1
|
Devaux J, Dhifallah S, De Maria M, Stuart-Lopez G, Becq H, Milh M, Molinari F, Aniksztejn L. A possible link betweenKCNQ2- andSTXBP1-related encephalopathies: STXBP1 reduces the inhibitory impact of syntaxin-1A on M current. Epilepsia 2017; 58:2073-2084. [DOI: 10.1111/epi.13927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Jérôme Devaux
- CNRS, CRN2M-UMR7286; Aix-Marseille University; Marseille France
| | - Sandra Dhifallah
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
- Institute of Molecular and Cellular Pharmacology (IPMC); CNRS; Nice Sophia-Antipolis University; Valbonne France
| | - Michela De Maria
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
- Department of Medicine and Health Sciences; University of Molise; Campobasso Italy
| | - Geoffrey Stuart-Lopez
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
- UMR5203 Institute of Functional Genomic (IGF); CNRS; Montpellier France
| | - Hélène Becq
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
| | - Mathieu Milh
- Timone Children Hospital, Pediatric Neurology department; APHM; Marseille France
- GMGF, INSERM UMR_S910; Aix-Marseille University; Marseille France
| | - Florence Molinari
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
| | - Laurent Aniksztejn
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
| |
Collapse
|
2
|
Bielopolski N, Lam AD, Bar-On D, Sauer M, Stuenkel EL, Ashery U. Differential interaction of tomosyn with syntaxin and SNAP25 depends on domains in the WD40 β-propeller core and determines its inhibitory activity. J Biol Chem 2014; 289:17087-99. [PMID: 24782308 DOI: 10.1074/jbc.m113.515296] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal exocytosis depends on efficient formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes and is regulated by tomosyn, a SNARE-binding protein. To gain new information about tomosyn's activity, we characterized its mobility and organization on the plasma membrane (PM) in relation to other SNARE proteins and inhibition of exocytosis. By using direct stochastic optical reconstruction microscopy (dSTORM), we found tomosyn to be organized in small clusters adjacent to syntaxin clusters. In addition, we show that tomosyn is present in both syntaxin-tomosyn complexes and syntaxin-SNAP25-tomosyn complexes. Tomosyn mutants that lack residues 537-578 or 897-917 from its β-propeller core diffused faster on the PM and exhibited reduced binding to SNAP25, suggesting that these mutants shift the equilibrium between tomosyn-syntaxin-SNAP25 complexes on the PM to tomosyn-syntaxin complexes. As these deletion mutants impose less inhibition on exocytosis, we suggest that tomosyn inhibition is mediated via tomosyn-syntaxin-SNAP25 complexes and not tomosyn-syntaxin complexes. These findings characterize, for the first time, tomosyn's dynamics at the PM and its relation to its inhibition of exocytosis.
Collapse
Affiliation(s)
- Noa Bielopolski
- From the Department of Neurobiology, Life Sciences Faculty, and
| | - Alice D Lam
- the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Dana Bar-On
- From the Department of Neurobiology, Life Sciences Faculty, and Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Markus Sauer
- the Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Edward L Stuenkel
- the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Uri Ashery
- From the Department of Neurobiology, Life Sciences Faculty, and Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel,
| |
Collapse
|
3
|
Juranek JK, Mukherjee K, Siddiqui TJ, Kaplan BJ, Li JY, Ahnert-Hilger G, Jahn R, Calka J. Active zone protein expression changes at the key stages of cerebellar cortex neurogenesis in the rat. Acta Histochem 2013; 115:616-25. [PMID: 23434052 DOI: 10.1016/j.acthis.2013.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 12/11/2022]
Abstract
Signal transduction and neurotransmitter release in the vertebrate central nervous system are confined to the structurally complex presynaptic electron dense projections called "active zones." Although the nature of these projections remains a mystery, genetic and biochemical work has provided evidence for the active zone (AZ) associated proteins i.e. Piccolo/Aczonin, Bassoon, RIM1/Unc10, Munc13/Unc13, Liprin-α/SYD2/Dliprin and ELKS/CAST/BRP and their specific molecular functions. It still remains unclear, however, what their precise contribution is to the AZ assembly. In our project, we studied in Wistar rats the temporal and spatial distribution of AZ proteins and their colocalization with Synaptophysin in the developing cerebellar cortex at key stages of cerebellum neurogenesis. Our study demonstrated that AZ proteins were already present at the very early stages of cerebellar neurogenesis and exhibited distinct spatial and temporal variations in immunoexpression throughout the course of the study. Colocalization analysis revealed that the colocalization pattern was time-dependent and different for each studied protein. The highest collective mean percentage of colocalization (>85%) was observed at postnatal day (PD) 5, followed by PD10 (>83%) and PD15 (>80%). The findings of our study shed light on AZ protein immunoexpression changes during cerebellar cortex neurogenesis and help frame a hypothetical model of AZ assembly.
Collapse
|
4
|
Oh E, Kalwat MA, Kim MJ, Verhage M, Thurmond DC. Munc18-1 regulates first-phase insulin release by promoting granule docking to multiple syntaxin isoforms. J Biol Chem 2012; 287:25821-33. [PMID: 22685295 DOI: 10.1074/jbc.m112.361501] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Attenuated levels of the Sec1/Munc18 (SM) protein Munc18-1 in human islet β-cells is coincident with type 2 diabetes, although how Munc18-1 facilitates insulin secretion remains enigmatic. Herein, using conventional Munc18-1(+/-) and β-cell specific Munc18-1(-/-) knock-out mice, we establish that Munc18-1 is required for the first phase of insulin secretion. Conversely, human islets expressing elevated levels of Munc18-1 elicited significant potentiation of only first-phase insulin release. Insulin secretory changes positively correlated with insulin granule number at the plasma membrane: Munc18-1-deficient cells lacked 35% of the normal component of pre-docked insulin secretory granules, whereas cells with elevated levels of Munc18-1 exhibited a ∼20% increase in pre-docked granule number. Pre-docked syntaxin 1-based SNARE complexes bound by Munc18-1 were detected in β-cell lysates but, surprisingly, were reduced by elevation of Munc18-1 levels. Paradoxically, elevated Munc18-1 levels coincided with increased binding of syntaxin 4 to VAMP2 at the plasma membrane. Accordingly, syntaxin 4 was a requisite for Munc18-1 potentiation of insulin release. Munc18c, the cognate SM isoform for syntaxin 4, failed to bind SNARE complexes. Given that Munc18-1 does not pair with syntaxin 4, these data suggest a novel indirect role for Munc18-1 in facilitating syntaxin 4-mediated granule pre-docking to support first-phase insulin exocytosis.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Pediatrics, Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
5
|
Regulation of voltage-gated calcium channels by synaptic proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:759-75. [PMID: 22453968 DOI: 10.1007/978-94-007-2888-2_33] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Calcium entry through neuronal voltage-gated calcium channels into presynaptic nerve terminal is a key step in synaptic exocytosis. In order to receive the calcium signal and trigger fast, efficient and spatially delimited neurotransmitter release, the vesicle-docking/release machinery must be located near the calcium source. In many cases, this close localization is achieved by a direct interaction of several members of the vesicle release machinery with the calcium channels. In turn, the binding of synaptic proteins to presynaptic calcium channels modulates channel activity to provide fine control over calcium entry, and thus modulates synaptic strength. In this chapter we summarize our present knowledge of the molecular mechanisms by which synaptic proteins regulate presynaptic calcium channel activity.
Collapse
|
6
|
Huang CC, Yang DM, Lin CC, Kao LS. Involvement of Rab3A in vesicle priming during exocytosis: interaction with Munc13-1 and Munc18-1. Traffic 2011; 12:1356-70. [PMID: 21689256 DOI: 10.1111/j.1600-0854.2011.01237.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rab3A is a small G-protein of the Rab family that is involved in the late steps of exocytosis. Here, we studied the role of Rab3A and its relationship with Munc13-1 and Munc18-1 during vesicle priming. Phorbol 12-myristate 13-acetate (PMA) is known to enhance the percentage of fusion-competent vesicles and this is mediated by protein kinase C (PKC)-independent Munc13-1 activation and PKC-dependent dissociation of Munc18-1 from syntaxin 1a. Our results show that the effects of PMA varied in cells overexpressing Rab3A or mutants of Rab3A and in cells with Rab3A knockdown. When Munc13-1 was overexpressed in Rab3A knockdown cells, secretion was completely inhibited. In cells overexpressing a Rab-interacting molecule (RIM)-binding deficient Munc13-1 mutant, 128-Munc13-1, the effects of Rab3A on PMA-induced secretion was abolished. The effect of PMA, which disappeared in cells overexpressing GTP-Rab3A (Q81L), could be reversed by co-expressing Munc18-1 but not its mutant R39C, which is unable to bind to syntaxin 1a. In cells overexpressing Munc18-1, manipulation of Rab3A activity had no effect on secretion. Finally, Munc18-1 enhanced the dissociation of Rab3A, and such enhancement correlated with exocytosis. In summary, our results support the hypothesis that the Rab3A cycle is coupled with the activation of Munc13-1 via RIM, which accounts for the regulation of secretion by Rab3A. Munc18-1 acts downstream of Munc13-1/RIM/Rab3A and interacts with syntaxin 1a allowing vesicle priming. Furthermore, Munc18-1 promotes Rab3A dissociation from vesicles, which then results in fusion.
Collapse
Affiliation(s)
- Chien-Chang Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, R. O. C
| | | | | | | |
Collapse
|
7
|
Williams AL, Bielopolski N, Meroz D, Lam AD, Passmore DR, Ben-Tal N, Ernst SA, Ashery U, Stuenkel EL. Structural and functional analysis of tomosyn identifies domains important in exocytotic regulation. J Biol Chem 2011; 286:14542-53. [PMID: 21330375 DOI: 10.1074/jbc.m110.215624] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tomosyn is a 130-kDa cytosolic R-SNARE protein that associates with Q-SNAREs and reduces exocytotic activity. Two paralogous genes, tomosyn-1 and -2, occur in mammals and produce seven different isoforms via alternative splicing. Here, we map the structural differences between the yeast homologue of m-tomosyn-1, Sro7, and tomosyn genes/isoforms to identify domains critical to the regulation of exocytotic activity to tomosyn that are outside the soluble N-ethylmaleimide-sensitive attachment receptor motif. Homology modeling of m-tomosyn-1 based on the known structure of yeast Sro7 revealed a highly conserved functional conformation but with tomosyn containing three additional loop domains that emanate from a β-propeller core. Notably, deletion of loops 1 and 3 eliminates tomosyn inhibitory activity on secretion without altering its soluble N-ethylmaleimide-sensitive attachment receptor pairing with syntaxin1A. By comparison, deletion of loop 2, which contains the hypervariable splice region, did not reduce the ability of tomosyn to inhibit regulated secretion. However, exon variation within the hypervariable splice region resulted in significant differences in protein accumulation of tomosyn-2 isoforms. Functional analysis of s-tomosyn-1, m-tomosyn-1, m-tomosyn-2, and xb-tomosyn-2 demonstrated that they exert similar inhibitory effects on elevated K(+)-induced secretion in PC12 cells, although m-tomosyn-2 was novel in strongly augmenting basal secretion. Finally, we report that m-tomosyn-1 is a target substrate for SUMO 2/3 conjugation and that mutation of this small ubiquitin-related modifier target site (Lys-730) enhances m-tomosyn-1 inhibition of secretion without altering interaction with syntaxin1A. Together these results suggest that multiple domains outside the R-SNARE of tomosyn are critical to the efficacy of inhibition by tomosyn on exocytotic secretion.
Collapse
Affiliation(s)
- Antionette L Williams
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Natural killer (NK) cells target and kill aberrant cells, such as virally infected and tumorigenic cells. Killing is mediated by cytotoxic molecules which are stored within secretory lysosomes, a specialized exocytic organelle found in NK cells. Target cell recognition induces the formation of a lytic immunological synapse between the NK cell and its target. The polarized exocytosis of secretory lysosomes is then activated and these organelles release their cytotoxic contents at the lytic synapse, specifically killing the target cell. The essential role that secretory lysosome exocytosis plays in the cytotoxic function of NK cells is highlighted by immune disorders that are caused by the mutation of critical components of the exocytic machinery. This review will discuss recent studies on the molecular basis for NK cell secretory lysosome exocytosis and the immunological consequences of defects in the exocytic machinery.
Collapse
Affiliation(s)
- Nicola J Topham
- Faculty of Biological Sciences, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
9
|
Yuan QX, Teng LP, Zhou JY, Liu CP, Guo J, Liu LJ, De W, Liu C. Characterization of Munc13-1 and insulin secretion during pancreatic development in rats. J Endocrinol Invest 2008; 31:630-5. [PMID: 18787382 DOI: 10.1007/bf03345615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Munc13-1 may be a key factor in regulating insulin exocytosis, but its exact expression and role have not been clarified yet, especially during pancreatic development. We attempted to investigate the expression and function of Munc13-1 during embryonic pancreatic development in rats and determine the effects on insulin secretion. In the present study, pancreata of rats at embryonic day 12.5 (E12.5), E15.5, E18.5, new-born, 21 after birth (P21), and adult stage were dissected under microscope. The rat model of intrauterine growth retardation (IUGR) was made by 50% calorie restriction in pregnant rats from gestational day 15 until term. The expression of Munc13-1 and insulin secretion was studied by the techniques of RTPCR, real-time PCR, Western blot, and enzyme-linked immunosorbent assay. Immunohistochemistry and immunofluorescence were used to define the location of Munc13- 1. We found that Munc13-1 was located at islet along with insulin. Insulin- and Munc13-1-specific mRNA were not detected until E12.5 and E15.5, respectively, and increased with the development of the fetus. Western blot showed that Munc13-1 was low at E15.5 and E18.5 and increased later. The blood insulin level and Munc13-1 were reduced simultaneously in IUGR newborn rats compared with normal ones. These results suggest that Munc13-1 exists in pancreas islets during fetus development and its deficiency in the pancreas, as occurs in IUGR, was in accordance with decreased blood insulin level. Munc13-1 may play an essential role in insulin exocytosis.
Collapse
Affiliation(s)
- Q X Yuan
- Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gladycheva SE, Lam AD, Liu J, D'Andrea-Merrins M, Yizhar O, Lentz SI, Ashery U, Ernst SA, Stuenkel EL. Receptor-mediated regulation of tomosyn-syntaxin 1A interactions in bovine adrenal chromaffin cells. J Biol Chem 2007; 282:22887-99. [PMID: 17545156 DOI: 10.1074/jbc.m701787200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tomosyn, a soluble R-SNARE protein identified as a binding partner of the Q-SNARE syntaxin 1A, is thought to be critical in setting the level of fusion-competent SNARE complexes for neurosecretion. To date, there has been no direct evaluation of the dynamics in which tomosyn transits through tomosyn-SNARE complexes or of the extent to which tomosyn-SNARE complexes are regulated by secretory demand. Here, we employed biochemical and optical approaches to characterize the dynamic properties of tomosyn-syntaxin 1A complexes in live adrenal chromaffin cells. We demonstrate that secretagogue stimulation results in the rapid translocation of tomosyn from the cytosol to plasma membrane regions and that this translocation is associated with an increase in the tomosyn-syntaxin 1A interaction, including increased cycling of tomosyn into tomosyn-SNARE complexes. The secretagogue-induced interaction was strongly reduced by pharmacological inhibition of the Rho-associated coiled-coil forming kinase, a result consistent with findings demonstrating secretagogue-induced activation of RhoA. Stimulation of chromaffin cells with lysophosphatidic acid, a nonsecretory stimulus that strongly activates RhoA, resulted in effects on tomosyn similar to that of application of the secretagogue. In PC-12 cells overexpressing tomosyn, secretagogue stimulation in the presence of lysophosphatidic acid resulted in reduced evoked secretory responses, an effect that was eliminated upon inhibition of Rho-associated coiled-coil forming kinase. Moreover, this effect required an intact interaction between tomosyn and syntaxin 1A. Thus, modulation of the tomosyn-syntaxin 1A interaction in response to secretagogue activation is an important mechanism allowing for dynamic regulation of the secretory response.
Collapse
Affiliation(s)
- Svetlana E Gladycheva
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Saxena SK, Singh M, Kaur S, George C. Distinct domain-dependent effect of syntaxin1A on amiloride-sensitive sodium channel (ENaC) currents in HT-29 colonic epithelial cells. Int J Biol Sci 2006; 3:47-56. [PMID: 17200691 PMCID: PMC1657084 DOI: 10.7150/ijbs.3.47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 10/30/2006] [Indexed: 11/06/2022] Open
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC), a plasma membrane protein mediates sodium reabsorption in epithelial tissues, including the distal nephron and colon. Syntaxin1A, a trafficking protein of the t-SNARE family has been reported to inhibit ENaC in the Xenopus oocyte expression and artificial lipid bilayer systems. The present report describes the regulation of the epithelial sodium channel by syntaxin1A in a human cell line that is physiologically relevant as it expresses both components and also responds to aldosterone stimulation. In order to evaluate the physiological significance of syntaxin1A interaction with natively expressed ENaC, we over-expressed HT-29 with syntaxin1A constructs comprising various motifs. Unexpectedly, we observed the augmentation of amiloride-sensitive currents with wild-type syntaxin1A full-length construct (1-288) in this cell line. Both γENaC and neutralizing syntaxin1A antibodies blocked native expression as amiloride-sensitive sodium currents were inhibited while munc18-1 antibody reversed this effect. The coiled-coiled domain H3 (194-266) of syntaxin1A inhibited, however the inclusion of the transmembrane domain to this motif (194-288) augmented amiloride sensitive currents. More so, data suggest that ENaC interacts with multiple syntaxin1A domains, which differentially regulate channel function. This functional modulation is the consequence of the physical enhancement of ENaC at the cell surface in cells over-expressed with syntaxin(s). Our data further suggest that syntaxin1A up-regulates ENaC function by multiple mechanisms that include PKA, PLC, PI3 and MAP Kinase (p42/44) signaling systems. We propose that syntaxin1A possesses distinct inhibitory and stimulatory domains that interact with ENaC subunits, which critically determines the overall ENaC functionality/regulation under distinct physiological conditions.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
Stimulus-secretion coupling is an essential process in secretory cells in which regulated exocytosis occurs, including neuronal, neuroendocrine, endocrine, and exocrine cells. While an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) is the principal signal, other intracellular signals also are important in regulated exocytosis. In particular, the cAMP signaling system is well known to regulate and modulate exocytosis in a variety of secretory cells. Until recently, it was generally thought that the effects of cAMP in regulated exocytosis are mediated by activation of cAMP-dependent protein kinase (PKA), a major cAMP target, followed by phosphorylation of the relevant proteins. Although the involvement of PKA-independent mechanisms has been suggested in cAMP-regulated exocytosis by pharmacological approaches, the molecular mechanisms are unknown. Newly discovered cAMP-GEF/Epac, which belongs to the cAMP-binding protein family, exhibits guanine nucleotide exchange factor activities and exerts diverse effects on cellular functions including hormone/transmitter secretion, cell adhesion, and intracellular Ca(2+) mobilization. cAMP-GEF/Epac mediates the PKA-independent effects on cAMP-regulated exocytosis. Thus cAMP regulates and modulates exocytosis by coordinating both PKA-dependent and PKA-independent mechanisms. Localization of cAMP within intracellular compartments (cAMP compartmentation or compartmentalization) may be a key mechanism underlying the distinct effects of cAMP in different domains of the cell.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | |
Collapse
|
13
|
Liu J, Ernst SA, Gladycheva SE, Lee YYF, Lentz SI, Ho CS, Li Q, Stuenkel EL. Fluorescence Resonance Energy Transfer Reports Properties of Syntaxin1A Interaction with Munc18-1 in Vivo. J Biol Chem 2004; 279:55924-36. [PMID: 15489225 DOI: 10.1074/jbc.m410024200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syntaxin1A, a neural-specific N-ethylmaleimide-sensitive factor attachment protein receptor protein essential to neurotransmitter release, in isolation forms a closed conformation with an N-terminal alpha-helix bundle folded upon the SNARE motif (H3 domain), thereby limiting interaction of the H3 domain with cognate SNAREs. Munc18-1, a neural-specific member of the Sec1/Munc18 protein family, binds to syntaxin1A, stabilizing this closed conformation. We used fluorescence resonance energy transfer (FRET) to characterize the Munc18-1/syntaxin1A interaction in intact cells. Enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A, or mutants of these proteins, were expressed as donor and acceptor pairs in human embryonic kidney HEK293-S3 and adrenal chromaffin cells. Apparent FRET efficiency was measured using two independent approaches with complementary results that unambiguously verified FRET and provided a spatial map of FRET efficiency. In addition, enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A colocalized with a Golgi marker and exhibited FRET at early expression times, whereas a strong plasma membrane colocalization, with similar FRET values, was apparent at later times. Trafficking of syntaxin1A to the plasma membrane was dependent on the presence of Munc18-1. Both syntaxin1A(L165A/E166A), a constitutively open conformation mutant, and syntaxin1A(I233A), an H3 domain point mutant, demonstrated apparent FRET efficiency that was reduced approximately 70% from control. In contrast, the H3 domain mutant syntaxin1A(I209A) had no effect. By using phosphomimetic mutants of Munc18-1, we also established that Ser-313, a Munc18-1 protein kinase C phosphorylation site, and Thr-574, a cyclin-dependent kinase 5 phosphorylation site, regulate Munc18-1/syntaxin1A interaction in HEK293-S3 and chromaffin cells. We conclude that FRET imaging in living cells may allow correlated regulation of Munc18-1/syntaxin1A interactions to Ca(2+)-regulated secretory events.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Molecular and Integrative Physiology, The Medical School, University of Michigan, 7808 Medical Sciences II Building, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|