and (+)-F90927. Only F90927 exerted positive inotropy, while F90926 induced a weak negative inotropy, but only at concentrations 10(3) times higher than F90927 and most likely resulting from an unspecific interaction. The rapid time course of the action of F90927 suggested a direct interaction with a cellular target rather than a genomic alteration. We could identify the L-type Ca2+ current I(Ca(L)) as a main target of F90927, while excluding other components of cardiac Ca2+ signalling as potential contributors. In addition, several other signaling pathways known to lead to positive inotropy (e.g. alpha- and beta-adrenergic stimulation, cAMP pathways) could be excluded as targets of F90927. However, vessel contraction and stiffening of the cardiac muscle at high doses (>30 microM, 0.36 mg kg(-1), respectively) prevent the use of F90927 as a candidate for drug development. Since the compound may still find valuable applications in research, the aim of the present study was to identify the cellular target and the mechanism of inotropy of F90927.
Collapse
|
35
|
Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A. The L-type calcium channel in the heart: the beat goes on. J Clin Invest 2006; 115:3306-17. [PMID: 16322774 PMCID: PMC1297268 DOI: 10.1172/jci27167] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sydney Ringer would be overwhelmed today by the implications of his simple experiment performed over 120 years ago showing that the heart would not beat in the absence of Ca2+. Fascination with the role of Ca2+ has proliferated into all aspects of our understanding of normal cardiac function and the progression of heart disease, including induction of cardiac hypertrophy, heart failure, and sudden death. This review examines the role of Ca2+ and the L-type voltage-dependent Ca2+ channels in cardiac disease.
Collapse
Affiliation(s)
- Ilona Bodi
- Institute of Molecular Pharmacology and Biophysics, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
36
|
Wang K, Tu Y, Rappel WJ, Levine H. Excitation-contraction coupling gain and cooperativity of the cardiac ryanodine receptor: a modeling approach. Biophys J 2005; 89:3017-25. [PMID: 16126827 PMCID: PMC1366799 DOI: 10.1529/biophysj.105.058958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 08/05/2005] [Indexed: 11/18/2022] Open
Abstract
During calcium-induced calcium-release, the ryanodine receptor (RyR) opens and releases large amounts of calcium from the sarcoplasmic reticulum into the cytoplasm of the myocyte. Recent experiments have suggested that cooperativity between the four monomers comprising the RyR plays an important role in the dynamics of the overall receptor. Furthermore, this cooperativity can be affected by the binding of FK506 binding protein, and hence, modulated by adrenergic stimulation through the phosphorylating action of protein kinase A. This has important implications for heart failure, where it has been hypothesized that RyR hyperphosphorylation, resulting in a loss of cooperativity, can lead to a persistent leak and a reduced sarcoplasmic-reticula content. In this study, we construct a theoretical model that examines the cooperativity via the assumption of an allosteric interaction between the four subunits. We find that the level of cooperativity, regulated by the binding of FK506 binding-protein, can have a dramatic effect on the excitation-contraction coupling gain and that this gain exhibits a clear maximum. These findings are compared to currently available data from different species and allows for an evaluation of the aforementioned heart-failure scenario.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physics and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
37
|
Yano M, Ikeda Y, Matsuzaki M. Altered intracellular Ca2+ handling in heart failure. J Clin Invest 2005; 115:556-64. [PMID: 15765137 PMCID: PMC1052007 DOI: 10.1172/jci24159] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Structural and functional alterations in the Ca2+ regulatory proteins present in the sarcoplasmic reticulum have recently been shown to be strongly involved in the pathogenesis of heart failure. Chronic activation of the sympathetic nervous system or of the renin-angiotensin system induces abnormalities in both the function and structure of these proteins. We review here the considerable body of evidence that has accumulated to support the notion that such abnormalities contribute to a defectiveness of contractile performance and hence to the progression of heart failure.
Collapse
Affiliation(s)
- Masafumi Yano
- Department of Medical Bioregulation, Division of Cardiovascular Medicine, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | | | | |
Collapse
|
38
|
Matsumoto T, Hisamatsu Y, Ohkusa T, Inoue N, Sato T, Suzuki S, Ikeda Y, Matsuzaki M. Sorcin interacts with sarcoplasmic reticulum Ca(2+)-ATPase and modulates excitation-contraction coupling in the heart. Basic Res Cardiol 2005; 100:250-62. [PMID: 15754088 DOI: 10.1007/s00395-005-0518-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 02/01/2005] [Accepted: 02/03/2005] [Indexed: 11/27/2022]
Abstract
Sorcin is a 21.6-kDa Ca(2+) binding protein of the penta-EF hand family. Several studies have shown that sorcin modulates multiple proteins involved in excitation-contraction (E-C) coupling in the heart, such as the cardiac ryanodine receptor (RyR2), L-type Ca(2+) channel, and Na(+)-Ca(2+) exchanger, while it has also been shown to be phosphorylated by cAMP-dependent protein kinase (PKA). To elucidate the effects of sorcin and its PKA-dependent regulation on E-C coupling in the heart, we identified the PKA-phosphorylation site of sorcin, and found that serine178 was preferentially phosphorylated by PKA and dephosphorylated by protein phosphatase-1. Isoproterenol allowed sorcin to translocate to the sarcoplasmic reticulum (SR). In addition, adenovirus-mediated overexpression of sorcin in adult rat cardiomyocytes significantly increased both the rate of decay of the Ca(2+) transient and the SR Ca(2+) load. An assay of oxalate-facilitated Ca(2+) uptake showed that recombinant sorcin increased Ca(2+) uptake in a dose-dependent manner. These data suggest that sorcin activates the Ca(2+)-uptake function in the SR. In UM-X7. 1 cardiomyopathic hamster hearts, the relative amount of sorcin was significantly increased in the SR fraction, whereas it was significantly decreased in whole-heart homogenates. In failing hearts, PKA-phosphorylated sorcin was markedly increased, as assessed using a back-phosphorylation assay with immunoprecipitated sorcin. Our results suggest that sorcin activates Ca(2+)-ATPase-mediated Ca(2+) uptake and restores SR Ca(2+) content, and may play critical roles in compensatory mechanisms in both Ca(2+) homeostasis and cardiac dysfunction in failing hearts.
Collapse
Affiliation(s)
- Tomo Matsumoto
- Division of Cardiovascular Medicine, Department of Medical Bioregulation, Yamaguchi University Graduate, School of Medicine, 1-1-1 Minami-kogushi, Ube Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tang T, Gao MH, Roth DM, Guo T, Hammond HK. Adenylyl cyclase type VI corrects cardiac sarcoplasmic reticulum calcium uptake defects in cardiomyopathy. Am J Physiol Heart Circ Physiol 2004; 287:H1906-12. [PMID: 15242835 DOI: 10.1152/ajpheart.00356.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium malfunction plays a central role in heart failure. Here, we provide evidence that adenylyl cyclase type VI restores sarco(endo)plasmic reticulum 2a (SERCA2a) affinity for calcium and maximum velocity of cardiac calcium uptake by sarcoplasmic reticulum in murine dilated cardiomyopathy. Restoration of normal SERCA2a affinity for calcium is associated not only with decreased phospholamban protein expression but also with increased phospholamban phosphorylation by PKA activation. The ratio of phosphorylated ryanodine receptor 2 (RyR2) to RyR2 protein was increased, but the amount of phosphorylated RyR2 was unaffected. These data provide a possible mechanism by which adenylyl cyclase type VI (in contrast to other signaling elements associated with increased cAMP generation) has a salutary effect in the failing heart.
Collapse
Affiliation(s)
- Tong Tang
- Department of Medicine, 111A, VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | | | | | | | | |
Collapse
|
40
|
Ferrier GR, Howlett SE. Differential effects of phosphodiesterase-sensitive and -resistant analogs of cAMP on initiation of contraction in cardiac ventricular myocytes. J Pharmacol Exp Ther 2003; 306:166-78. [PMID: 12665542 DOI: 10.1124/jpet.103.049676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amplitudes of cardiac contractions initiated by Ca2+-induced Ca2+ release (CICR) are proportional to the magnitude of Ca2+ current (ICa-L). However, large contractions accompanied by little inward current have been reported in some but not all studies in which cells were dialyzed with different analogs of cAMP. This study compares the effects of different phosphodiesterase (PDE)-resistant and PDE-sensitive analogs of cAMP on CICR, and investigates whether cAMP sensitizes CICR so that small currents induce large contractions. Experiments were conducted in voltage-clamped guinea pig ventricular myocytes at 37 degrees C, with different analogs of cAMP added to patch pipette solutions. With PDE sensitive Tris-cAMP, contraction-voltage relations were bell-shaped and proportional to ICa-L. In contrast, dialysis with PDE-resistant dibutyryl-cAMP resulted in sigmoidal contraction-voltage relations and large responses with little inward current. Similarly, in cells loaded with fura-2, large Ca2+ transients were elicited with little inward current in cells dialyzed with PDE-resistant but not PDE-sensitive cAMP. However, large transients were observed with PDE-sensitive cAMP when PDE was inhibited with 3-isobutyl-1-methylxanthine. When the amplitude of ICa-L was varied by partial block with Cd2+, or by partial inactivation, CICR remained proportional to the amplitude of ICa-L. Thus, cAMP altered the relationship between Ca2+ transients and membrane potential but did not sensitize conventional CICR coupled to ICa-L. Our results show that effects of different analogs of cAMP on contraction depend on the PDE resistance of the analog tested. Furthermore, PDE can play a major role in modulating cardiac contraction by altering the relationship between membrane potential and Ca2+ release.
Collapse
Affiliation(s)
- Gregory R Ferrier
- Department of Pharmacology, Sir Charles Tupper Medical Bldg., Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | |
Collapse
|
41
|
Eisner DA, Isenberg G, Sipido KR. Normal and pathological excitation-contraction coupling in the heart -- an overview. J Physiol 2003; 546:3-4. [PMID: 12509474 PMCID: PMC2342462 DOI: 10.1113/jphysiol.2002.036756] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This issue of The Journal of Physiology includes a series of review articles arising from a symposium held at the joint meeting of the UK, German and Scandinavian Physiological Societies. The articles focus on different aspects of the cellular control of contraction. The basic mechanism of cardiac excitation-contraction coupling ('calcium-induced calcium release') is now reasonably well-established. Calcium enters the cell from the extracellular fluid via the voltage-dependent L-type Ca(2+) channel. This results in a 'trigger' increase of [Ca(2+)](i) in the space between the sarcolemma and sarcoplasmic reticulum (SR) and this leads to the opening of the SR Ca(2+) release channel or 'ryanodine receptor' (RyR). As exemplified by the papers from the symposium, much current work is focused on how this mechanism is modified in different circumstances. These include autonomic modulation, but also pathological conditions such as cardiac hypertrophy and failure, a recurrent theme in several of these papers.
Collapse
Affiliation(s)
- D A Eisner
- Cardiac Physiology Unit, Stopford Building, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|