1
|
Xi J, Feng HZ, Jin JP, Yuan J, Kawai M. Biomechanical evaluation of flash-frozen and cryo-sectioned papillary muscle samples by using sinusoidal analysis: cross-bridge kinetics and the effect of partial Ca 2+ activation. J Muscle Res Cell Motil 2024; 45:95-113. [PMID: 38625452 DOI: 10.1007/s10974-024-09667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/08/2024] [Indexed: 04/17/2024]
Abstract
We examined the integrity of flash-frozen and cryo-sectioned cardiac muscle preparations (introduced by Feng and Jin, 2020) by assessing tension transients in response to sinusoidal length changes at varying frequencies (1-100 Hz) at 25 °C. Using 70-μm-thick sections, we isolated fiber preparations to study cross-bridge (CB) kinetics: preparations were activated by saturating Ca2+ as well as varying concentrations of ATP and phosphate (Pi). Our results showed that, compared to ordinary skinned fibers, in-series stiffness decreased to 1/2, which resulted in a decrease of isometric tension to 62%, but CB kinetics and Ca2+ sensitivity were little affected. The pCa study demonstrated that the rate constant of the force generation step (2πb) is proportionate to [Ca2+] at < 5 μM, suggesting that the activation mechanism can be described by a simple second order reaction. We also found that tension, stiffness, and magnitude parameters are related to [Ca2+] by the Hill equation, with a cooperativity coefficient of 4-5, which is consistent with the fact that Ca2+ activation mechanisms involve cooperative multimolecular interactions. Our results support the long-held hypothesis that Process C (Phase 2) represents the CB detachment step, and Process B (Phase 3) represents the force generation step. Moreover, we discovered that constant H may represent the work-performing step in cardiac preparations. Our experiments demonstrate excellent CB kinetics with two well-defined exponentials that can be more distinguished than those found using ordinary skinned fibers. Flash-frozen and cryo-sectioned preparations are especially suitable for multi-institutional collaborations nationally and internationally because of their ease of transportation.
Collapse
Affiliation(s)
- Jing Xi
- School of Nursing, and Medical Skill Experiment Teaching Center, Suzhou Medical College, Soochow University, Suzhou, 215006, China
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Han-Zhong Feng
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, 272067, China
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Xi J, Feng HZ, Jin JP, Yuan J, Kawai M. Mechanical Evaluation of Frozen and Cryo-Sectioned Papillary Muscle Samples by Using Sinusoidal Analysis: Cross-bridge Kinetics and the Effect of Partial Ca 2+ activation. RESEARCH SQUARE 2023:rs.3.rs-3516486. [PMID: 37961283 PMCID: PMC10635403 DOI: 10.21203/rs.3.rs-3516486/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The use of frozen and cryo-sectioned cardiac muscle preparations, introduced recently by (Feng & Jin, 2020), offers promising advantages of easy transport and exchange of muscle samples among collaborating laboratories. In this report, we examined integrity of such preparation by studying tension transients in response to sinusoidal length changes and following concomitant amplitude and phase shift in tension time courses at varying frequencies. We used sections with 70 μm thickness, isolated fiber preparations, and studied cross-bridge (CB) kinetics: we activated the preparations with saturating Ca2+, and varying concentrations of ATP and phosphate (Pi). Our experiments have demonstrated that this preparation has the normal active tension and elementary steps of the CB cycle. Furthermore, we investigated the effect of Ca2+ on the rate constants and found that the rate constant r 4 of the force generation step is proportionate to [Ca2+] when it is <5 μM. This observation suggests that the activation mechanism can be described by a simple second order reaction. As expected, we found that magnitude parameters including tension and stiffness are related to [Ca2+] by the Hill equation with cooperativity of 4-5, consistent to the fact that Ca2+ activation mechanisms involve cooperative multimolecular interactions. Our results are consistent with a long-held hypothesis that process C (phase 2 of step analysis) represents the CB detachment step, and process B (phase 3) represents the force generation step. In this report, we further found that constant H may also represent work performance step. Our experiments have demonstrated excellent CB kinetics with reduced noise and well-defined two exponentials, which are better than skinned fibers, and easier to handle and study than single myofibrils.
Collapse
Affiliation(s)
- Jing Xi
- School of Nursing, and Medical Skill Experiment Teaching Center, Suzhou Medical College, Soochow University, Suzhou 215006, China
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Han-Zhong Feng
- Dept of Physiology and Biophysics, Univ of Illinois at Chicago, 835 S Wolcot Ave, Chicago, IL 60612, USA
| | - Jian-Ping Jin
- Dept of Physiology and Biophysics, Univ of Illinois at Chicago, 835 S Wolcot Ave, Chicago, IL 60612, USA
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, 272067, China
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Li M, Qin Z, Steen E, Terry A, Wang B, Wohlfart B, Steen S, Arner A. Development and prevention of ischemic contracture ("stone heart") in the pig heart. Front Cardiovasc Med 2023; 10:1105257. [PMID: 36891241 PMCID: PMC9986286 DOI: 10.3389/fcvm.2023.1105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Stone heart (ischemic contracture) is a rare and serious condition observed in the heart after periods of warm ischemia. The underlying mechanisms are largely unknown and treatment options are lacking. In view of the possibilities for cardiac donation after circulatory death (DCD), introducing risks for ischemic damage, we have investigated stone heart in pigs. Following cessation of ventilation, circulatory death (systolic pressure <8 mmHg) occurred within 13.1 ± 1.2 min; and a stone heart, manifested with asystole, increased left ventricular wall thickness and stiffness, established after a further 17 ± 6 min. Adenosine triphosphate and phosphocreatine levels decreased by about 50% in the stone heart. Electron microscopy showed deteriorated structure with contraction bands, Z-line streaming and swollen mitochondria. Synchrotron based small angle X-ray scattering of trabecular samples from stone hearts revealed attachment of myosin to actin, without volume changes in the sarcomeres. Ca2+ sensitivity, determined in permeabilized muscle, was increased in stone heart samples. An in vitro model for stone heart, using isolated trabecular muscle exposed to hypoxia/zero glucose, exhibited the main characteristics of stone heart in whole animals, with a fall in high-energy phosphates and development of muscle contracture. The stone heart condition in vitro was significantly attenuated by the myosin inhibitor MYK-461 (Mavacamten). In conclusion, the stone heart is a hypercontracted state associated with myosin binding to actin and increased Ca2+ sensitivity. The hypercontractile state, once developed, is poorly reversible. The myosin inhibitor MYK-461, which is clinically approved for other indications, could be a promising venue for prevention.
Collapse
Affiliation(s)
- Mei Li
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden.,Igelösa Life Science AB, Lund, Sweden
| | - Zhi Qin
- Igelösa Life Science AB, Lund, Sweden
| | | | - Ann Terry
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | - Björn Wohlfart
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Stig Steen
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Anders Arner
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| |
Collapse
|
4
|
The effect of gender and obesity in modulating cross-bridge function in cardiac muscle fibers. J Muscle Res Cell Motil 2022; 43:157-172. [PMID: 35994221 DOI: 10.1007/s10974-022-09627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 12/31/2022]
Abstract
The effect of obesity on cross-bridge (CB) function was investigated in mice lacking functional Melanocortin-4 Receptor (MC4R-/-), the loss of which causes dilated cardiomyopathy (DCM) in humans and mice. Skinned cardiac muscle fibers from male and female mice were used, and activated in the presence of Ca2+. To characterize CB kinetics, we changed the length of fibers in sinewaves (15 frequencies: 1‒187 Hz) at a small amplitude (0.2%L0), studied concomitant tension transients, and deduced the kinetic constants of the CB cycle from the ATP and Pi effects. In males, active tension and stiffness during full activation and rigor were ~ 1.5X in WT compared to MC4R-/- mice. This effect was not observed in females. We also observed that ATP binding and subsequent CB detachment steps were not altered by the mutation/gender. The equilibrium constant of the force generation step (K4) and Pi release step (association constant: K5) were not affected by the mutation, but there was a gender difference in WT mice: K4 and K5 were ~ 2.2X in males than in females. Concomitantly, the forward rate constant (r4) and backward rate constant (r-4) of the force generation step were 1.5-2.5X in muscles from female MC4R-/- mice relative to male MC4R-/- mice. However, these effects did not cause a significant difference in CB distributions among six CB states. In both genders, Ca2+ sensitivity decreased slightly (0.12 pCa unit) in mutants. We conclude that the CB functions are differentially affected both by obesity induced in the absence of functional MC4R-/- and gender.
Collapse
|
5
|
Tobacman LS. Troponin Revealed: Uncovering the Structure of the Thin Filament On-Off Switch in Striated Muscle. Biophys J 2021; 120:1-9. [PMID: 33221250 PMCID: PMC7820733 DOI: 10.1016/j.bpj.2020.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Recently, our understanding of the structural basis of troponin-tropomyosin's Ca2+-triggered regulation of striated muscle contraction has advanced greatly, particularly via cryo-electron microscopy data. Compelling atomic models of troponin-tropomyosin-actin were published for both apo- and Ca2+-saturated states of the cardiac thin filament. Subsequent electron microscopy and computational analyses have supported and further elaborated the findings. Per cryo-electron microscopy, each troponin is highly extended and contacts both tropomyosin strands, which lie on opposite sides of the actin filament. In the apo-state characteristic of relaxed muscle, troponin and tropomyosin hinder strong myosin-actin binding in several different ways, apparently barricading the actin more substantially than does tropomyosin alone. The troponin core domain, the C-terminal third of TnI, and tropomyosin under the influence of a 64-residue helix of TnT located at the overlap of adjacent tropomyosins are all in positions that would hinder strong myosin binding to actin. In the Ca2+-saturated state, the TnI C-terminus dissociates from actin and binds in part to TnC; the core domain pivots significantly; the N-lobe of TnC binds specifically to actin and tropomyosin; and tropomyosin rotates partially away from myosin's binding site on actin. At the overlap domain, Ca2+ causes much less tropomyosin movement, so a more inhibitory orientation persists. In the myosin-saturated state of the thin filament, there is a large additional shift in tropomyosin, with molecular interactions now identified between tropomyosin and both actin and myosin. A new era has arrived for investigation of the thin filament and for functional understandings that increasingly accommodate the recent structural results.
Collapse
Affiliation(s)
- Larry S Tobacman
- Departments of Medicine and of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
6
|
Ishii S, Suzuki M, Ishiwata S, Kawai M. Functional significance of HCM mutants of tropomyosin, V95A and D175N, studied with in vitro motility assays. Biophys Physicobiol 2019; 16:28-40. [PMID: 30923661 PMCID: PMC6435021 DOI: 10.2142/biophysico.16.0_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
The majority of hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere proteins. We examined tropomyosin (Tpm)’s HCM mutants in humans, V95A and D175N, with in vitro motility assay using optical tweezers to evaluate the effects of the Tpm mutations on the actomyosin interaction at the single molecular level. Thin filaments were reconstituted using these Tpm mutants, and their sliding velocity and force were measured at varying Ca2+ concentrations. Our results indicate that the sliding velocity at pCa ≥8.0 was significantly increased in mutants, which is expected to cause a diastolic problem. The velocity that can be activated by Ca2+ decreased significantly in mutants causing a systolic problem. With sliding force, Ca2+ activatable force decreased in V95A and increased in D175N, which may cause a systolic problem. Our results further demonstrate that the duty ratio determined at the steady state of force generation in saturating [Ca2+] decreased in V95A and increased in D175N. The Ca2+ sensitivity and cooperativity were not significantly affected by the mutations. These results suggest that the two mutants modulate molecular processes of the actomyosin interaction differently, but to result in the same pathology known as HCM.
Collapse
Affiliation(s)
- Shuya Ishii
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Bai F, Caster HM, Pinto JR, Kawai M. Analysis of the molecular pathogenesis of cardiomyopathy-causing cTnT mutants I79N, ΔE96, and ΔK210. Biophys J 2013; 104:1979-88. [PMID: 23663841 DOI: 10.1016/j.bpj.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 11/19/2022] Open
Abstract
Three troponin T (TnT) mutants that cause hypertrophic, restrictive, and dilated cardiomyopathy (I79N, ΔE96, and ΔK210, respectively), were examined using the thin-filament extraction/reconstitution technique. Effects of Ca(2+), ATP, phosphate, and ADP concentrations on force and its transients were studied at 25°C. Maximal Ca(2+) tension (THC) and Ca(2+)-activatable tension (Tact), respectively, were similar among I79N, ΔE96, and WT, whereas ΔK210 led to a significantly lower THC (∼20% less) and Tact (∼25% less) than did WT. In pCa solution containing 8 mM Pi and ionic strength adjusted to 200 mM, the Ca(2+) sensitivity (pCa50) of I79N (5.63 ± 0.02) and ΔE96 (5.60 ± 0.03) was significantly greater than that of WT (5.45 ± 0.04), but the pCa50 of ΔK210 (5.54 ± 0.04) remained similar to that of WT. Five equilibrium constants were deduced using sinusoidal analysis. All three mutants showed significantly lower K0 (ADP association constant) and larger K4 (equilibrium constant of force generation step) relative to the corresponding values for WT. I79N and ΔK210 were associated with a K2 (equilibrium constant of cross-bridge detachment step) significantly lower than that of ΔE96 and WT. These results demonstrated that at pCa 4.66, the force/cross-bridge is ∼18% less in I79N and ∼41% less in ΔK210 than that in WT. These results indicate that the molecular pathogenesis of the cardiac TnT mutation-related cardiomyopathies is different for each mutation.
Collapse
Affiliation(s)
- Fan Bai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
8
|
A study of tropomyosin's role in cardiac function and disease using thin-filament reconstituted myocardium. J Muscle Res Cell Motil 2013; 34:295-310. [PMID: 23700264 DOI: 10.1007/s10974-013-9343-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Tropomyosin (Tm) is the key regulatory component of the thin-filament and plays a central role in the cardiac muscle's cooperative activation mechanism. Many mutations of cardiac Tm are related to hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and left ventricular noncompaction (LVNC). Using the thin-filament extraction/reconstitution technique, we are able to incorporate various Tm mutants and protein isoforms into a muscle fiber environment to study their roles in Ca(2+) regulation, cross-bridge kinetics, and force generation. The thin-filament reconstitution technique poses several advantages compared to other in vitro and in vivo methods: (1) Tm mutants and isoforms are placed into the real muscle fiber environment to exhibit their effect on a level much higher than simple protein complexes; (2) only the primary and immediate effects of Tm mutants are studied in the thin-filament reconstituted myocardium; (3) lethal mutants of Tm can be studied without causing a problem; and (4) inexpensive. In transgenic models, various secondary effects (myocyte disarray, ECM fibrosis, altered protein phosphorylation levels, etc.) also affect the performance of the myocardium, making it very difficult to isolate the primary effect of the mutation. Our studies on Tm have demonstrated that: (1) Tm positively enhances the hydrophobic interaction between actin and myosin in the "closed state", which in turn enhances the isometric tension; (2) Tm's seven periodical repeats carry distinct functions, with the 3rd period being essential for the tension enhancement; (3) Tm mutants lead to HCM by impairing the relaxation on one hand, and lead to DCM by over inhibition of the AM interaction on the other hand. Ca(2+) sensitivity is affected by inorganic phosphate, ionic strength, and phosphorylation of constituent proteins; hence it may not be the primary cause of the pathogenesis. Here, we review our current knowledge regarding Tm's effect on the actomyosin interaction and the early molecular pathogenesis of Tm mutation related to HCM, DCM, and LVNC.
Collapse
|
9
|
Barua B, Fagnant PM, Winkelmann DA, Trybus KM, Hitchcock-DeGregori SE. A periodic pattern of evolutionarily conserved basic and acidic residues constitutes the binding interface of actin-tropomyosin. J Biol Chem 2013; 288:9602-9609. [PMID: 23420843 DOI: 10.1074/jbc.m113.451161] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Actin filament cytoskeletal and muscle functions are regulated by actin binding proteins using a variety of mechanisms. A universal actin filament regulator is the protein tropomyosin, which binds end-to-end along the length of the filament. The actin-tropomyosin filament structure is unknown, but there are atomic models in different regulatory states based on electron microscopy reconstructions, computational modeling of actin-tropomyosin, and docking of atomic resolution structures of tropomyosin to actin filament models. Here, we have tested models of the actin-tropomyosin interface in the "closed state" where tropomyosin binds to actin in the absence of myosin or troponin. Using mutagenesis coupled with functional analyses, we determined residues of actin and tropomyosin required for complex formation. The sites of mutations in tropomyosin were based on an evolutionary analysis and revealed a pattern of basic and acidic residues in the first halves of the periodic repeats (periods) in tropomyosin. In periods P1, P4, and P6, basic residues are most important for actin affinity, in contrast to periods P2, P3, P5, and P7, where both basic and acidic residues or predominantly acidic residues contribute to actin affinity. Hydrophobic interactions were found to be relatively less important for actin binding. We mutated actin residues in subdomains 1 and 3 (Asp(25)-Glu(334)-Lys(326)-Lys(328)) that are poised to make electrostatic interactions with the residues in the repeating motif on tropomyosin in the models. Tropomyosin failed to bind mutant actin filaments. Our mutagenesis studies provide the first experimental support for the atomic models of the actin-tropomyosin interface.
Collapse
Affiliation(s)
- Bipasha Barua
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854; Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| | - Patricia M Fagnant
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Donald A Winkelmann
- Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Sarah E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854; Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
10
|
DCM-related tropomyosin mutants E40K/E54K over-inhibit the actomyosin interaction and lead to a decrease in the number of cycling cross-bridges. PLoS One 2012; 7:e47471. [PMID: 23077624 PMCID: PMC3471818 DOI: 10.1371/journal.pone.0047471] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
Two DCM mutants (E40K and E54K) of tropomyosin (Tm) were examined using the thin-filament extraction/reconstitution technique. The effects of the Ca2+, ATP, phosphate (Pi), and ADP concentrations on isometric tension and its transients were studied at 25°C, and the results were compared to those for the WT protein. Our results indicate that both E40K and E54K have a significantly lower THC (high Ca2+ tension at pCa 4.66) (E40K: 1.21±0.06 Ta, ±SEM, N = 34; E54K: 1.24±0.07 Ta, N = 28), a significantly lower TLC (low- Ca2+ tension at pCa 7.0) (E40K: 0.07±0.02 Ta, N = 34; E54K: 0.06±0.02 Ta, N = 28), and a significantly lower Tact (Ca2+ activatable tension) (Tact = THC–TLC, E40K: 1.15±0.08 Ta, N = 34; E54K: 1.18±0.06 Ta, N = 28) than WT (THC = 1.53±0.07 Ta, TLC = 0.12±0.01 Ta, Tact = 1.40±0.07 Ta, N = 25). All tensions were normalized to Ta ( = 13.9±0.8 kPa, N = 57), the tension of actin-filament reconstituted cardiac fibers (myocardium) under the standard activating conditions. The Ca2+ sensitivity (pCa50) of E40K (5.23±0.02, N = 34) and E54K (5.24±0.03, N = 28) was similar to that of the WT protein (5.26±0.03, N = 25). The cooperativity increased significantly in E54K (3.73±0.25, N = 28) compared to WT (2.80±0.17, N = 25). Seven kinetic constants were deduced using sinusoidal analysis at pCa 4.66. These results enabled us to calculate the cross-bridge distribution in the strongly attached states, and thereby deduce the force/cross-bridge. The results indicate that the force/cross-bridge is ∼15% less in E54K than WT, but remains similar to that of the WT protein in the case of E40K. We conclude that over-inhibition of the actomyosin interaction by E40K and E54K Tm mutants leads to a decreased force-generating ability at systole, which is the main mechanism underlying the early pathogenesis of DCM.
Collapse
|
11
|
Gao WD, Murray CI, Tian Y, Zhong X, DuMond JF, Shen X, Stanley BA, Foster DB, Wink DA, King SB, Van Eyk JE, Paolocci N. Nitroxyl-mediated disulfide bond formation between cardiac myofilament cysteines enhances contractile function. Circ Res 2012; 111:1002-11. [PMID: 22851540 PMCID: PMC3470471 DOI: 10.1161/circresaha.112.270827] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/31/2012] [Indexed: 11/16/2022]
Abstract
RATIONALE In the myocardium, redox/cysteine modification of proteins regulating Ca(2+) cycling can affect contraction and may have therapeutic value. Nitroxyl (HNO), the one-electron-reduced form of nitric oxide, enhances cardiac function in a manner that suggests reversible cysteine modifications of the contractile machinery. OBJECTIVE To determine the effects of HNO modification in cardiac myofilament proteins. METHODS AND RESULTS The HNO-donor, 1-nitrosocyclohexyl acetate, was found to act directly on the myofilament proteins, increasing maximum force (F(max)) and reducing the concentration of Ca(2+) for 50% activation (Ca(50)) in intact and skinned cardiac muscles. The effects of 1-nitrosocyclohexyl acetate are reversible by reducing agents and distinct from those of another HNO donor, Angeli salt, which was previously reported to increase F(max) without affecting Ca50. Using a new mass spectrometry capture technique based on the biotin switch assay, we identified and characterized the formation by HNO of a disulfide-linked actin-tropomyosin and myosin heavy chain-myosin light chain 1. Comparison of the 1-nitrosocyclohexyl acetate and Angeli salt effects with the modifications induced by each donor indicated the actin-tropomyosin and myosin heavy chain-myosin light chain 1 interactions independently correlated with increased Ca(2+) sensitivity and force generation, respectively. CONCLUSIONS HNO exerts a direct effect on cardiac myofilament proteins increasing myofilament Ca(2+) responsiveness by promoting disulfide bond formation between critical cysteine residues. These findings indicate a novel, redox-based modulation of the contractile apparatus, which positively impacts myocardial function, providing further mechanistic insight for HNO as a therapeutic agent.
Collapse
Affiliation(s)
- Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine; Baltimore MD, 21205 USA
| | - Christopher I. Murray
- Department of Biological Chemistry, Johns Hopkins University School of Medicine; Baltimore MD, 21205 USA
| | - Ye Tian
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine; Baltimore MD, 21205 USA
- Department of Pathophysiology, Harbin Medical University, 150086, China
| | - Xin Zhong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine; Baltimore MD, 21205 USA
- Department of Pathophysiology, Harbin Medical University, 150086, China
| | - Jenna F. DuMond
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine; Baltimore MD, 21205 USA
| | - Brian A. Stanley
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, 21205, USA
| | - D. Brian Foster
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, 21205, USA
| | - David A. Wink
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - S. Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Jennifer E. Van Eyk
- Department of Biological Chemistry, Johns Hopkins University School of Medicine; Baltimore MD, 21205 USA
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, 21205, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, 21205, USA
- Department of Clinical Medicine, University of Perugia, Perugia, 06126 Italy
| |
Collapse
|
12
|
Oguchi Y, Ishizuka J, Hitchcock-DeGregori SE, Ishiwata S, Kawai M. The role of tropomyosin domains in cooperative activation of the actin-myosin interaction. J Mol Biol 2011; 414:667-80. [PMID: 22041451 DOI: 10.1016/j.jmb.2011.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/15/2022]
Abstract
To establish α-tropomyosin (Tm)'s structure-function relationships in cooperative regulation of muscle contraction, thin filaments were reconstituted with a variety of Tm mutants (Δ2Tm, Δ3Tm, Δ6Tm, P2sTm, P3sTm, P2P3sTm, P1P5Tm, and wtTm), and force and sliding velocity of the thin filament were studied using an in vitro motility assay. In the case of deletion mutants, Δ indicates which of the quasi-equivalent repeats in Tm was deleted. In the case of period (P) mutants, an Ala cluster was introduced into the indicated period to strengthen the Tm-actin interaction. In P1P5Tm, the N-terminal half of period 5 was substituted with that of period 1 to test the quasi-equivalence of these two Tm periods. The reconstitution included bovine cardiac troponin. Deletion studies revealed that period 3 is important for the positive cooperative effect of Tm on actin filament regulation and that period 2 also contributes to this effect at low ionic strength, but to a lesser degree. Furthermore, Tm with one extra Ala cluster at period 2 (P2s) or period 3 (P3s) did not increase force or velocity, whereas Tm with two extra Ala clusters (P2P3s) increased both force and velocity, demonstrating interaction between these periods. Most mutants did not move in the absence of Ca(2+). Notable exceptions were Δ6Tm and P1P5Tm, which moved near at the full velocity, but with reduced force, which indicate impaired relaxation. These results are consistent with the mechanism that the Tm-actin interaction cooperatively affects actin to result in generation of greater force and velocity.
Collapse
Affiliation(s)
- Yusuke Oguchi
- Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
13
|
Bai F, Weis A, Takeda AK, Chase PB, Kawai M. Enhanced active cross-bridges during diastole: molecular pathogenesis of tropomyosin's HCM mutations. Biophys J 2011; 100:1014-23. [PMID: 21320446 DOI: 10.1016/j.bpj.2011.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/28/2022] Open
Abstract
Three HCM-causing tropomyosin (Tm) mutants (V95A, D175N, and E180G) were examined using the thin-filament extraction and reconstitution technique. The effects of Ca(2+), ATP, phosphate, and ADP concentrations on cross-bridge kinetics in myocardium reconstituted with each of these mutants were studied at 25°C, and compared to wild-type (WT) Tm at physiological ionic strength (200 mM). All three mutants showed significantly higher (2-3.5 fold) low Ca(2+) tension (T(LC)) and stiffness than WT at pCa 8.0. High Ca(2+) tension (T(HC)) was significantly higher for E180G than that for WT, whereas T(HC) of V95A and D175N was similar to WT; high Ca(2+) stiffness (Y(HC)) had the same trend. The Ca(2+) sensitivity of isometric force was significantly greater for V95A and E180G than for WT, whereas that of D175N remained the same as for WT; for all mutants, cooperativity was lower than for WT. Nine kinetic constants and the cross-bridge distribution were deduced using sinusoidal analysis. The number of force-generating cross bridges was similar among the D175N, E180G, and WT Tm forms, but it was significantly larger in the case of V95A than WT. We conclude that the increased number of actively cycling cross bridges at pCa 8 is the major cause of Tm mutation-related HCM pathogenesis, which may result in diastolic dysfunction. Decreased contractility (T(act)) in V95A and D175N may further contribute to the severity of myocyte hypertrophy and related prognosis of the disease.
Collapse
Affiliation(s)
- Fan Bai
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
14
|
Lu X, Heeley DH, Smillie LB, Kawai M. The role of tropomyosin isoforms and phosphorylation in force generation in thin-filament reconstituted bovine cardiac muscle fibres. J Muscle Res Cell Motil 2010; 31:93-109. [PMID: 20559861 DOI: 10.1007/s10974-010-9213-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 05/23/2010] [Indexed: 11/26/2022]
Abstract
The thin filament extraction and reconstitution protocol was used to investigate the functional roles of tropomyosin (Tm) isoforms and phosphorylation in bovine myocardium. The thin filament was extracted by gelsolin, reconstituted with G-actin, and further reconstituted with cardiac troponin together with one of three Tm varieties: phosphorylated alphaTm (alphaTm.P), dephosphorylated alphaTm (alphaTm.deP), and dephosphorylated betaTm (betaTm.deP). The effects of Ca, phosphate, MgATP and MgADP concentrations were examined in the reconstituted fibres at pH 7.0 and 25 degrees C. Our data show that Ca(2+) sensitivity (pCa(50): half saturation point) was increased by 0.19 +/- 0.07 units when betaTm.deP was used instead of alphaTm.deP (P < 0.05), and by 0.27 +/- 0.06 units when phosphorylated alphaTm was used (P < 0.005). The cooperativity (Hill factor) decreased (but insignificantly) from 3.2 +/- 0.3 (5) to 2.8 +/- 0.2 (7) with phosphorylation. The cooperativity decreased significantly from 3.2 +/- 0.3 (5) to 2.1 +/- 0.2 (9) with isoform change from alphaTm.deP to betaTm.deP. There was no significant difference in isometric tension or stiffness between alphaTm.P, alphaTm.deP, and betaTm.deP muscle fibres at saturating [Ca(2+)] or after rigor induction. Based on the six-state cross-bridge model, sinusoidal analysis indicated that the equilibrium constants of elementary steps differed up to 1.7x between alphaTm.deP and betaTm.deP, and up to 2.0x between alphaTm.deP and alphaTm.P. The rate constants differed up to 1.5x between alphaTm.deP and betaTm.deP, and up to 2.4x between alphaTm.deP and alphaTm.P. We conclude that tension and stiffness per cross-bridge are not significantly different among the three muscle models.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
15
|
Kawai M, Lu X, Hitchcock-DeGregori SE, Stanton KJ, Wandling MW. Tropomyosin period 3 is essential for enhancement of isometric tension in thin filament-reconstituted bovine myocardium. JOURNAL OF BIOPHYSICS (HINDAWI PUBLISHING CORPORATION : ONLINE) 2009; 2009:380967. [PMID: 20130792 PMCID: PMC2814127 DOI: 10.1155/2009/380967] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/29/2009] [Accepted: 07/05/2009] [Indexed: 05/28/2023]
Abstract
Tropomyosin (Tm) consists of 7 quasiequivalent repeats known as "periods," and its specific function may be associated with these periods. To test the hypothesis that either period 2 or 3 promotes force generation by inducing a positive allosteric effect on actin, we reconstituted the thin filament with mutant Tm in which either period 2 (Delta2Tm) or period 3 (Delta3Tm) was deleted. We then studied: isometric tension, stiffness, 6 kinetic constants, and the pCa-tension relationship. N-terminal acetylation of Tm did not cause any differences. The isometric tension in Delta2Tm remained unchanged, and was reduced to approximately 60% in Delta3Tm. Although the kinetic constants underwent small changes, the occupancy of strongly attached cross-bridges was not much different. The Hill factor (cooperativity) did not differ significantly between Delta2Tm (1.79 +/- 0.19) and the control (1.73 +/- 0.21), or Delta3Tm (1.35 +/- 0.22) and the control. In contrast, pCa(50) decreased slightly in Delta2Tm (5.11 +/- 0.07), and increased significantly in Delta3Tm (5.57 +/- 0.09) compared to the control (5.28 +/- 0.04). These results demonstrate that, when ions are present at physiological concentrations in the muscle fiber system, period 3 (but not period 2) is essential for the positive allosteric effect that enhances the interaction between actin and myosin, and increases isometric force of each cross-bridge.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Xiaoying Lu
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Kristen J. Stanton
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael W. Wandling
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Siththanandan VB, Tobacman LS, Van Gorder N, Homsher E. Mechanical and kinetic effects of shortened tropomyosin reconstituted into myofibrils. Pflugers Arch 2009; 458:761-76. [PMID: 19255776 PMCID: PMC2704292 DOI: 10.1007/s00424-009-0653-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/11/2009] [Accepted: 02/14/2009] [Indexed: 11/30/2022]
Abstract
The effects of tropomyosin on muscle mechanics and kinetics were examined in skeletal myofibrils using a novel method to remove tropomyosin (Tm) and troponin (Tn) and then replace these proteins with altered versions. Extraction employed a low ionic strength rigor solution, followed by sequential reconstitution at physiological ionic strength with Tm then Tn. SDS-PAGE analysis was consistent with full reconstitution, and fluorescence imaging after reconstitution using Oregon-green-labeled Tm indicated the expected localization. Myofibrils remained mechanically viable: maximum isometric forces of myofibrils after sTm/sTn reconstitution (control) were comparable (~84%) to the forces generated by non-reconstituted preparations, and the reconstitution minimally affected the rate of isometric activation (kact), calcium sensitivity (pCa50), and cooperativity (nH). Reconstitutions using various combinations of cardiac and skeletal Tm and Tn indicated that isoforms of both Tm and Tn influence calcium sensitivity of force development in opposite directions, but the isoforms do not otherwise alter cross-bridge kinetics. Myofibrils reconstituted with Δ23Tm, a deletion mutant lacking the second and third of Tm’s seven quasi-repeats, exhibited greatly depressed maximal force, moderately slower kact rates and reduced nH. Δ23Tm similarly decreased the cooperativity of calcium binding to the troponin regulatory sites of isolated thin filaments in solution. The mechanisms behind these effects of Δ23Tm also were investigated using Pi and ADP jumps. Pi and ADP kinetics were indistinguishable in Δ23Tm myofibrils compared to controls. The results suggest that the deleted region of tropomyosin is important for cooperative thin filament activation by calcium.
Collapse
Affiliation(s)
- V B Siththanandan
- Physiology Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| | | | | | | |
Collapse
|
17
|
Lu X, Tobacman LS, Kawai M. Temperature-dependence of isometric tension and cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal deletion mutant. Biophys J 2006; 91:4230-40. [PMID: 16980359 PMCID: PMC1635655 DOI: 10.1529/biophysj.106.084608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of temperature on isometric tension and cross-bridge kinetics was studied with a tropomyosin (Tm) internal deletion mutant AS-Delta23Tm (Ala-Ser-Tm Delta(47-123)) in bovine cardiac muscle fibers by using the thin filament extraction and reconstitution technique. The results are compared with those from actin reconstituted alone, cardiac muscle-derived control acetyl-Tm, and recombinant control AS-Tm. In all four reconstituted muscle groups, isometric tension and stiffness increased linearly with temperature in the range 5-40 degrees C for fibers activated in the presence of saturating ATP and Ca(2+). The slopes of the temperature-tension plots of the two controls were very similar, whereas the slope derived from fibers with actin alone had approximately 40% the control value, and the slope from mutant Tm had approximately 36% the control value. Sinusoidal analysis was performed to study the temperature dependence of cross-bridge kinetics. All three exponential processes A, B, and C were identified in the high temperature range (30-40 degrees C); only processes B and C were identified in the mid-temperature range (15-25 degrees C), and only process C was identified in the low temperature range (5-10 degrees C). At a given temperature, similar apparent rate constants (2pia, 2pib, 2pic) were observed in all four muscle groups, whereas their magnitudes were markedly less in the order of AS-Delta23Tm < Actin < AS-Tm approximately Acetyl-Tm groups. Our observations are consistent with the hypothesis that Tm enhances hydrophobic and stereospecific interactions (positive allosteric effect) between actin and myosin, but Delta23Tm decreases these interactions (negative allosteric effect). Our observations further indicate that tension/cross-bridge is increased by Tm, but is diminished by Delta23Tm. We conclude that Tm affects the conformation of actin so as to increase the area of hydrophobic interaction between actin and myosin molecules.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
18
|
Kawai M, Ishiwata S. Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation. J Muscle Res Cell Motil 2006; 27:455-68. [PMID: 16909198 PMCID: PMC2896216 DOI: 10.1007/s10974-006-9075-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
The technique of selective removal of the thin filament by gelsolin in bovine cardiac muscle fibres, and reconstitution of the thin filament from isolated proteins is reviewed, and papers that used reconstituted preparations are discussed. By comparing the results obtained in the absence/presence of regulatory proteins tropomyosin (Tm) and troponin (Tn), it is concluded that the role of Tm and Tn in force generation is not only to expose the binding site of actin to myosin, but also to modify actin for better stereospecific and hydrophobic interaction with myosin. This conclusion is further supported by experiments that used a truncated Tm mutant and the temperature study of reconstituted fibres. The conclusion is consistent with the hypothesis that there are three states in the thin filament: blocked state, closed state, and open state. Tm is the major player to produce these effects, with Tn playing the role of Ca2+ sensing and signal transmission mechanism. Experiments that changed the number of negative charges at the N-terminal finger of actin demonstrates that this part of actin is essential to promote the strong interaction between actin and myosin molecules, in addition to the well-known weak interaction that positions the myosin head at the active site of actin prior to force generation.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
19
|
Kawai M, Kido T, Vogel M, Fink RHA, Ishiwata S. Temperature change does not affect force between regulated actin filaments and heavy meromyosin in single-molecule experiments. J Physiol 2006; 574:877-87. [PMID: 16709631 PMCID: PMC1817734 DOI: 10.1113/jphysiol.2006.111708] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The temperature dependence of sliding velocity, force and the number of cross-bridges was studied on regulated actin filaments (reconstituted thin filaments) when they were placed on heavy meromyosin (HMM) attached to a glass surface. The regulated actin filaments were used because our previous study on muscle fibres demonstrated that the temperature effect was much reduced in the absence of regulatory proteins. A fluorescently labelled thin filament was attached to the gelsolin-coated surface of a polystyrene bead. The bead was trapped by optical tweezers, and HMM-thin filament interaction was performed at 20-35 degrees C to study the temperature dependence of force at the single-molecule level. Our experiments showed that there was a small increase in force with temperature (Q10 = 1.43) and sliding velocity (Q10 = 1.46). The small increase in force was correlated with the small increase in the number of cross-bridges (Q10 = 1.49), and when force was divided by the number of cross-bridges, the result did not depend on the temperature (Q(10) = 1.03). These results demonstrate that the force each cross-bridge generates is fixed and independent of temperature. Our additional experiments demonstrate that tropomyosin (Tm) in the presence of troponin (Tn) and Ca2+ enhances both force and velocity, and a truncated mutant, Delta23Tm, diminishes force and velocity. These results are consistent with the hypothesis that Tm in the presence of Tn and Ca2+ exerts a positive allosteric effect on actin to make actomyosin linkage more secure so that larger forces can be generated.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
20
|
Galler S, Wang BG, Kawai M. Elementary steps of the cross-bridge cycle in fast-twitch fiber types from rabbit skeletal muscles. Biophys J 2005; 89:3248-60. [PMID: 16143633 PMCID: PMC1366820 DOI: 10.1529/biophysj.104.056614] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand the molecular mechanism underlying the diversity of mammalian skeletal muscle fibers, the elementary steps of the cross-bridge cycle were investigated in three fast-twitch fiber types from rabbit limb muscles. Skinned fibers were maximally Ca(2+)-activated at 20 degrees C and the effects of MgATP, phosphate (P, P(i)), and MgADP were studied on three exponential processes by sinusoidal analysis. The fiber types (IIA, IID, and IIB) were determined by analyzing the myosin heavy-chain isoforms after mechanical experiments using high-resolution SDS-PAGE. The results were consistent with the following cross-bridge scheme: where A is actin, M is myosin, D is MgADP, and S is MgATP. All states except for those in brackets are strongly bound states. All rate constants of elementary steps (k(2), 198-526 s(-1); k(-2), 51-328 s(-1); k(4), 13.6-143 s(-1); k(-4), 13.6-81 s(-1)) were progressively larger in the order of type IIA, type IID, and type IIB fibers. The rate constants of a transition from a weakly bound state to a strongly bound state (k(-2), k(4)) varied more among fiber types than their reversals (k(2), k(-4)). The equilibrium constants K(1) (MgATP affinity) and K(2) (=k(2)/k(-2), ATP isomerization) were progressively less in the order IIA, IID, and IIB. K(4) (=k(4)/k(-4), force generation) and K(5) (P(i) affinity) were larger in IIB than IIA and IID fibers. K(1) showed the largest variation indicating that the myosin head binds MgATP more tightly in the order IIA (8.7 mM(-1)), IID (4.9 mM(-1)), and IIB (0.84 mM(-1)). Similarly, the MgADP affinity (K(0)) was larger in type IID fibers than in type IIB fibers.
Collapse
Affiliation(s)
- Stefan Galler
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
21
|
Clemmens EW, Entezari M, Martyn DA, Regnier M. Different effects of cardiac versus skeletal muscle regulatory proteins on in vitro measures of actin filament speed and force. J Physiol 2005; 566:737-46. [PMID: 15905219 PMCID: PMC1464789 DOI: 10.1113/jphysiol.2005.084194] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mammalian cardiac and skeletal muscle express unique isoforms of the thin filament regulatory proteins, troponin (Tn) and tropomyosin (Tm), and the significance of these different isoforms in thin filament regulation has not been clearly identified. Both in vitro and skinned cellular studies investigating the mechanism of thin filament regulation in striated muscle have often used heterogeneous mixtures of Tn, Tm and myosin isoforms, and variability in reported results might be explained by different combinations of these proteins. Here we used in vitro motility and force (microneedle) assays to investigate the influence of cardiac versus skeletal Tn and Tm isoforms on actin-heavy meromyosin (HMM) mechanics. When interacting with skeletal HMM, thin filaments reconstituted with cardiac Tn/Tm or skeletal Tn/Tm exhibited similar speed-calcium relationships and significantly increased maximum speed and force per filament length (F/l) at pCa 5 (versus unregulated actin filaments). However, augmentation of F/l was greater with skeletal regulatory proteins. Reconstitution of thin filaments with the heterogeneous combination of skeletal Tn and cardiac Tm decreased sliding speeds at all [Ca2+] relative to thin filaments with skeletal Tn/Tm. Finally, for filaments reconstituted with any heterogeneous mix of Tn and Tm isoforms, force was not potentiated over that of unregulated actin filaments. Combined the results suggest (1) that cardiac regulatory proteins limit the allosteric enhancement of force, and (2) that Tn and Tm isoform homogeneity is important when studying Ca2+ regulation of crossbridge binding and kinetics as well as mechanistic differences between cardiac and skeletal muscle.
Collapse
|
22
|
Lu X, Bryant MK, Bryan KE, Rubenstein PA, Kawai M. Role of the N-terminal negative charges of actin in force generation and cross-bridge kinetics in reconstituted bovine cardiac muscle fibres. J Physiol 2005; 564:65-82. [PMID: 15649975 PMCID: PMC1456038 DOI: 10.1113/jphysiol.2004.078055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutant yeast actins were used to determine the role of actin's N-terminal negative charges in force generation. The thin filament was selectively removed from bovine cardiac skinned muscle fibres by gelsolin, and the actin filament was reconstituted from purified G-actin. In this reconstitution, yeast wild-type actin (2Ac: two N-terminal negative charges), yeast mutant actins (3Ac and 4Ac), and rabbit skeletal muscle actin (MAc) were used. The effects of phosphate, ATP and ADP on force development were studied at 25 degrees C. With MAc, isometric tension was 77% of the initial tension owing to the lack of a regulatory system. With 2Ac, isometric tension was 10% of the initial tension; with 3Ac, isometric tension was 23%; and with 4Ac, isometric tension was 44%. Stiffness followed a similar pattern (2Ac < 3Ac < 4Ac < MAc). A similar trend was observed during rigor induction and relaxation. Sinusoidal analysis was performed to obtain the kinetic constants of the cross-bridge cycle. The results showed that the variability of the kinetic constants was < or = 2.5-fold among the 2Ac, 4Ac and MAc muscle models. When the cross-bridge distribution was examined, there was no significant reapportionment among these three models examined. These results indicate that force supported by each cross-bridge is modified by the N-terminal negative charges of actin, presumably via the actomyosin interface. We conclude that two N-terminal negative charges are not adequate, three negative charges are intermediate, and four negative charges are necessary to generate force.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
| | - Mary K Bryant
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
| | - Keith E Bryan
- Department of Biochemistry, University of IowaIowa City, IA 52242, USA
| | | | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
- Corresponding author M. Kawai: Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
23
|
Fujita H, Lu X, Suzuki M, Ishiwata S, Kawai M. The effect of tropomyosin on force and elementary steps of the cross-bridge cycle in reconstituted bovine myocardium. J Physiol 2004; 556:637-49. [PMID: 14742733 PMCID: PMC1664932 DOI: 10.1113/jphysiol.2003.059956] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of tropomyosin (Tm) in the elementary steps of the cross-bridge cycle in bovine myocardium was investigated. The thin filament was selectively removed using gelsolin (thin filament severing protein), and the actin filament was reconstituted from G-actin. Tm was further reconstituted without troponin (Tn), and the kinetic constants of the elementary steps of the cross-bridge cycle were deduced using sinusoidal analysis at pCa </= 4.66, pH 7.00, and 25 degrees C. The association constant of MgATP to cross-bridges (K(1)) after reconstitution of Tm was 20.7 +/- 2.3 mm(-1), which was about 2 x the control (untreated) myocardium (9.1 +/- 1.3 mm(-1)). Following reconstitution of Tm, the equilibrium constant of the cross-bridge detachment step (K(2)), the phosphate (P(i)) association constant (K(5)) and the equilibrium constant of the force-generation step (K(4)), which significantly changed in the actin filament-reconstituted myocardium, recovered to those of the control myocardium. Active tension after reconstitution of Tm was 0.69 x the control myocardium, a value between the control (1.00 x) and the actin filament-reconstituted myocardium (0.59 x). Tm-reconstituted myocardium was further reconstituted with Tn, and the effect of MgATP on the rate constants (K(1), K(2)) was studied. Following reconstitution with Tn, the myocardium regained the Ca(2+)-sensitivity and the active tension became 0.83 x the control myocardium. In addition, K(1) recovered to the value of the control myocardium with Tn reconstitution. These results indicate that both Tm and Tn enhance the force generated by each cross-bridge, and that Tm is primarily responsible for the change in the kinetic constants of the elementary steps of the cross-bridge cycle.
Collapse
Affiliation(s)
- Hideaki Fujita
- Department of Anatomy and Cell Biology, College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|