1
|
Pastor J, Attali B. Opposite effects of acute and chronic IGF1 on rat dorsal root ganglion neuron excitability. Front Cell Neurosci 2024; 18:1391858. [PMID: 38919332 PMCID: PMC11196413 DOI: 10.3389/fncel.2024.1391858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a polypeptide hormone with a ubiquitous distribution in numerous tissues and with various functions in both neuronal and non-neuronal cells. IGF-1 provides trophic support for many neurons of both the central and peripheral nervous systems. In the central nervous system (CNS), IGF-1R signaling regulates brain development, increases neuronal firing and modulates synaptic transmission. IGF-1 and IGF-IR are not only expressed in CNS neurons but also in sensory dorsal root ganglion (DRG) nociceptive neurons that convey pain signals. DRG nociceptive neurons express a variety of receptors and ion channels that are essential players of neuronal excitability, notably the ligand-gated cation channel TRPV1 and the voltage-gated M-type K+ channel, which, respectively, triggers and dampens sensory neuron excitability. Although many lines of evidence suggest that IGF-IR signaling contributes to pain sensitivity, its possible modulation of TRPV1 and M-type K+ channel remains largely unexplored. In this study, we examined the impact of IGF-1R signaling on DRG neuron excitability and its modulation of TRPV1 and M-type K+ channel activities in cultured rat DRG neurons. Acute application of IGF-1 to DRG neurons triggered hyper-excitability by inducing spontaneous firing or by increasing the frequency of spikes evoked by depolarizing current injection. These effects were prevented by the IGF-1R antagonist NVP-AEW541 and by the PI3Kinase blocker wortmannin. Surprisingly, acute exposure to IGF-1 profoundly inhibited both the TRPV1 current and the spike burst evoked by capsaicin. The Src kinase inhibitor PP2 potently depressed the capsaicin-evoked spike burst but did not alter the IGF-1 inhibition of the hyperexcitability triggered by capsaicin. Chronic IGF-1 treatment (24 h) reduced the spike firing evoked by depolarizing current injection and upregulated the M-current density. In contrast, chronic IGF-1 markedly increased the spike burst evoked by capsaicin. In all, our data suggest that IGF-1 exerts complex effects on DRG neuron excitability as revealed by its dual and opposite actions upon acute and chronic exposures.
Collapse
Affiliation(s)
| | - Bernard Attali
- Department of Physiology and Pharmacology, Faculty of Medicine and Health Sciences and Sagol School of Neurosciences-Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Lee J, Wang ZM, Messi ML, Milligan C, Furdui CM, Delbono O. Sex differences in single neuron function and proteomics profiles examined by patch-clamp and mass spectrometry in the locus coeruleus of the adult mouse. Acta Physiol (Oxf) 2024; 240:e14123. [PMID: 38459766 PMCID: PMC11021178 DOI: 10.1111/apha.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
AIMS This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.
Collapse
Affiliation(s)
- Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
3
|
Nuñez A, Zegarra-Valdivia J, Fernandez de Sevilla D, Pignatelli J, Torres Aleman I. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol Psychiatry 2023; 28:3220-3230. [PMID: 37353586 DOI: 10.1038/s41380-023-02136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.
Collapse
Affiliation(s)
- A Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Madrid, Spain
- Universidad Señor de Sipán, Chiclayo, Perú
| | - D Fernandez de Sevilla
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Pignatelli
- CIBERNED, Madrid, Spain
- Cajal Institute (CSIC), Madrid, Spain
| | - I Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- CIBERNED, Madrid, Spain.
- Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
4
|
Maglio LE, Noriega-Prieto JA, Maroto IB, Martin-Cortecero J, Muñoz-Callejas A, Callejo-Móstoles M, Fernández de Sevilla D. IGF-1 facilitates extinction of conditioned fear. eLife 2021; 10:e67267. [PMID: 33792539 PMCID: PMC8043742 DOI: 10.7554/elife.67267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) plays a key role in synaptic plasticity, spatial learning, and anxiety-like behavioral processes. While IGF-1 regulates neuronal firing and synaptic transmission in many areas of the central nervous system, its signaling and consequences on excitability, synaptic plasticity, and animal behavior dependent on the prefrontal cortex remain unexplored. Here, we show that IGF-1 induces a long-lasting depression of the medium and slow post-spike afterhyperpolarization (mAHP and sAHP), increasing the excitability of layer 5 pyramidal neurons of the rat infralimbic cortex. Besides, IGF-1 mediates a presynaptic long-term depression of both inhibitory and excitatory synaptic transmission in these neurons. The net effect of this IGF-1-mediated synaptic plasticity is a long-term potentiation of the postsynaptic potentials. Moreover, we demonstrate that IGF-1 favors the fear extinction memory. These results show novel functional consequences of IGF-1 signaling, revealing IGF-1 as a key element in the control of the fear extinction memory.
Collapse
Affiliation(s)
- Laura E Maglio
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
- Departamento de Ciencias Médicas Básicas (Fisiología) and Instituto de Tecnologías Biomédicas (ITB), Universidad de La LagunaTenerifeSpain
| | - José A Noriega-Prieto
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
- Department of Neuroscience, University of MinnesotaMinneapolisUnited States
| | - Irene B Maroto
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Universitario de Investigación Neuroquímica (IUIN), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de MadridMadridSpain
| | - Jesús Martin-Cortecero
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
- Institute of Physiology and Pathophysiology, Medical Biophysic, Heidelberg UniversityHeidelbergGermany
| | - Antonio Muñoz-Callejas
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
| | - Marta Callejo-Móstoles
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
| | - David Fernández de Sevilla
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
5
|
Demir EA, Karagoz M. Platelet-Rich Plasma (PRP) is a Potential Self-Sourced Cognition Booster in Elderly Mice. Exp Aging Res 2020; 46:139-153. [PMID: 31939709 DOI: 10.1080/0361073x.2020.1716154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: A complex set of neurotrophic growth factors participates in neuroplasticity in the aging brain. Platelets are a copious source of growth factors, most of which display also the neurotropic activity. On this basis, we investigated behavioral and cognitive consequences of the administration of intravenous allogeneic platelet-rich plasma (PRP) in senescent mice.Methods: The animals (16-18 months old) were injected with either physiological saline or PRP which was acquired from age-matched counterparts and subjected to a battery of tests comprised of open-field, elevated-plus maze, tail suspension, and Morris water maze test.Results: We found that PRP treatment increases locomotion and improves learning and memory in elderly mice. Importantly, the PRP-treated animals did not exhibit any anxiety- or depression-like behaviors.Conclusion: The present study is the first to demonstrate that allogeneic PRP possesses beneficial effects against cognitive aging and it signifies that PRP may be used as a novel self-sourced treatment in age-related cognitive decline.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mehtap Karagoz
- Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
6
|
Chen L, Zhang B, Shan S, Zhao X. Neuroprotective effects of vitexin against isoflurane-induced neurotoxicity by targeting the TRPV1 and NR2B signaling pathways. Mol Med Rep 2016; 14:5607-5613. [PMID: 27878303 DOI: 10.3892/mmr.2016.5948] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 07/12/2016] [Indexed: 11/05/2022] Open
Abstract
Vitexin is a bioactive compound extracted from hawthorn leaves, which reduces blood pressure and has anti‑inflammatory and potential anticancer effects. However, the mechanisms underlying the protective effects of vitexin against isoflurane‑induced neurotoxicity remain elusive. Therefore, the aim of the present study was to investigate these mechanisms further. Sprague Dawley rats received 1.4% isoflurane in a 100% oxygen environment for 2 h. Human PC12 pheochromocytoma neurosecretory cells were exposed to 2% isoflurane for 12 h before they were treated with 1, 10 or 100 µM vitexin for a further 24 h. Vitexin inhibited the isoflurane-induced cell cytotoxicity and weakened isoflurane-induced neuroinflammation and oxidative stress pathways in PC12 cells. In addition, treatment with vitexin suppressed isoflurane‑induced caspase‑3 activation and increased β-secretase 1 levels in PC12 cells. Furthermore, vitexin treatment decreased the levels of isoflurane‑induced cytosolic calcium and reactive oxygen species, and downregulated the expression of transient receptor potential cation channel subfamily V member 1 (TRPV1) and glutamate ionotropic receptor NMDA type subunit 2B (NR2B) protein expression in isoflurane-treated PC12 cells. These results suggest that vitexin mediates its protective effects against isoflurane-induced neurotoxicity by targeting the TRPV1 and NR2B signaling pathways.
Collapse
Affiliation(s)
- Linlin Chen
- Department of Anesthesiology, The Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Bin Zhang
- Department of Anesthesiology, The Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shiqiang Shan
- Department of Anesthesiology, The Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Xin Zhao
- Department of Anesthesiology, The Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
7
|
Mysoet J, Canu MH, Gillet C, Fourneau J, Garnier C, Bastide B, Dupont E. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration. Behav Brain Res 2016; 317:434-443. [PMID: 27717815 DOI: 10.1016/j.bbr.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity.
Collapse
Affiliation(s)
- Julien Mysoet
- Univ. Lille, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Eurasport, 413 Rue Eugène Avinée, F-59120 Loos, France.
| | - Marie-Hélène Canu
- Univ. Lille, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Eurasport, 413 Rue Eugène Avinée, F-59120 Loos, France.
| | - Christophe Gillet
- Univ. Valenciennes, LAMIH UMR CNRS 8201 - Laboratory of Industrial and Human Automation control, Mechanical engineering and Computer Science, Le Mont Houy, F-59313 Valenciennes cedex 9, France.
| | - Julie Fourneau
- Univ. Lille, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Eurasport, 413 Rue Eugène Avinée, F-59120 Loos, France.
| | - Cyril Garnier
- Univ. Valenciennes, LAMIH UMR CNRS 8201 - Laboratory of Industrial and Human Automation control, Mechanical engineering and Computer Science, Le Mont Houy, F-59313 Valenciennes cedex 9, France.
| | - Bruno Bastide
- Univ. Lille, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Eurasport, 413 Rue Eugène Avinée, F-59120 Loos, France.
| | - Erwan Dupont
- Univ. Lille, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Eurasport, 413 Rue Eugène Avinée, F-59120 Loos, France.
| |
Collapse
|
8
|
The effects of testosterone and insulin-like growth factor 1 on motor system form and function. Exp Gerontol 2015; 64:81-6. [PMID: 25681641 DOI: 10.1016/j.exger.2015.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/31/2015] [Accepted: 02/10/2015] [Indexed: 12/25/2022]
Abstract
In this perspective article, we review the effects of selected anabolic hormones on the motoric system and speculate on the role these hormones may have on influencing muscle and physical function via their impact on the nervous system. Both muscle strength and anabolic hormone levels decline around middle age into old age over a similar time period, and several animal and human studies indicate that exogenously increasing anabolic hormones (e.g., testosterone and insulin-like growth factor-1 (IGF-1)) in aged subjects is positively associated with improved muscle strength. While most studies in humans have focused on the effects of anabolic hormones on muscle growth, few have considered the impact these hormones have on the motoric system. However, data from animals demonstrate that administering either testosterone or IGF-1 to cells of the central and peripheral motor system can increase cell excitability, attenuate atrophic changes, and improve regenerative capacity of motor neurons. While these studies do not directly indicate that changes in anabolic hormones contribute to reduced human performance in the elderly (e.g., muscle weakness and physical limitations), they do suggest that additional research is warranted along these lines.
Collapse
|
9
|
Hypoactivity affects IGF-1 level and PI3K/AKT signaling pathway in cerebral structures implied in motor control. PLoS One 2014; 9:e107631. [PMID: 25226394 PMCID: PMC4166665 DOI: 10.1371/journal.pone.0107631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
A chronic reduction in neuromuscular activity through prolonged body immobilization in human alters motor task performance through a combination of peripheral and central factors. Studies performed in a rat model of sensorimotor restriction have shown functional and biochemical changes in sensorimotor cortex. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of Insulin-like Growth Factor 1 (IGF-1), a growth factor known to mediate neuronal excitability and synaptic plasticity by inducing phosphorylation cascades which include the PI3K–AKT pathway. In order to better understand the influence of IGF-1 in cortical plasticity in rats submitted to a sensorimotor restriction, we analyzed the effect of hindlimb unloading on IGF-1 and its main molecular pathway in structures implied in motor control (sensorimotor cortex, striatum, cerebellum). IGF-1 level was determined by ELISA, and phosphorylation of its receptor and proteins of the PI3K–AKT pathway by immunoblot. In the sensorimotor cortex, our results indicate that HU induces a decrease in IGF-1 level; this alteration is associated to a decrease in activation of PI3K-AKT pathway. The same effect was observed in the striatum, although to a lower extent. No variation was noticed in the cerebellum. These results suggest that IGF-1 might contribute to cortical and striatal plasticity induced by a chronic sensorimotor restriction.
Collapse
|
10
|
Ureshino RP, Rocha KK, Lopes GS, Bincoletto C, Smaili SS. Calcium signaling alterations, oxidative stress, and autophagy in aging. Antioxid Redox Signal 2014; 21:123-37. [PMID: 24512092 DOI: 10.1089/ars.2013.5777] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Aging is a multi-factorial process that may be associated with several functional and structural deficits which can evolve into degenerative diseases. In this review, we present data that may depict an expanded view of molecular aging theories, beginning with the idea that reactive oxygen species (ROS) are the major effectors in this process. In addition, we have correlated the importance of autophagy as a neuroprotective mechanism and discussed a link between age-related molecules, Ca(2+) signaling, and oxidative stress. RECENT ADVANCES There is evidence suggesting that alterations in Ca(2+) homeostasis, including mitochondrial Ca(2+) overload and alterations in electron transport chain (ETC) complexes, which increase cell vulnerability, are linked to oxidative stress in aging. As much as Ca(2+) signaling is altered in aged cells, excess ROS can be produced due to an ineffective coupling of mitochondrial respiration. Damaged mitochondria might not be removed by the macroautophagic system, which is hampered in aging by lipofuscin accumulation, boosting ROS generation, damaging DNA, and, ultimately, leading to apoptosis. CRITICAL ISSUES This process can lead to altered protein expression (such as p53, Sirt1, and IGF-1) and progress to cell death. This cycle can lead to increased cell vulnerability in aging and contribute to an increased susceptibility to degenerative processes. FUTURE DIRECTIONS A better understanding of Ca(2+) signaling and molecular aging alterations is important for preventing apoptosis in age-related diseases. In addition, caloric restriction, resveratrol and autophagy modulation appear to be predominantly cytoprotective, and further studies of this process are promising in age-related disease therapeutics.
Collapse
|
11
|
Ferrante M, Blackwell KT, Migliore M, Ascoli GA. Computational models of neuronal biophysics and the characterization of potential neuropharmacological targets. Curr Med Chem 2008; 15:2456-71. [PMID: 18855673 PMCID: PMC3560392 DOI: 10.2174/092986708785909094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The identification and characterization of potential pharmacological targets in neurology and psychiatry is a fundamental problem at the intersection between medicinal chemistry and the neurosciences. Exciting new techniques in proteomics and genomics have fostered rapid progress, opening numerous questions as to the functional consequences of ligand binding at the systems level. Psycho- and neuro-active drugs typically work in nerve cells by affecting one or more aspects of electrophysiological activity. Thus, an integrated understanding of neuropharmacological agents requires bridging the gap between their molecular mechanisms and the biophysical determinants of neuronal function. Computational neuroscience and bioinformatics can play a major role in this functional connection. Robust quantitative models exist describing all major active membrane properties under endogenous and exogenous chemical control. These include voltage-dependent ionic channels (sodium, potassium, calcium, etc.), synaptic receptor channels (e.g. glutamatergic, GABAergic, cholinergic), and G protein coupled signaling pathways (protein kinases, phosphatases, and other enzymatic cascades). This brief review of neuromolecular medicine from the computational perspective provides compelling examples of how simulations can elucidate, explain, and predict the effect of chemical agonists, antagonists, and modulators in the nervous system.
Collapse
Affiliation(s)
| | - Kim T. Blackwell
- Krasnow Institute for Advanced Study, George Mason University
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia
| |
Collapse
|
12
|
McCusker RH, McCrea K, Zunich S, Dantzer R, Broussard SR, Johnson RW, Kelley KW. Insulin-like growth factor-I enhances the biological activity of brain-derived neurotrophic factor on cerebrocortical neurons. J Neuroimmunol 2006; 179:186-90. [PMID: 16890297 DOI: 10.1016/j.jneuroim.2006.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/14/2006] [Accepted: 06/14/2006] [Indexed: 01/05/2023]
Abstract
Insulin-like growth factor (IGF)-I and brain-derived neurotrophic factor (BDNF) act within the brain to enhance neuronal survival and plasticity. We extend these findings by showing that the presence of both neurotrophins is required to depress the rise in intracellular Ca2+ caused by glutamate in primary cultures of cerebrocortical neurons. IGF-I enhanced expression of BDNF receptors (Trk-B) and increased the ability of BDNF to induce ERK1/2 phosphorylation. This IGF-I-induced increase in BDNF responsiveness describes a new interaction between these peptides in the brain.
Collapse
|
13
|
Payne AM, Zheng Z, Messi ML, Milligan CE, González E, Delbono O. Motor neurone targeting of IGF-1 prevents specific force decline in ageing mouse muscle. J Physiol 2005; 570:283-94. [PMID: 16293644 PMCID: PMC1464304 DOI: 10.1113/jphysiol.2005.100032] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IGF-1 is a potent growth factor for both motor neurones and skeletal muscle. Muscle IGF-1 is known to provide target-derived trophic effects on motor neurones. Therefore, IGF-1 overexpression in muscle is effective in delaying or preventing deleterious effects of ageing in both tissues. Since age-related decline in muscle function stems partly from motor neurone loss, a tetanus toxin fragment-C (TTC) fusion protein was created to target IGF-1 to motor neurones. IGF-1-TTC retains IGF-1 activity as indicated by [(3)H]thymidine incorporation into L6 myoblasts. Spinal cord motor neurones effectively bound and internalized the IGF-1-TTC in vitro. Similarly, IGF-1-TTC injected into skeletal muscles was taken up and retrogradely transported to the spinal cord in vivo, a process prevented by denervation of injected muscles. Three monthly IGF-1-TTC injections into muscles of ageing mice did not increase muscle weight or muscle fibre size, but significantly increased single fibre specific force over aged controls injected with saline, IGF-1, or TTC. None of the injections changed muscle fibre type composition, but neuromuscular junction post-terminals were larger and more complex in muscle fibres injected with IGF-1-TTC, compared to the other groups, suggesting preservation of muscle fibre innervation. This work demonstrates that induced overexpression of IGF-1 in spinal cord motor neurones of ageing mice prevents muscle fibre specific force decline, a hallmark of ageing skeletal muscle.
Collapse
Affiliation(s)
- Anthony M Payne
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|