1
|
Estay SF, Morales-Moraga C, Vielma AH, Palacios-Muñoz A, Chiu CQ, Chávez AE. Non-canonical type 1 cannabinoid receptor signaling regulates night visual processing in the inner rat retina. iScience 2024; 27:109920. [PMID: 38799553 PMCID: PMC11126983 DOI: 10.1016/j.isci.2024.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 cannabinoid receptors (CB1Rs) are expressed in major retinal neurons within the rod-pathway suggesting a role in regulating night visual processing, but the underlying mechanisms remain poorly understood. Using acute rat retinal slices, we show that CB1R activation reduces glutamate release from rod bipolar cell (RBC) axon terminals onto AII and A17 amacrine cells through a pathway that requires exchange proteins directly activated by cAMP (EPAC1/2) signaling. Consequently, CB1R activation abrogates reciprocal GABAergic feedback inhibition from A17 amacrine cells. Moreover, the activation of CB1Rs in vivo enhances and prolongs the time course of the dim-light rod-driven visual responses, an effect that was eliminated when both GABAA and GABAC receptors were blocked. Altogether, our findings underscore a non-canonical mechanism by which cannabinoid signaling regulates RBC dyad synapses in the inner retina to regulate dim-light visual responses to fine-tune night vision.
Collapse
Affiliation(s)
- Sebastián F. Estay
- Programa de Doctorado en Ciencias, Mención Neurociencia, Valparaíso 2340000, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Camila Morales-Moraga
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Chiayu Q. Chiu
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
2
|
Moore-Dotson JM, Klein JS, Mazade RE, Eggers ED. Different types of retinal inhibition have distinct neurotransmitter release properties. J Neurophysiol 2015; 113:2078-90. [PMID: 25568157 DOI: 10.1152/jn.00447.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/06/2015] [Indexed: 01/27/2023] Open
Abstract
Neurotransmitter release varies between neurons due to differences in presynaptic mechanisms such as Ca(2+) sensitivity and timing. Retinal rod bipolar cells respond to brief dim illumination with prolonged glutamate release that is tuned by the differential release of GABA and glycine from amacrine cells in the inner retina. To test if differences among types of GABA and glycine release are due to inherent amacrine cell release properties, we directly activated amacrine cell neurotransmitter release by electrical stimulation. We found that the timing of electrically evoked inhibitory currents was inherently slow and that the timecourse of inhibition from slowest to fastest was GABAC receptors > glycine receptors > GABAA receptors. Deconvolution analysis showed that the distinct timing was due to differences in prolonged GABA and glycine release from amacrine cells. The timecourses of slow glycine release and GABA release onto GABAC receptors were reduced by Ca(2+) buffering with EGTA-AM and BAPTA-AM, but faster GABA release on GABAA receptors was not, suggesting that release onto GABAA receptors is tightly coupled to Ca(2+). The differential timing of GABA release was detected from spiking amacrine cells and not nonspiking A17 amacrine cells that form a reciprocal synapse with rod bipolar cells. Our results indicate that release from amacrine cells is inherently asynchronous and that the source of nonreciprocal rod bipolar cell inhibition differs between GABA receptors. The slow, differential timecourse of inhibition may be a mechanism to match the prolonged rod bipolar cell glutamate release and provide a way to temporally tune information across retinal pathways.
Collapse
Affiliation(s)
- Johnnie M Moore-Dotson
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| | - Justin S Klein
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| | - Reece E Mazade
- Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, Arizona
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
3
|
Cui J, Ivanova E, Qi L, Pan ZH. Expression of CaV3.2 T-type Ca²⁺ channels in a subpopulation of retinal type-3 cone bipolar cells. Neuroscience 2012; 224:63-9. [PMID: 22909426 DOI: 10.1016/j.neuroscience.2012.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 11/17/2022]
Abstract
Retinal bipolar cells and ganglion cells are known to possess voltage-gated T-type Ca(2+) channels. Previous electrophysiological recording studies suggested that there is differential expression of different T-type Ca(2+) channel α1 subunits among bipolar cells. The detailed expression patterns of the individual T-type Ca(2+) channel subunits in the retina, however, remain unknown. In this study, we examined the expression of the Ca(V)3.2 Ca(2+) channel α1 subunit in the mouse retina using immunohistochemical analysis and patch-clamp recordings together with a Ca(V)3.2 knock out (KO) mouse line. The specificity of a Ca(V)3.2 Ca(2+) channel antibody was first confirmed in recombinant T-type Ca(2+) channels expressed in human embryonic kidney (HEK) cells and in Ca(V)3.2 KO mice. Our immunohistochemical analysis indicates that the Ca(V)3.2 antibody labels a subgroup of type-3 cone bipolar cells (CBCs), the PKAβII-immunopositive type-3 CBCs. The labeling was observed throughout the cell including dendrites and axon terminals. Our patch-clamp recording results further demonstrate that Ca(V)3.2 Ca(2+) channels contribute to the T-type Ca(2+) current in a subpopulation of type-3 CBCs. The findings of this study provide new insights into understanding the functional roles of T-type Ca(2+) channels in retinal processing.
Collapse
Affiliation(s)
- J Cui
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | | | | | | |
Collapse
|
4
|
Selective glycine receptor α2 subunit control of crossover inhibition between the on and off retinal pathways. J Neurosci 2012; 32:3321-32. [PMID: 22399754 DOI: 10.1523/jneurosci.5341-11.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the retina, the receptive fields (RFs) of almost all ganglion cells (GCs) are comprised of an excitatory center and a suppressive surround. The RF center arises from local excitatory bipolar cell (BC) inputs and the surround from lateral inhibitory inputs. Selective antagonists have been used to define the roles of GABA(A) and GABA(C) receptor-mediated input in RF organization. In contrast, the role of glycine receptor (GlyR) subunit-specific inhibition is less clear because the only antagonist, strychnine, blocks all GlyR subunit combinations. We used mice lacking the GlyRα2 (Glra2(-/-)) and GlyRα3 (Glra3(-/-)) subunits, or both (Glra2/3(-/-)), to explore their roles in GC RF organization. By comparing spontaneous and visually evoked responses of WT with Glra2(-/-), Glra3(-/-) and Glra2/3(-/-) ON- and OFF-center GCs, we found that both GlyRα2 and GlyRα3 modulate local RF interactions. In the On pathway, both receptors enhance the excitatory center response; however, the underlying inhibitory mechanisms differ. GlyRα2 participates in crossover inhibition, whereas GlyRα3 mediates serial inhibition. In the Off pathway, GlyRα2 plays a similar role, again using crossover inhibition and enhancing excitatory responses within the RF center. Comparisons of single and double KOs indicate that GlyRα2 and GlyRα3 inhibition are independent and additive, consistent with the finding that they use different inhibitory circuitry. These findings are the first to define GlyR subunit-specific control of visual function and GlyRα2 subunit-specific control of crossover inhibition in the retina.
Collapse
|
5
|
Song Y, Slaughter MM. GABA(B) receptor feedback regulation of bipolar cell transmitter release. J Physiol 2010; 588:4937-49. [PMID: 20974680 DOI: 10.1113/jphysiol.2010.194233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABAergic amacrine cell feedback to bipolar cells in retina has been described, activating both GABA(A) and GABA(C) receptors. We explored whether metabotropic GABA(B) receptors also participate in this feedback pathway. CGP55845, a potent GABA(B) receptor antagonist, was employed to determine the endogenous role of these receptors. Ganglion cell EPSCs and IPSCs were monitored to measure the output of bipolar and amacrine cells. Using the tiger salamander slice preparation, we found that GABA(B) receptor pathways regulate bipolar cell release directly and indirectly. In the direct pathway, the GABA(B) receptor antagonist reduces EPSC amplitude, indicating that GABA(B) receptors cause enhanced glutamate release from bipolar cells to one set of ganglion cells. In the indirect pathway, the GABA(B) receptor antagonist reduces EPSC amplitude in another set of ganglion cells. The indirect pathway is only evident when GABA(A) receptors are inhibited, and is blocked by a glycine receptor antagonist. Thus, this second feedback pathway involves direct glycine feedback to the bipolar cell and this glycinergic amacrine cell is suppressed by GABAergic amacrine cells, through both GABA(A) and GABA(B) but not GABA(C) receptors. Overall, GABA(B) receptors do contribute to feedback regulation of bipolar cell transmitter release. However, unlike the ionotropic GABA receptor pathways, the metabotropic GABA receptor pathways act to enhance bipolar cell transmitter release. Furthermore, there are three discrete subsets of bipolar cell output regulated by GABA(B) receptor feedback (direct, indirect and null), implying three distinct, non-overlapping bipolar cell to ganglion cell circuits.
Collapse
Affiliation(s)
- Yunbo Song
- Department of Physiology & Biophysics, Center for Neuroscience, 124 Sherman Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | |
Collapse
|
6
|
Abstract
GABAergic feedback inhibition from amacrine cells shapes visual signaling in the inner retina. Rod bipolar cells (RBCs), ON-sensitive cells that depolarize in response to light increments, receive reciprocal GABAergic feedback from A17 amacrine cells and additional GABAergic inputs from other amacrine cells located laterally in the inner plexiform layer. The circuitry and synaptic mechanisms underlying lateral GABAergic inhibition of RBCs are poorly understood. A-type and rho-subunit-containing (C-type) GABA receptors (GABA(A)Rs and GABA(C)Rs) mediate both forms of inhibition, but their relative activation during synaptic transmission is unclear, and potential interactions between adjacent reciprocal and lateral synapses have not been explored. Here, we recorded from RBCs in acute slices of rat retina and isolated lateral GABAergic inhibition by pharmacologically ablating A17 amacrine cells. We found that amacrine cells providing lateral GABAergic inhibition to RBCs receive excitatory synaptic input mostly from ON bipolar cells via activation of both Ca(2+)-impermeable and Ca(2+)-permeable AMPA receptors (CP-AMPARs) but not NMDA receptors (NMDARs). Voltage-gated Ca(2+) (Ca(v)) channels mediate the majority of Ca(2+) influx that triggers GABA release, although CP-AMPARs contribute a small component. The intracellular Ca(2+) signal contributing to transmitter release is amplified by Ca(2+)-induced Ca(2+) release from intracellular stores via activation of ryanodine receptors. Furthermore, lateral nonreciprocal feedback is mediated primarily by GABA(C)Rs that are activated independently from receptors mediating reciprocal feedback inhibition. These results illustrate numerous physiological differences that distinguish GABA release at reciprocal and lateral synapses, indicating complex, pathway-specific modulation of RBC signaling.
Collapse
|
7
|
Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci 2009; 29:9186-96. [PMID: 19625509 DOI: 10.1523/jneurosci.0184-09.2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By expressing channel rhodopsin-2 (ChR2) in inner retinal neurons, previous studies have demonstrated restoration of ON responses in the retina after the death of rod and cone photoreceptors. In this study, we report that the expression of halorhodopsin (HaloR), a light-driven chloride pump, can effectively restore OFF responses in inner retinal neurons of mice with retinal degeneration. We show that HaloR-expressing retinal ganglion cells respond to light with rapid hyperpolarization and suppression of spike activity. After termination of the light stimulus, their membrane potential exhibits a rapid rebound overshoot with robust sustained or transient spike firing. Furthermore, we show that coexpression of ChR2/HaloR in retinal ganglion cells can produce ON, OFF, and even ON-OFF responses, depending on the wavelength of the light stimulus. Our results suggest that the expression of multiple microbial rhodopsins such as ChR2 and HaloR is a possible strategy to restore both ON and OFF light responses in the retina after the death of rod and cone photoreceptors.
Collapse
|
8
|
Mørkve SH, Hartveit E. Properties of glycine receptors underlying synaptic currents in presynaptic axon terminals of rod bipolar cells in the rat retina. J Physiol 2009; 587:3813-30. [PMID: 19528247 DOI: 10.1113/jphysiol.2009.173583] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The excitability of presynaptic terminals can be controlled by synaptic input that directly targets the terminals. Retinal rod bipolar axon terminals receive presynaptic input from different types of amacrine cells, some of which are glycinergic. Here, we have performed patch-clamp recordings from rod bipolar axon terminals in rat retinal slices. We used whole-cell recordings to study glycinergic inhibitory postsynaptic currents (IPSCs) under conditions of adequate local voltage clamp and outside-out patch recordings to study biophysical and pharmacological properties of the glycine receptors with ultrafast application. Glycinergic IPSCs, recorded in both intact cells and isolated terminals, were strychnine sensitive and displayed fast kinetics with a double-exponential decay. Ultrafast application of brief (approximately 1 ms) pulses of glycine (3 mM) to patches evoked responses with fast, double-exponential deactivation kinetics, no evidence of desensitization in double-pulse experiments, relatively low apparent affinity (EC(50) approximately 100 microM), and high maximum open probability (0.9). Longer pulses evoked slow, double-exponential desensitization and double-pulse experiments indicated slow, double-exponential recovery from desensitization. Non-stationary noise analysis of IPSCs and patch responses yielded single-channel conductances of approximately 41 pS and approximately 64 pS, respectively. Directly observed single-channel gating occurred at approximately 40-50 pS and approximately 80-90 pS in both types of responses, suggesting a mixture of heteromeric and homomeric receptors. Synaptic release of glycine leads to transient receptor activation, with about eight receptors available to bind transmitter after release of a single vesicle. With a low intracellular chloride concentration, this leads to either hyperpolarizing or shunting inhibition that will counteract passive and regenerative depolarization and depolarization-evoked transmitter release.
Collapse
Affiliation(s)
- Svein Harald Mørkve
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | |
Collapse
|
9
|
Majumdar S, Weiss J, Wässle H. Glycinergic input of widefield, displaced amacrine cells of the mouse retina. J Physiol 2009; 587:3831-49. [PMID: 19528249 DOI: 10.1113/jphysiol.2009.171207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycine receptors (GlyRs) of displaced amacrine cells of the mouse retina were analysed using whole cell recordings and immunocytochemical staining with subunit-specific antibodies. During the recordings the cells were filled with a fluorescent tracer and 11 different morphological types could be identified. The studies were performed in wild-type mice and in mutant mice deficient in the GlyRalpha1 (Glra1(spd-ot), 'oscillator' mouse), the GlyRalpha2 (Glra2(-/-)) and the GlyRalpha3 subunit (Glra3(-/-)). Based on their responses to the application of exogenous glycine in the retinas of wild-type and mutant mice, the cells were grouped into three major classes: group I cells (comprising the morphological types MA-S5, MA-S1, MA-S1/S5, A17, PA-S1, PA-S5 and WA-S1), group II cells (comprising the morphological types PA-S4, WA-S3 and WA-multi) and ON-starburst cells. For further analysis, spontaneous inhibitory postsynaptic currents (sIPSCs) were measured both in wild-type and mutant mouse retinas. Glycinergic sIPSCs and glycine induced currents of group I cells remained unaltered across wild-type and the three mutant mice (mean decay time constant of sIPSCs, tau approximately 25 ms). Group II cells showed glycinergic sIPSCs and glycine induced currents in wild-type, Glra1(spd-ot) and Glra3(-/-) mice (tau approximately 25 ms); however, glycinergic currents were absent in group II cells of Glra2(-/-) mice. Glycine induced currents and sIPSCs recorded from ON-starburst amacrine cells did not differ significantly between wild-type and the mutant mouse retinas (tau approximately 50-70 ms). We propose that GlyRs of group II cells are dominated by the alpha2 subunit; GlyRs of ON-starburst amacrine cells appear to be dominated by the alpha4 subunit.
Collapse
Affiliation(s)
- Sriparna Majumdar
- Max-Planck-Institut für Hirnforschung, Deutschordenstr. 46, D-60528 Frankfurt/Main, Germany
| | | | | |
Collapse
|
10
|
Differential expression of three T-type calcium channels in retinal bipolar cells in rats. Vis Neurosci 2009; 26:177-87. [PMID: 19275782 DOI: 10.1017/s0952523809090026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinal bipolar cells convey visual information from photoreceptors to retinal third-order neurons, amacrine and ganglion cells, with graded potentials through diversified cell types. To understand the possible role of voltage-dependent T-type Ca2+ currents in retinal bipolar cells, we investigated the pharmacological and biophysical properties of T-type Ca2+ currents in acutely dissociated retinal cone bipolar cells from rats using whole-cell patch-clamp recordings. We observed a broad group of cone bipolar cells with prominent T-type Ca2+ currents (T-rich) and another group with prominent L-type Ca2+ currents (L-rich). Based on the pharmacological and biophysical properties of the T-type Ca2+ currents, T-rich cone bipolar cells could be divided into three subgroups. Each subgroup appeared to express a single dominant T-type Ca2+ channel subunit. The T-type calcium currents could generate low-threshold regenerative potentials or spikes. Our results suggest that T-type Ca2+ channels may play an active and distinct signaling role in second-order neurons of the visual system, in contrast to the common signaling by L-rich bipolar cells.
Collapse
|
11
|
Oltedal L, Veruki ML, Hartveit E. Passive membrane properties and electrotonic signal processing in retinal rod bipolar cells. J Physiol 2009; 587:829-49. [PMID: 19124538 DOI: 10.1113/jphysiol.2008.165415] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rod bipolar cells transmit visual signals from their dendrites, where they receive input from rod photoreceptors, to their axon terminals, where they synapse onto amacrine cells. Little is known, however, about the transmission and possible transformation of these signals. We have combined axon terminal recording in retinal slices, quantitative, light-microscopic morphological reconstruction and computer modelling to obtain detailed compartmental models of rat rod bipolar cells. Passive cable properties were estimated by directly fitting the current responses of the models evoked by voltage pulses to the physiologically recorded responses. At a holding potential of -60 mV, the average best-fit parameters were 1.1 microF cm(-2) for specific membrane capacitance (C(m)), 130 Omega cm for cytoplasmic resistivity (R(i)), and 24 kOmega cm(2) for specific membrane resistance (R(m)). The passive integration of excitatory and inhibitory synaptic inputs was examined by computer modelling with physiologically realistic synaptic conductance waveforms. For both transient and steady-state synaptic inhibition, the inhibitory effect was relatively insensitive to the location of the inhibition. For transient synaptic inhibition, the time window of effective inhibition depended critically on the relative timing of inhibition and excitation. The passive signal transmission between soma and axon terminal was examined by the electrotonic transform and quantified as the frequency-dependent voltage attenuation of sinusoidal voltage waveforms. For the range of parameters explored (axon diameter and length, R(i)), the lowest cutoff frequency observed was approximately 300 Hz, suggesting that realistic scotopic visual signals will be faithfully transmitted from soma to axon terminal, with minimal passive attenuation along the axon.
Collapse
Affiliation(s)
- Leif Oltedal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
12
|
Abstract
Two groups of retinal cone bipolar cells (CBCs) in rats were found to express voltage-gated Na+ channels. The axon terminals of the first group stratify in sublamina 2 of the inner plexiform layer (IPL) and partially overlap with the OFF-cholinergic band. This group was identified as type 3 CBCs. The axon terminals of the second group stratify in sublamina 3 of the IPL, slightly distal to the ON-cholinergic band. Cells of this second group resemble type 5 CBCs. In addition, we observed another group of ON-type CBCs with terminal stratification similar to that of the second group. However, this latter group did not show any Na+ current, instead exhibiting a large hyperpolarization-activated cyclic nucleotide-gated cation current, suggesting the existence of two subclasses of physiologically distinct type 5 CBCs. Both groups of Na+-expressing bipolar cells were capable of generating a rapid tetrodotoxin-sensitive action potential as revealed by current injection. Multiple spike-like potentials were also observed in some of these cells. Results of this study provide valuable insights into the function of voltage-gated Na+ channels of retinal bipolar cells in retinal processing.
Collapse
Affiliation(s)
- Jinjuan Cui
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
13
|
Diverse mechanisms underlie glycinergic feedback transmission onto rod bipolar cells in rat retina. J Neurosci 2008; 28:7919-28. [PMID: 18667624 DOI: 10.1523/jneurosci.0784-08.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic inhibition shapes visual signaling in the inner retina, but the physiology of most amacrine cells, the interneurons that mediate this inhibition, is poorly understood. Discerning the function of most individual amacrine cell types is a daunting task, because few molecular or morphological markers specifically distinguish between approximately two dozen different amacrine cell types. Here, we examine a functional subset of amacrine cells by pharmacologically isolating glycinergic inhibition and evoking feedback IPSCs in a single cell type, the rod bipolar cell (RBC), with brief glutamate applications in the inner plexiform layer. We find that glycinergic amacrine cells innervating RBCs receive excitatory inputs from ON and OFF bipolar cells primarily via NMDA receptors (NMDARs) and Ca2+-impermeable AMPA-type glutamate receptors. Glycine release from amacrine cells is triggered by Ca2+ influx through both voltage-gated Ca2+ (Ca(v)) channels and NMDARs. These intracellular Ca2+signals are amplified by Ca2+-induced Ca2+ release via both ryanodine and IP3 receptors, which are activated independently by Ca2+ influx through Ca(v) channels and NMDARs, respectively. Glycinergic feedback signaling depends strongly, although not completely, on voltage-gated Na+ channels, and the spatial extent of feedback inhibition is expanded by gap junction connections between glycinergic amacrine cells. These results indicate that a diversity of mechanisms underlie glycinergic feedback inhibition onto RBCs, yet they highlight several physiological themes that appear to distinguish amacrine cell function.
Collapse
|
14
|
McCall MA, Gregg RG. Comparisons of structural and functional abnormalities in mouse b-wave mutants. J Physiol 2008; 586:4385-92. [PMID: 18653656 DOI: 10.1113/jphysiol.2008.159327] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the most simplistic view, the retinal circuit can be divided into vertical excitatory pathways that use glutamate as their neurotransmitter and lateral inhibitory pathways in the outer and inner synaptic layers that modulate excitation via glycine and GABA. Within the vertical excitatory pathways, the visual signal is initiated in the rod, cone or both photoreceptors, depending on the adaptation state of the retina. This signal is transmitted to the rest of the retina through the bipolar cells, which can be subdivided based on: the photoreceptor that provides their input, their dendritic and axonal morphology, and the polarity of their response evoked by a luminance increment, e.g. depolarizing or hyperpolarizing responses. The polarity of this response is controlled by the type of glutamatergic postsynaptic receptor that is expressed on their dendritic terminals. Hyperpolarizing bipolar cells express AMPA/kainate receptors, whereas depolarizing bipolar cells (DBCs) express the metabotropic glutamate receptor 6 (Grm6). The electroretinogram (ERG) is a non-invasive method used to assess overall retinal function. The initiation of the visual signal in the photoreceptors is reflected in the ERG a-wave and the ensuing depolarization of DBCs in the b-wave. When there is failure of signal transmission from photoreceptors to DBCs or signalling within DBCs, the ERG a-wave is present, while the b-wave is absent or significantly reduced. This ERG phenotype has been found in the human population and is referred to as congenital stationary night blindness. Until recently, it had been assumed that the absence of a b-wave was indicative of a lack of signalling through the On pathway, leaving the Off pathway unaffected. Here we review recent findings that demonstrate that many mouse mutants share a no b-wave ERG phenotype but their retinal morphology and RGC responses differ significantly, suggesting very different effects of the underlying mutations on output from the DBCs to the rest of the retinal circuit.
Collapse
Affiliation(s)
- Maureen A McCall
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
15
|
Petit-Jacques J, Bloomfield SA. Synaptic regulation of the light-dependent oscillatory currents in starburst amacrine cells of the mouse retina. J Neurophysiol 2008; 100:993-1006. [PMID: 18497354 DOI: 10.1152/jn.01399.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses of on-center starburst amacrine cells to steady light stimuli were recorded in the dark-adapted mouse retina. The response to spots of dim white light appear to show two components, an initial peak that correspond to the onset of the light stimulus and a series of oscillations that ride on top of the initial peak relaxation. The frequency of oscillations during light stimulation was three time higher than the frequency of spontaneous oscillations recorded in the dark. The light-evoked responses in starburst cells were exclusively dependent on the release of glutamate likely from presynaptic bipolar axon terminals and the binding of glutamate to AMPA/kainate receptors because they were blocked by 6-cyano-7-nitroquinoxalene-2,3-dione. The synaptic pathway responsible for the light responses was blocked by AP4, an agonist of metabotropic glutamate receptors that hyperpolarize on-center bipolar cells on activation. Light responses were inhibited by the calcium channel blockers cadmium ions and nifedipine, suggesting that the release of glutamate was calcium dependent. The oscillatory component of the response was specifically inhibited by blocking the glutamate transporter with d-threo-beta-benzyloxyaspartic acid, suggesting that glutamate reuptake is necessary for the oscillatory release. GABAergic antagonists bicuculline, SR 95531, and picrotoxin increased the amplitude of the initial peak while they inhibit the frequency of oscillations. TTX had a similar effect. Strychnine, the blocker of glycine receptors did not affect the initial peak but strongly decreased the oscillations frequency. These inhibitory inputs onto the bipolar axon terminals shape and synchronize the oscillatory component.
Collapse
Affiliation(s)
- Jerome Petit-Jacques
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| | | |
Collapse
|
16
|
Electrophysiological evidence of GABAA and GABAC receptors on zebrafish retinal bipolar cells. Vis Neurosci 2008; 25:139-53. [PMID: 18442437 DOI: 10.1017/s0952523808080322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To refine inhibitory circuitry models for ON and OFF pathways in zebrafish retina, GABAergic properties of zebrafish bipolar cells were studied with two techniques: whole cell patch responses to GABA puffs in retinal slice, and voltage probe responses in isolated cells. Retinal slices documented predominantly axon terminal responses; isolated cells revealed mainly soma-dendritic responses. In the slice, GABA elicited a conductance increase, GABA responses were more robust at axon terminals than dendrites, and Erev varied with [Cl(-)]in. Axon terminals of ON- and OFF-type cells were similarly sensitive to GABA (30-40 pA peak current); axotomized cells were unresponsive. Bicuculline-sensitive, picrotoxin-sensitive, and picrotoxin-insensitive components were identified. Muscimol was as effective as GABA; baclofen was ineffective. Isolated bipolar cells were either intact or axotomized. Even in cells without an axon, GABA or muscimol (but not baclofen) hyperpolarized dendritic and somatic regions, suggesting significant distal expression. Median fluorescence change for GABA was -0.22 log units (approximately -16 mV); median half-amplitude dose was 0.4 microM. Reduced [Cl(-)]out blocked GABA responses. GABA hyperpolarized isolated ON-bipolar cells; OFF-cells were either unresponsive or depolarized. Hyperpolarizing GABA responses in isolated cells were bicuculline and TPMPA insensitive, but blocked or partially blocked by picrotoxin or zinc. In summary, axon terminals contain bicuculline-sensitive GABAA receptors and both picrotoxin-sensitive and insensitive GABAC receptors. Dendritic processes express zinc- and picrotoxin-sensitive GABAC receptors.
Collapse
|
17
|
Schubert T, Kerschensteiner D, Eggers ED, Misgeld T, Kerschensteiner M, Lichtman JW, Lukasiewicz PD, Wong ROL. Development of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific. J Neurophysiol 2008; 100:304-16. [PMID: 18436633 DOI: 10.1152/jn.90202.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic integration is modulated by inhibition onto the dendrites of postsynaptic cells. However, presynaptic inhibition at axonal terminals also plays a critical role in the regulation of neurotransmission. In contrast to the development of inhibitory synapses onto dendrites, GABAergic/glycinergic synaptogenesis onto axon terminals has not been widely studied. Because retinal bipolar cells receive subclass-specific patterns of GABAergic and glycinergic presynaptic inhibition, they are a good model for studying the development of inhibition at axon terminals. Here, using whole cell recording methods and transgenic mice in which subclasses of retinal bipolar cells are labeled, we determined the temporal sequence and patterning of functional GABAergic and glycinergic input onto the major subclasses of bipolar cells. We found that the maturation of GABAergic and glycinergic synapses onto the axons of rod bipolar cells (RBCs), on-cone bipolar cells (ON-CBCs) and off-cone bipolar cells (OFF-CBCs) were temporally distinct: spontaneous chloride-mediated currents are present in RBCs earlier in development compared with ON- and OFF-CBC, and RBCs receive GABAergic and glycinergic input simultaneously, whereas in OFF-CBCs, glycinergic transmission emerges before GABAergic transmission. Because on-CBCs show little inhibitory activity, GABAergic and glycinergic events could not be pharmacologically distinguished for these bipolar cells. The balance of GABAergic and glycinergic input that is unique to RBCs and OFF-CBCs is established shortly after the onset of synapse formation and precedes visual experience. Our data suggest that presynaptic modulation of glutamate transmission from bipolar cells matures rapidly and is differentially coordinated for GABAergic and glycinergic synapses onto distinct bipolar cell subclasses.
Collapse
Affiliation(s)
- Timm Schubert
- Department of Biological Structure, University of Washington, Seattle, Washington 98195-7420, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Weiss J, O'Sullivan G, Heinze L, Chen HX, Betz H, Wässle H. Glycinergic input of small-field amacrine cells in the retinas of wildtype and glycine receptor deficient mice. Mol Cell Neurosci 2008; 37:40-55. [DOI: 10.1016/j.mcn.2007.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/14/2007] [Accepted: 08/16/2007] [Indexed: 11/29/2022] Open
|
19
|
Molnar A, Werblin F. Inhibitory feedback shapes bipolar cell responses in the rabbit retina. J Neurophysiol 2007; 98:3423-35. [PMID: 17928553 DOI: 10.1152/jn.00838.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinal bipolar cells can be divided into on and off types based on the polarity of their response to light. Bipolar activity is further shaped by inhibitory inputs, characterized here by the events that occur immediately after the onset of a light step: 1) in most off bipolar cells, excitatory current decreased, whereas inhibitory current increased. These currents reinforced each other, enhancing the light response. 2) In about half of the on cone bipolar cells, the excitatory current increased, whereas inhibitory current decreased, also reinforcing the light response. Both of these reinforcing interactions were mediated by glycinergic inhibition. 3) In the remaining on cone bipolar cells, excitation and inhibition both increased, but inhibition was delayed so that these cells responded transiently. 4) Finally, in rod bipolar cells, excitation and inhibition both increased so that inhibition suppressed excitation, reducing the light response at all time scales. The suppressive inhibition seen in on cone and rod bipolar cells was mediated by GABA. Thus morphologically diverse bipolar cells receive only four main types of inhibitory input, and the majority of "inhibitory" inputs actually serve to enhance excitation.
Collapse
Affiliation(s)
- Alyosha Molnar
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
20
|
Majumdar S, Heinze L, Haverkamp S, Ivanova E, Wässle H. Glycine receptors of A-type ganglion cells of the mouse retina. Vis Neurosci 2007; 24:471-87. [PMID: 17550639 DOI: 10.1017/s0952523807070174] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/14/2007] [Indexed: 11/06/2022]
Abstract
A-type ganglion cells of the mouse retina represent the visual channel that transfers temporal changes of the outside world very fast and with high fidelity. In this study we combined anatomical and physiological methods in order to study the glycinergic, inhibitory input of A-type ganglion cells. Immunocytochemical studies were performed in a transgenic mouse line whose ganglion cells express green fluorescent protein (GFP). The cells were double labeled for GFP and the four alpha subunits of the glycine receptor (GlyR). It was found that most of the glycinergic input of A-type cells is through fast, alpha1-expressing synapses. Whole-cell currents were recorded from A-type ganglion cells in retinal whole mounts. The response to exogenous application of glycine and spontaneous inhibitory postsynaptic currents (sIPSCs) were measured. By comparing glycinergic currents recorded in wildtype mice and in mice with specific deletions of GlyRalpha subunits (Glra1spd-ot, Glra2-/-, Glra3-/-), the subunit composition of GlyRs of A-type ganglion cells could be further defined. Glycinergic sIPSCs of A-type ganglion cells have fast kinetics (decay time constant tau = 3.9 +/- 2.5 ms, mean +/- SD). Glycinergic sIPSCs recorded in Glra2-/- and Glra3-/- mice did not differ from those of wildtype mice. However, the number of glycinergic sIPSCs was significantly reduced in Glra1spd-ot mice and the remaining sIPSCs had slower kinetics than in wildtype mice. The results show that A-type ganglion cells receive preferentially kinetically fast glycinergic inputs, mediated by GlyRs composed of alpha1 and beta subunits.
Collapse
Affiliation(s)
- Sriparna Majumdar
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
21
|
Ge LH, Lee SC, Liu J, Yang XL. Glycine receptors are functionally expressed on bullfrog retinal cone photoreceptors. Neuroscience 2007; 146:427-34. [PMID: 17346892 DOI: 10.1016/j.neuroscience.2007.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 01/09/2007] [Accepted: 01/12/2007] [Indexed: 10/23/2022]
Abstract
Using immunocytochemical and whole cell recording techniques, we examined expression of glycine receptors on bullfrog retinal cone photoreceptors. Immunofluorescence double labeling experiments conducted on retinal sections and isolated cell preparations showed that terminals and inner segments of cones were immunoreactive to both alpha1 and beta subunits of glycine receptors. Moreover, application of glycine induced a sustained inward current from isolated cones, which increased in amplitude in a dose-dependent manner, with an EC50 (concentration of glycine producing half-maximal response) of 67.3+/-4.9 microM, and the current was blocked by the glycine receptor antagonist strychnine, but not 5,7-dichlorokynurenic acid (DCKA) of 200 microM, a blocker of the glycine recognition site at the N-methyl-D-aspartate (NMDA) receptor. The glycine-induced current reversed in polarity at a potential close to the calculated chloride equilibrium potential, and the reversal potential was changed as a function of the extracellular chloride concentration. These results suggest that strychnine-sensitive glycine receptors are functionally expressed in bullfrog cones, which may mediate signal feedback from glycinergic interplexiform cells to cones in the outer retina.
Collapse
Affiliation(s)
- L-H Ge
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
22
|
Veruki ML, Gill SB, Hartveit E. Spontaneous IPSCs and glycine receptors with slow kinetics in wide-field amacrine cells in the mature rat retina. J Physiol 2007; 581:203-19. [PMID: 17331993 PMCID: PMC2075214 DOI: 10.1113/jphysiol.2006.127316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The functional properties of glycine receptors were analysed in different types of wide-field amacrine cells, narrowly stratifying cells considered to play a role in larger-scale integration across the retina. The patch-clamp technique was used to record spontaneous IPSCs (spIPSCs) and glycine-evoked patch responses from mature rat retinal slices (4-7 weeks postnatal). Glycinergic spIPSCs were blocked reversibly by strychnine (300 nM). Compared to previously described spIPSCs in AII amacrine cells, the spIPSCs in wide-field amacrine cells displayed a very slow decay time course (tau(fast) approximately 15 ms; tau(slow) approximately 57 ms). The kinetic properties of spIPSCs in whole-cell recordings were paralleled by even slower deactivation kinetics of responses evoked by brief pulses of glycine (3 mm) to outside-out patches from wide-field amacrine cells (tau(fast) approximately 45 ms; tau(slow) approximately 350 ms). Non-stationary noise analysis of patch responses and spIPSCs yielded similar average single-channel conductances (approximately 31 and approximately 34 pS, respectively). Similar, as well as both lower- and higher-conductance levels could be identified from directly observed single-channel gating during the decay phase of spIPSCs and patch responses. These results suggest that the slow glycinergic spIPSCs in wide-field amacrine cells involve alpha2beta heteromeric receptors. Taken together with previous work, the kinetic properties of glycine receptors in different types of amacrine cells display a considerable range that is probably a direct consequence of differential expression of receptor subunits. Unique kinetic properties are likely to differentially shape the glycinergic input to different types of amacrine cells and thereby contribute to distinct integrative properties among these cells.
Collapse
Affiliation(s)
- Margaret Lin Veruki
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | |
Collapse
|
23
|
Oltedal L, Mørkve SH, Veruki ML, Hartveit E. Patch-clamp investigations and compartmental modeling of rod bipolar axon terminals in an in vitro thin-slice preparation of the mammalian retina. J Neurophysiol 2006; 97:1171-87. [PMID: 17167059 DOI: 10.1152/jn.01010.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To extend the usefulness of rod bipolar cells for studies of chemical synaptic transmission, we have performed electrophysiological recordings from rod bipolar axon terminals in an in vitro slice preparation of the rat retina. Whole cell recordings from axon terminals and cell bodies were used to investigate the passive membrane properties of rod bipolar cells and analyzed with a two-compartment equivalent electrical circuit model developed by Mennerick et al. For both terminal- and soma-end recordings, capacitive current decays were well fitted by biexponential functions. Computer simulations of simplified models of rod bipolar cells demonstrated that estimates of the capacitance of the axon terminal compartment can depend critically on the recording location, with terminal-end recordings giving the best estimates. Computer simulations and whole cell recordings demonstrated that terminal-end recordings can yield more accurate estimates of the peak amplitude and kinetic properties of postsynaptic currents generated at the axon terminals due to increased electrotonic filtering of these currents when recorded at the soma. Finally, we present whole cell and outside-out patch recordings from axon terminals with responses evoked by GABA and glycine, spontaneous inhibitory postsynaptic currents, voltage-gated Ca(2+) currents, and depolarization-evoked reciprocal synaptic responses, verifying that the recorded axon terminals are involved in normal pre- and postsynaptic relationships. These results demonstrate that axon terminals of rod bipolar cells are directly accessible to whole cell and outside-out patch recordings, extending the usefulness of this preparation for detailed studies of pre- and postsynaptic mechanisms of synaptic transmission in the CNS.
Collapse
Affiliation(s)
- Leif Oltedal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
24
|
Shen W, Jiang Z. Characterization of glycinergic synapses in vertebrate retinas. J Biomed Sci 2006; 14:5-13. [PMID: 17061147 DOI: 10.1007/s11373-006-9118-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 09/12/2006] [Indexed: 11/29/2022] Open
Abstract
Glycine is one of the essential neurotransmitters modulating visual signals in retina. Glycine activates Cl(-) permeable receptors that conduct either inhibitory or excitatory actions, depending on the Cl(-) electrical-chemical gradient (E (Cl)) positive or negative to the resting potential in the cells. Interestingly, both glycine-induced inhibitory and excitatory responses are present in adult retinas, and the effects are confined in the inner and outer retinal neurons. Glycine inhibits glutamate synapses in the inner plexiform layer (IPL), resulting in shaping light responses in ganglion cells. In contrast, glycine excites horizontal cells and On-bipolar dendrites in the outer plexiform layer (OPL). The function of glycinergic synapse in the outer retina represents the effect of network feedback from a group of centrifugal neurons, glycinergic interplexiform cells. Moreover, immunocytochemical studies identify glycine receptor subunits (alpha1, alpha2, alpha3 and beta) in retinas, forming picrotoxin-sensitive alpha-homomeric and picrotoxin-insensitive alpha/beta-heteromeric receptors. Glycine receptors are modulated by intracellular Ca(2+) and protein kinas C and A pathways. Extracellular Zn(2+) regulates glycine receptors in a concentration-dependent manner, nanomolar Zn(2+) enhancing glycine responses, and micromolar Zn(2+) suppressing glycine responses in retinal neurons. These studies describe the function and mechanism of glycinergic synapses in retinas.
Collapse
Affiliation(s)
- Wen Shen
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
25
|
Eggers ED, Lukasiewicz PD. Receptor and transmitter release properties set the time course of retinal inhibition. J Neurosci 2006; 26:9413-25. [PMID: 16971525 PMCID: PMC6674600 DOI: 10.1523/jneurosci.2591-06.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synaptic inhibition is determined by the properties of postsynaptic receptors, neurotransmitter release, and clearance, but little is known about how these factors shape sensation-evoked inhibition. The retina is an ideal system to investigate inhibition because it can be activated physiologically with light, and separate inhibitory pathways can be assayed by recording from rod bipolar cells that possess distinct glycine, GABA(A), and GABA(C) receptors (R). We show that receptor properties differentially shape spontaneous IPSCs, whereas both transmitter release and receptor properties shape light-evoked (L) IPSCs. GABA(C)R-mediated IPSCs decayed the slowest, whereas glycineR- and GABA(A)R-mediated IPSCs decayed more rapidly. Slow GABA(C)Rs determined the L-IPSC decay, whereas GABA(A)Rs and glycineRs, which mediated rapid onset responses, determined the start of the L-IPSC. Both fast and slow inhibitory inputs distinctly shaped the output of rod bipolar cells. The slow GABA(C)Rs truncated glutamate release, making the A17 amacrine cell L-EPSCs more transient, whereas the fast GABA(A)R and glycineRs reduced the initial phase of glutamate release, limiting the peak amplitude of the L-EPSC. Estimates of transmitter release time courses suggested that glycine release was more prolonged than GABA release. The time course of GABA release activating GABA(C)Rs was slower than that activating GABA(A)Rs, consistent with spillover activation of GABA(C)Rs. Thus, both postsynaptic receptor and transmitter release properties shape light-evoked inhibition in retina.
Collapse
MESH Headings
- Amacrine Cells/drug effects
- Amacrine Cells/metabolism
- Animals
- Female
- Glutamic Acid/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neural Pathways/cytology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Neurotransmitter Agents/metabolism
- Neurotransmitter Agents/pharmacology
- Photic Stimulation
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, GABA/drug effects
- Receptors, GABA/metabolism
- Receptors, Glycine/drug effects
- Receptors, Glycine/metabolism
- Receptors, Neurotransmitter/agonists
- Receptors, Neurotransmitter/antagonists & inhibitors
- Receptors, Neurotransmitter/metabolism
- Retina/cytology
- Retina/drug effects
- Retina/metabolism
- Retinal Bipolar Cells/drug effects
- Retinal Bipolar Cells/metabolism
- Synaptic Membranes/drug effects
- Synaptic Membranes/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Time Factors
- Vision, Ocular/drug effects
- Vision, Ocular/physiology
Collapse
Affiliation(s)
- Erika D. Eggers
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110
| | - Peter D. Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
26
|
Gill SB, Veruki ML, Hartveit E. Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina. J Physiol 2006; 575:739-59. [PMID: 16825305 PMCID: PMC1995674 DOI: 10.1113/jphysiol.2006.112839] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AII amacrine cells play a crucial role in retinal signal transmission under scotopic conditions. We have used rat retinal slices to investigate the functional properties of inhibitory glycine receptors on AII cells by recording spontaneous IPSCs (spIPSCs) in whole cells and glycine-evoked responses in outside-out patches. Glycinergic spIPSCs displayed fast kinetics with an average 10-90% rise time of approximately 500 mus, and a decay phase best fitted by a double-exponential function with tau(fast) approximately 4.8 ms (97.5% amplitude contribution) and tau(slow) approximately 33 ms. Decay kinetics were voltage dependent. Ultrafast application of brief ( approximately 2-5 ms) pulses of glycine (3 mm) to patches, evoked responses with fast deactivation kinetics best fitted with a double-exponential function with tau(fast) approximately 4.6 ms (85% amplitude contribution) and tau(slow) approximately 17 ms. Double-pulse experiments indicated recovery from desensitization after a 100-ms pulse of glycine with a double-exponential time course (tau(fast) approximately 71 ms and tau(slow) approximately 1713 ms). Non-stationary noise analysis of spIPSCs and patch responses, and directly observed channel gating yielded similar single-channel conductances ( approximately 41 to approximately 47 pS). In addition, single-channel gating occurred at approximately 83 pS. These results suggest that the fast glycinergic spIPSCs in AII cells are probably mediated by alpha1beta heteromeric receptors with a contribution from alpha1 homomeric receptors. We hypothesize that glycinergic synaptic input may target the arboreal dendrites of AII cells, and could serve to shunt excitatory input from rod bipolar cells and transiently uncouple the transcellular current through electrical synapses between AII cells and between AII cells and ON-cone bipolar cells.
Collapse
Affiliation(s)
- Silje Bakken Gill
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | |
Collapse
|
27
|
Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006; 50:23-33. [PMID: 16600853 PMCID: PMC1459045 DOI: 10.1016/j.neuron.2006.02.026] [Citation(s) in RCA: 512] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/12/2006] [Accepted: 02/23/2006] [Indexed: 11/21/2022]
Abstract
The death of photoreceptor cells caused by retinal degenerative diseases often results in a complete loss of retinal responses to light. We explore the feasibility of converting inner retinal neurons to photosensitive cells as a possible strategy for imparting light sensitivity to retinas lacking rods and cones. Using delivery by an adeno-associated viral vector, here, we show that long-term expression of a microbial-type rhodopsin, channelrhodopsin-2 (ChR2), can be achieved in rodent inner retinal neurons in vivo. Furthermore, we demonstrate that expression of ChR2 in surviving inner retinal neurons of a mouse with photoreceptor degeneration can restore the ability of the retina to encode light signals and transmit the light signals to the visual cortex. Thus, expression of microbial-type channelrhodopsins, such as ChR2, in surviving inner retinal neurons is a potential strategy for the restoration of vision after rod and cone degeneration.
Collapse
Affiliation(s)
- Anding Bi
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ivanova E, Müller U, Wässle H. Characterization of the glycinergic input to bipolar cells of the mouse retina. Eur J Neurosci 2006; 23:350-64. [PMID: 16420443 DOI: 10.1111/j.1460-9568.2005.04557.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycine and gamma-aminobutyric acid (GABA) are the major inhibitory transmitters of the mammalian retina, and bipolar cells receive GABAergic and glycinergic inhibition from multiple amacrine cell types. Here we evaluated the functional properties and subunit composition of glycine receptors (GlyRs) in bipolar cells. Patch-clamp recordings were performed from retinal slices of wild-type, GlyRalpha1-deficient (Glra1(spd-ot)) and GlyRalpha3-deficient (Glra3(-/-)) mice. Whole-cell currents following glycine application and spontaneous inhibitory postsynaptic currents (IPSCs) were analysed. During the recordings the cells were filled with Alexa 488 and, thus, unequivocally identified. Glycine-induced currents of bipolar cells were picrotoxinin-insensitive and thus represent heteromeric channels composed of alpha and beta subunits. Glycine-induced currents and IPSCs were absent from all bipolar cells of Glra1(spd-ot) mice, indicating that GlyRalpha1 is an essential subunit of bipolar cell GlyRs. By comparing IPSCs of bipolar cells in wild-type and Glra3(-/-) mice, no statistically significant differences were found. OFF-cone bipolar (CB) cells receive a strong glycinergic input from AII amacrine cells, that is preferentially based on the fast alpha1beta-containing channels (mean decay time constant tau = 5.9 +/- 1.4 ms). We did not observe glycinergic IPSCs in ON-CB cells and could elicit only small, if any, glycinergic currents. Rod bipolar cells receive a prominent glycinergic input that is mainly mediated by alpha1beta-containing channels (tau = 5.5 +/- 1.6 ms). Slow IPSCs, the characteristic of GlyRs containing the alpha2 subunit, were not observed in bipolar cells. Thus, different bipolar cell types receive kinetically fast glycinergic inputs, preferentially mediated by GlyRs composed of alpha1 and beta subunits.
Collapse
Affiliation(s)
- Elena Ivanova
- Department Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt/Main, Germany
| | | | | |
Collapse
|
29
|
Eggers ED, Lukasiewicz PD. GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. J Physiol 2006; 572:215-25. [PMID: 16439422 PMCID: PMC1779659 DOI: 10.1113/jphysiol.2005.103648] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rod bipolar cells relay visual signals evoked by dim illumination from the outer to the inner retina. GABAergic and glycinergic amacrine cells contact rod bipolar cell terminals, where they modulate transmitter release and contribute to the receptive field properties of third order neurones. However, it is not known how these distinct inhibitory inputs affect rod bipolar cell output and subsequent retinal processing. To determine whether GABA(A), GABA(C) and glycine receptors made different contributions to light-evoked inhibition, we recorded light-evoked inhibitory postsynaptic currents (L-IPSCs) from rod bipolar cells mediated by each pharmacologically isolated receptor. All three receptors contributed to L-IPSCs, but their relative roles differed; GABA(C) receptors transferred significantly more charge than GABA(A) and glycine receptors. We determined how these distinct inhibitory inputs affected rod bipolar cell output by recording light-evoked excitatory postsynaptic currents (L-EPSCs) from postsynaptic AII and A17 amacrine cells. Consistent with their relative contributions to L-IPSCs, GABA(C) receptor activation most effectively reduced the L-EPSCs, while glycine and GABA(A) receptor activation reduced the L-EPSCs to a lesser extent. We also found that GABAergic L-IPSCs in rod bipolar cells were limited by GABA(A) receptor-mediated inhibition between amacrine cells. We show that GABA(A), GABA(C) and glycine receptors mediate functionally distinct inhibition to rod bipolar cells, which differentially modulated light-evoked rod bipolar cell output. Our findings suggest that modulating the relative proportions of these inhibitory inputs could change the characteristics of rod bipolar cell output.
Collapse
Affiliation(s)
- Erika D Eggers
- Department of Ophthalmology, Campus Box 8096, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
30
|
Shen Y, Chen L, Ping Y, Yang XL. Glycine modulates the center response of ON type rod-dominant bipolar cells in carp retina. Brain Res Bull 2005; 67:492-7. [PMID: 16216698 DOI: 10.1016/j.brainresbull.2005.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/20/2005] [Accepted: 07/20/2005] [Indexed: 11/30/2022]
Abstract
Effects of glycine on ON type rod-dominant bipolar cells (RBCs) were studied in isolated, superfused carp retina by intracellular recording technique and in carp retinal slice preparation by whole cell recording. Glycine of 4mM hyperpolarized RBCs and potentiated their light responses to large light spots, which was reversed by co-application of 10 microM strychnine. It was further found that illumination of the receptive field surround did not affect the depolarizing center response of RBCs. The above result therefore suggests that glycine modulates the center response of RBCs. Focal application of glycine to either dendrites or axon terminals of RBCs failed to induce any currents in both isolated cell and retinal slice preparations. On the other hand, glycine of 4mM increased the amplitude of the scotopic electroretinographic PIII component, which reflects the activity of rod photoreceptors. It seems likely that modulation by glycine of the RBC center response may be in part ascribed to a consequence of the potentiation of rod responses by glycine.
Collapse
Affiliation(s)
- Yin Shen
- Institute of Neurobiology, Institute of Brain Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | | | | | | |
Collapse
|
31
|
Jusuf PR, Haverkamp S, Grünert U. Localization of glycine receptor alpha subunits on bipolar and amacrine cells in primate retina. J Comp Neurol 2005; 488:113-28. [PMID: 15924342 DOI: 10.1002/cne.20555] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The major inhibitory neurotransmitter glycine is used by about half of the amacrine cells in the retina. Amacrine cells provide synaptic output to bipolar, ganglion, and other amacrine cells. The present study investigated whether different bipolar and amacrine cell types in the primate retina differ with respect to the expression of glycine receptor (GlyR) subtypes. Antibodies specific for the alpha1, alpha2, and alpha3 subunits of the GlyR were combined with immunohistochemical markers for bipolar and amacrine cells and applied to vertical sections of macaque (Macaca fascicularis) and marmoset (Callithrix jacchus) retinae. For all subunits, punctate immunoreactivity was expressed in the inner plexiform layer. The GlyRalpha2 immunoreactive (IR) puncta occur at the highest density, followed by GlyR(alpha)3 and GlyR(alpha)1 IR puncta. Postembedding electron microscopy showed the postsynaptic location of all subunits. Double immunofluorescence demonstrated that the three alpha subunits are clustered at different postsynaptic sites. Two OFF cone bipolar cell types (flat midget and diffuse bipolar DB3), are predominantly associated with the alpha1 subunit. Two ON bipolar cell types, the DB6 and the rod bipolar cell, are predominantly associated with the alpha2 subunit. The glycinergic AII amacrine cell is presynaptic to the alpha1 subunit in the OFF-sublamina, and postsynaptic to the alpha2 subunit in the ON-sublamina. Another putative glycinergic cell, the vesicular glutamate transporter 3 cell, is predominantly presynaptic to the alpha2 subunit. The dopaminergic amacrine cell expresses the alpha3 subunit at a low density.
Collapse
Affiliation(s)
- Patricia R Jusuf
- The National Vision Research Institute of Australia, Carlton, Victoria 3053, Australia
| | | | | |
Collapse
|
32
|
Ma YP, Cui J, Pan ZH. Heterogeneous expression of voltage-dependent Na+ and
K+ channels in mammalian retinal bipolar cells. Vis Neurosci 2005; 22:119-33. [PMID: 15935105 DOI: 10.1017/s0952523805222010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 11/05/2022]
Abstract
Retinal bipolar cells show heterogeneous expression of
voltage-dependent Na+ and K+ currents. We used
whole-cell patch-clamp recordings to investigate the possible roles of
these currents in the response properties of bipolar cells in rats.
Isolated bipolar cells showed robust spontaneous regenerative activity,
but the regenerative potential of rod bipolar cells reached a more
depolarized level than that of cone bipolar cells. In both isolated cells
and cells in retinal slices, the membrane depolarization evoked by current
injection was apparently capped. The evoked membrane potential was again
more depolarized in rod bipolar cells than in cone bipolar cells.
Application of tetraethylammonium and 4-aminopyridine shifted the
spontaneous regenerative potential as well as the evoked potential to a
more depolarized level. In addition, a subclass of cone bipolar cells
showed a prominent spike in the initial phase of the voltage response when
the cells were depolarized from a relatively negative membrane potential.
The spike was mediated mainly by tetrodotoxin-sensitive Na+
current. The presence of the spike sped up the response kinetics and
enhanced the peak membrane potential. Results of this study raise the
possibility that voltage-dependent K+ currents may play a role
in defining different membrane operating ranges of rod and cone bipolar
cells and that voltage-dependent Na+ currents may enhance the
response kinetics and amplitude of certain cone bipolar cells.
Collapse
Affiliation(s)
- Yu-Ping Ma
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
33
|
Abstract
The glycine receptor chloride channel (GlyR) is a member of the nicotinic acetylcholine receptor family of ligand-gated ion channels. Functional receptors of this family comprise five subunits and are important targets for neuroactive drugs. The GlyR is best known for mediating inhibitory neurotransmission in the spinal cord and brain stem, although recent evidence suggests it may also have other physiological roles, including excitatory neurotransmission in embryonic neurons. To date, four alpha-subunits (alpha1 to alpha4) and one beta-subunit have been identified. The differential expression of subunits underlies a diversity in GlyR pharmacology. A developmental switch from alpha2 to alpha1beta is completed by around postnatal day 20 in the rat. The beta-subunit is responsible for anchoring GlyRs to the subsynaptic cytoskeleton via the cytoplasmic protein gephyrin. The last few years have seen a surge in interest in these receptors. Consequently, a wealth of information has recently emerged concerning GlyR molecular structure and function. Most of the information has been obtained from homomeric alpha1 GlyRs, with the roles of the other subunits receiving relatively little attention. Heritable mutations to human GlyR genes give rise to a rare neurological disorder, hyperekplexia (or startle disease). Similar syndromes also occur in other species. A rapidly growing list of compounds has been shown to exert potent modulatory effects on this receptor. Since GlyRs are involved in motor reflex circuits of the spinal cord and provide inhibitory synapses onto pain sensory neurons, these agents may provide lead compounds for the development of muscle relaxant and peripheral analgesic drugs.
Collapse
Affiliation(s)
- Joseph W Lynch
- School of Biomedical Sciences, Univ. of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
34
|
Haverkamp S, Müller U, Zeilhofer HU, Harvey RJ, Wässle H. Diversity of glycine receptors in the mouse retina: localization of the alpha2 subunit. J Comp Neurol 2004; 477:399-411. [PMID: 15329889 DOI: 10.1002/cne.20267] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gamma-aminobutyric acid (GABA) and glycine are the major inhibitory neurotransmitters in the retina, glycine being produced in approximately half of all amacrine cells. Whereas retinal cell types expressing the glycine receptor (GlyR) alpha1 and alpha3 subunits have been mapped, the role of the alpha2 subunit in retinal circuitry remains unclear. By using immunocytochemistry, we localized the alpha2 subunit in the inner plexiform layer (IPL) in brightly fluorescent puncta, which represent postsynaptically clustered GlyRs. This was shown by doubly labeling sections for GlyR alpha2 and bassoon (a presynaptic marker) or gephyrin (a postsynaptic marker). Synapses containing GlyR alpha2 were rarely found on ganglion cell dendrites but were observed on bipolar cell axon terminals and on amacrine cell processes. Recently, an amacrine cell type has been described that is immunopositive for glycine and for the vesicular glutamate transporter vGluT3. The processes of this cell type were presynaptic to GlyR alpha2 puncta, suggesting that vGluT3 amacrine cells release glycine. Double labeling of sections for GlyR alpha1 and GlyR alpha2 subunits showed that they are clustered at different synapses. In sections doubly labeled for GlyR alpha2 and GlyR alpha3, approximately one-third of the puncta were colocalized. The most abundant GlyR subtype in retina contains alpha3 subunits, followed by those containing GlyR alpha2 and GlyR alpha1 subunits.
Collapse
Affiliation(s)
- Silke Haverkamp
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, D-60528 Frankfurt/M., Germany
| | | | | | | | | |
Collapse
|
35
|
Singer JH, Lassová L, Vardi N, Diamond JS. Coordinated multivesicular release at a mammalian ribbon synapse. Nat Neurosci 2004; 7:826-33. [PMID: 15235608 DOI: 10.1038/nn1280] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 05/28/2004] [Indexed: 11/08/2022]
Abstract
Traditional models of synaptic transmission hold that release sites within an active zone operate independently. Although the release of multiple vesicles (multivesicular release; MVR) from single active zones occurs at some central synapses, MVR is not thought to require coordination among release sites. Ribbon synapses seem to be optimized to release many vesicles over an extended period, but the dynamics of MVR at ribbon synapses is unknown. We examined MVR at a ribbon synapse in a retinal slice preparation using paired recordings from presynaptic rod bipolar and postsynaptic AII amacrine cells. When evoked release was highly desynchronized, discrete postsynaptic events were larger than quantal miniature excitatory postsynaptic currents (mEPSCs) but had the same time course. The amplitude of these multiquantal mEPSCs, which seem to arise from the essentially simultaneous release of multiple vesicles, was reduced by lowering release probability. The release synchrony reflected in these multivesicular events suggests that release within an active zone is coordinated during MVR.
Collapse
Affiliation(s)
- Joshua H Singer
- Synaptic Physiology Unit, NIH/NINDS, 36 Convent Drive, MSC-4066, Building 36 Room 2C-09, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|