1
|
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022; 10:1593. [PMID: 35884898 PMCID: PMC9313035 DOI: 10.3390/biomedicines10071593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
2
|
Mochida S. Neurotransmitter Release Site Replenishment and Presynaptic Plasticity. Int J Mol Sci 2020; 22:ijms22010327. [PMID: 33396919 PMCID: PMC7794938 DOI: 10.3390/ijms22010327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022] Open
Abstract
An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
3
|
Maschi D, Gramlich MW, Klyachko VA. Myosin V functions as a vesicle tether at the plasma membrane to control neurotransmitter release in central synapses. eLife 2018; 7:e39440. [PMID: 30320552 PMCID: PMC6209431 DOI: 10.7554/elife.39440] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
Synaptic vesicle fusion occurs at specialized release sites at the active zone. How refilling of release sites with new vesicles is regulated in central synapses remains poorly understood. Using nanoscale-resolution detection of individual release events in rat hippocampal synapses we found that inhibition of myosin V, the predominant vesicle-associated motor, strongly reduced refilling of the release sites during repetitive stimulation. Single-vesicle tracking revealed that recycling vesicles continuously shuttle between a plasma membrane pool and an inner pool. Vesicle retention at the membrane pool was regulated by neural activity in a myosin V dependent manner. Ultrastructural measurements of vesicle occupancy at the plasma membrane together with analyses of single-vesicle trajectories during vesicle shuttling between the pools suggest that myosin V acts as a vesicle tether at the plasma membrane, rather than a motor transporting vesicles to the release sites, or directly regulating vesicle exocytosis.
Collapse
Affiliation(s)
- Dario Maschi
- Department of Cell Biology and PhysiologyWashington UniversityMissouriUnited States
- Department of Biomedical EngineeringWashington UniversityMissouriUnited States
| | - Michael W Gramlich
- Department of Cell Biology and PhysiologyWashington UniversityMissouriUnited States
- Department of Biomedical EngineeringWashington UniversityMissouriUnited States
| | - Vitaly A Klyachko
- Department of Cell Biology and PhysiologyWashington UniversityMissouriUnited States
- Department of Biomedical EngineeringWashington UniversityMissouriUnited States
| |
Collapse
|
4
|
Gramlich MW, Klyachko VA. Actin/Myosin-V- and Activity-Dependent Inter-synaptic Vesicle Exchange in Central Neurons. Cell Rep 2017; 18:2096-2104. [PMID: 28249156 DOI: 10.1016/j.celrep.2017.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/13/2016] [Accepted: 01/31/2017] [Indexed: 11/18/2022] Open
Abstract
Vesicle sharing between synaptic boutons is an important component of the recycling process that synapses employ to maintain vesicle pools. However, the mechanisms supporting and regulating vesicle transport during the inter-synaptic exchange remain poorly understood. Using nanometer-resolution tracking of individual synaptic vesicles and advanced computational algorithms, we find that long-distance axonal transport of synaptic vesicles between hippocampal boutons is partially mediated by the actin network, with myosin V as the primary actin-dependent motor that drives this vesicle transport. Furthermore, we find that vesicle exit from the synapse to the axon and long-distance vesicle transport are both rapidly and dynamically regulated by activity. We corroborated these findings with two complementary modeling approaches of vesicle exit, which closely reproduced experimental observations. These findings uncover the roles of actin and myosin V in supporting the inter-synaptic vesicle exchange and reveal that this process is dynamically modulated in an activity-dependent manner.
Collapse
Affiliation(s)
- Michael W Gramlich
- Departments of Cell Biology and Physiology, Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vitaly A Klyachko
- Departments of Cell Biology and Physiology, Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
MOCHIDA S. Millisecond Ca 2+ dynamics activate multiple protein cascades for synaptic vesicle control. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:802-820. [PMID: 29225307 PMCID: PMC5790758 DOI: 10.2183/pjab.93.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
For reliable transmission at chemical synapses, neurotransmitters must be released dynamically in response to neuronal activity in the form of action potentials. Stable synaptic transmission is dependent on the efficacy of transmitter release and the rate of resupplying synaptic vesicles to their release sites. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an action potential. Presynaptic Ca2+ concentration changes are dynamic functions in space and time, with wide fluctuations associated with different rates of neuronal activity. Thus, regulation of transmitter release includes reactions involving multiple Ca2+-dependent proteins, each operating over a specific time window. Classically, studies of presynaptic proteins function favored large invertebrate presynaptic terminals. I have established a useful mammalian synapse model based on sympathetic neurons in culture. This review summarizes the use of this model synapse to study the roles of presynaptic proteins in neuronal activity for the control of transmitter release efficacy and synaptic vesicle recycling.
Collapse
Affiliation(s)
- Sumiko MOCHIDA
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Miki T, Malagon G, Pulido C, Llano I, Neher E, Marty A. Actin- and Myosin-Dependent Vesicle Loading of Presynaptic Docking Sites Prior to Exocytosis. Neuron 2016; 91:808-823. [DOI: 10.1016/j.neuron.2016.07.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/17/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
|
7
|
Neural activity selects myosin IIB and VI with a specific time window in distinct dynamin isoform-mediated synaptic vesicle reuse pathways. J Neurosci 2015; 35:8901-13. [PMID: 26063922 DOI: 10.1523/jneurosci.5028-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Presynaptic nerve terminals must maintain stable neurotransmissions via synaptic vesicle (SV) resupply despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neural activity to SV resupply is unknown. Myosins II and VI are actin-based cytoskeletal motors that drive dendritic actin dynamics and membrane transport, respectively, at brain synapses. Here we combined genetic knockdown or molecular dysfunction and direct physiological measurement of fast synaptic transmission from paired rat superior cervical ganglion neurons in culture to show that myosins IIB and VI work individually in SV reuse pathways, having distinct dependency and time constants with physiological AP frequency. Myosin VI resupplied the readily releasable pool (RRP) with slow kinetics independently of firing rates but acted quickly within 50 ms after AP. Under high-frequency AP firing, myosin IIB resupplied the RRP with fast kinetics in a slower time window of 200 ms. Knockdown of both myosin and dynamin isoforms by mixed siRNA microinjection revealed that myosin IIB-mediated SV resupply follows amphiphysin/dynamin-1-mediated endocytosis, while myosin VI-mediated SV resupply follows dynamin-3-mediated endocytosis. Collectively, our findings show how distinct myosin isoforms work as vesicle motors in appropriate SV reuse pathways associated with specific firing patterns.
Collapse
|
8
|
A nanoscale resolution view on synaptic vesicle dynamics. Synapse 2014; 69:256-67. [DOI: 10.1002/syn.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/20/2014] [Accepted: 11/27/2014] [Indexed: 12/31/2022]
|
9
|
da Costa AV, Calábria LK, de Souza Santos P, Goulart LR, Espindola FS. Glibenclamide treatment modulates the expression and localization of myosin-IIB in diabetic rat brain. J Neurol Sci 2014; 340:159-64. [PMID: 24725740 DOI: 10.1016/j.jns.2014.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Myosin-IIB is a non-muscle isoform in the brain with increased expression in the brains of diabetic rats. Chronic hyperglycemia caused by diabetes can impair learning and memory. Oral hypoglycemic agents such as glibenclamide have been used to control hyperglycemia. We report changes in the expression and distribution of myosin-IIB in the frontal cortex and hippocampus of diabetic rats treated with glibenclamide. METHODS The brains were removed after 43 days of treatment with glibenclamide (6 mg/kg bw orally), homogenized and analyzed by Western blotting, qRT-PCR and immunohistochemistry. RESULTS Myosin-IIB expression increased in the brains of diabetic rats. However, protein expression returned to control levels when treated with glibenclamide. In addition, the expression of MYH10 gene encoding non-muscle myosin heavy chain-B decreased in diabetic rats treated with glibenclamide. Moreover, we found weak myosin-IIB labeling in the hippocampus and frontal cortex of rats treated with glibenclamide. Therefore, the expression of myosin-IIB is affected by diabetes mellitus and may be modulated by glibenclamide treatment in rats. Structural changes in the hippocampus and prefrontal cortex are reversible, and glibenclamide treatment may reduce the patho-physiological changes in the brain. CONCLUSIONS Our findings can contribute to the understanding of the regulation of myosins in the brains of diabetic rats.
Collapse
Affiliation(s)
- Alice Vieira da Costa
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil
| | - Luciana Karen Calábria
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil; Faculty of Integrated Sciences, Federal University of Uberlândia, Campus Pontal, Ituiutaba, MG 38304-402, Brazil
| | - Paula de Souza Santos
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil
| | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil
| | - Foued Salmen Espindola
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil.
| |
Collapse
|
10
|
Kanno TYN, Espreafico EM, Yan CYI. Role of myosin Va in neuritogenesis of chick dorsal root ganglia nociceptive neurons. Cell Biol Int 2013; 38:388-94. [DOI: 10.1002/cbin.10210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/19/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Tatiane Y. N. Kanno
- Department of Cell and Developmental Biology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| | - Enilza M. Espreafico
- Department of Cell and Molecular Biology; Faculty of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Chao Yun Irene Yan
- Department of Cell and Developmental Biology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| |
Collapse
|
11
|
Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics. Nat Rev Neurosci 2013; 14:233-47. [DOI: 10.1038/nrn3445] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Bleckert A, Photowala H, Alford S. Dual pools of actin at presynaptic terminals. J Neurophysiol 2012; 107:3479-92. [PMID: 22457456 DOI: 10.1152/jn.00789.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated actin's function in vesicle recycling and exocytosis at lamprey synapses and show that FM1-43 puncta and phalloidin-labeled filamentous actin (F-actin) structures are colocalized, yet recycling vesicles are not contained within F-actin clusters. Additionally, phalloidin also labels a plasma membrane-associated cortical actin. Injection of fluorescent G-actin revealed activity-independent dynamic actin incorporation into presynaptic synaptic vesicle clusters but not into cortical actin. Latrunculin-A, which sequesters G-actin, dispersed vesicle-associated actin structures and prevented subsequent labeled G-actin and phalloidin accumulation at presynaptic puncta, yet cortical phalloidin labeling persisted. Dispersal of presynaptic F-actin structures by latrunculin-A did not disrupt vesicle clustering or recycling or alter the amplitude or kinetics of excitatory postsynaptic currents (EPSCs). However, it slightly enhanced release during repetitive stimulation. While dispersal of presynaptic actin puncta with latrunculin-A failed to disperse synaptic vesicles or inhibit synaptic transmission, presynaptic phalloidin injection blocked exocytosis and reduced endocytosis measured by action potential-evoked FM1-43 staining. Furthermore, phalloidin stabilization of only cortical actin following pretreatment with latrunculin-A was sufficient to inhibit synaptic transmission. Conversely, treatment of axons with jasplakinolide, which induces F-actin accumulation but disrupts F-actin structures in vivo, resulted in increased synaptic transmission accompanied by a loss of phalloidin labeling of cortical actin but no loss of actin labeling within vesicle clusters. Marked synaptic deficits seen with phalloidin stabilization of cortical F-actin, in contrast to the minimal effects of disruption of a synaptic vesicle-associated F-actin, led us to conclude that two structurally and functionally distinct pools of actin exist at presynaptic sites.
Collapse
Affiliation(s)
- Adam Bleckert
- Dept. of Biological Sciences, Univ. of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
13
|
Peng A, Rotman Z, Deng PY, Klyachko VA. Differential motion dynamics of synaptic vesicles undergoing spontaneous and activity-evoked endocytosis. Neuron 2012; 73:1108-15. [PMID: 22445339 DOI: 10.1016/j.neuron.2012.01.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2012] [Indexed: 11/25/2022]
Abstract
Synaptic vesicle exo- and endocytosis are usually driven by neuronal activity but can also occur spontaneously. The identity and differences between vesicles supporting evoked and spontaneous neurotransmission remain highly debated. Here we combined nanometer-resolution imaging with a transient motion analysis approach to examine the dynamics of individual synaptic vesicles in hippocampal terminals under physiological conditions. We found that vesicles undergoing spontaneous and stimulated endocytosis differ in their dynamic behavior, particularly in the ability to engage in directed motion. Our data indicate that such motional differences depend on the myosin family of motor proteins, particularly myosin II. Analysis of synaptic transmission in the presence of myosin II inhibitor confirmed a specific role for myosin II in evoked, but not spontaneous, neurotransmission and also suggested a functional role of myosin II-mediated vesicle motion in supporting vesicle mobilization during neural activity.
Collapse
Affiliation(s)
- Amy Peng
- Department of Cell Biology and Physiology, Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
14
|
Chaudhury A, He XD, Goyal RK. Role of myosin Va in purinergic vesicular neurotransmission in the gut. Am J Physiol Gastrointest Liver Physiol 2012; 302:G598-607. [PMID: 22207579 PMCID: PMC3311306 DOI: 10.1152/ajpgi.00330.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the hypothesis that myosin Va, by transporting purinergic vesicles to the varicosity membrane for exocytosis, plays a key role in purinergic vesicular neurotransmission. Studies were performed in wild-type (WT) and myosin Va-deficient dilute, brown, nonagouti (DBA) mice. Intracellular microelectrode recordings were made in mouse antral muscle strips. Purinergic inhibitory junction potential (pIJP) was recorded under nonadrenergic noncholinergic conditions after masking the nitrergic junction potentials. DBA mice showed reduced pIJP but normal hyperpolarizing response to P2Y1 receptor agonist MRS-2365. To investigate the mechanism of reduced purinergic transmission in DBA mice, studies were performed in isolated varicosities obtained from homogenates of whole gut tissues by ultracentrifugation and sucrose cushion purification. Purinergic varicosities were identified in tissue sections and in isolated varicosities by immunostaining for the vesicular ATP transporter, the solute carrier protein SLC17A9. The varicosities were similar in WT and DBA mice. Myosin Va was markedly reduced in DBA varicosities compared with the WT varicosities. Proximity ligation assay showed that myosin Va was closely associated with SLC17A9. Vesicular exoendocytosis was examined by FM1-43 staining of varicosities, which showed that exoendocytosis after KCl stimulation was impaired in DBA varicosities compared with WT varicosities. These studies show that SLC17A9 identifies ATP-containing purinergic varicosities. Myosin Va associates with SLC17A9-stained vesicles and possibly transports them to varicosity membrane for exocytosis. In myosin Va-deficient mice, purinergic inhibitory neurotransmission is impaired.
Collapse
Affiliation(s)
- Arun Chaudhury
- Center for Swallowing & Motility Disorders, Veterans Affairs Boston HealthCare System and Harvard Medical School, Boston, Massachusetts
| | - Xue-Dao He
- Center for Swallowing & Motility Disorders, Veterans Affairs Boston HealthCare System and Harvard Medical School, Boston, Massachusetts
| | - Raj K. Goyal
- Center for Swallowing & Motility Disorders, Veterans Affairs Boston HealthCare System and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Licursi V, Caiello I, Lombardi L, De Stefano ME, Negri R, Paggi P. Lack of dystrophin in mdx mice modulates the expression of genes involved in neuron survival and differentiation. Eur J Neurosci 2012; 35:691-701. [DOI: 10.1111/j.1460-9568.2011.07984.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Tang XL, Deng LB, Li GL, Liu SM, Lin JR, Xie JY, Liu J, Kong FJ, Liang SD. [Analysis of gene expression profile of peripheral ganglia in early stage type Ⅱ diabetic rats]. YI CHUAN = HEREDITAS 2012; 34:198-207. [PMID: 22382061 DOI: 10.3724/sp.j.1005.2012.00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Diabetic neuropathy (DN) is defined as the presence of symptoms and/or signs of peripheral nerve dysfunction in people with diabetes. The aim of this study is to screen differentially expressed genes in peripheral ganglia in early stage type Ⅱ experimental diabetic rats. We compared gene expression profiles of peripheral ganglia in type Ⅱ diabetic and nondiabetic rats based on Illumina® Sentrix® BeadChip arrays. The results showed that 158 out of a total of 12 604 known genes were significantly differentially expressed, including 87 up-regulated and 71 down-regulated genes, in diabetic rats compared with those in the nondiabetic rats. It is noted that some up-regulated genes are involved in the biological processes of neuronal cytoskeleton and motor proteins. In contrast, the down-regulated genes are associated with the response to virus\biotic stimulus\ other organism in diabetic rats. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the most significant pathway enriched in the changed gene set is metabolism (P < 0.001). These results indicated that metabolic changes in peripheral ganglia of diabetic rats could be induced by hyperglycemia. Hyperglycemia could change the expression of genes involved in neuronal cytoskeleton and motor proteins through immune inflammatory response, and then impair the structure and function of the peripheral ganglia.
Collapse
Affiliation(s)
- Xiao-Li Tang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term plasticity. Neurosci Res 2011; 70:16-23. [DOI: 10.1016/j.neures.2011.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/25/2011] [Accepted: 03/15/2011] [Indexed: 11/23/2022]
|
18
|
Seabrooke S, Stewart BA. Synaptic transmission and plasticity are modulated by nonmuscle myosin II at the neuromuscular junction of Drosophila. J Neurophysiol 2011; 105:1966-76. [PMID: 21325687 DOI: 10.1152/jn.00718.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The synaptic vesicle population in a nerve terminal is traditionally divided into subpopulations according to physiological criteria; the readily releasable pool (RRP), the recycling pool, and the reserve pool. It is recognized that the RRP subserves synaptic transmission evoked by low-frequency neural activity and that the recycling and reserve populations are called on to supply vesicles as neural activity increases. Here we investigated the contribution of nonmuscle myosin II (NMMII) to synaptic transmission with emphasis on the role a motor protein could play in the supply of vesicles. We used Drosophila genetics to manipulate NMMII and assessed synaptic transmission at the larval neuromuscular junction. We observed a positive correlation between synaptic strength at low-frequency stimulation and NMMII expression: reducing NMMII reduced the evoked response, while increasing NMMII increased the evoked response. Further, we found that NMMII contributed to the spontaneous release of vesicles differentially from evoked release, suggesting differential contribution to these two release mechanisms. By measuring synaptic responses under conditions of differing external calcium concentration in saline, we found that NMMII is important for normal synaptic transmission under high-frequency stimulation. This research identifies diverse functions for NMMII in synaptic transmission and suggests that this motor protein is an active contributor to the physiology of synaptic vesicle recruitment.
Collapse
Affiliation(s)
- Sara Seabrooke
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | | |
Collapse
|
19
|
Getty AL, Benedict JW, Pearce DA. A novel interaction of CLN3 with nonmuscle myosin-IIB and defects in cell motility of Cln3(-/-) cells. Exp Cell Res 2010; 317:51-69. [PMID: 20850431 DOI: 10.1016/j.yexcr.2010.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/15/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a pediatric lysosomal storage disorder characterized by accumulation of autofluorescent storage material and neurodegeneration, which result from mutations in CLN3. The function of CLN3, a lysosomal membrane protein, is currently unknown. We report that CLN3 interacts with cytoskeleton-associated nonmuscle myosin-IIB. Both CLN3 and myosin-IIB are ubiquitously expressed, yet mutations in either produce dramatic consequences in the CNS such as neurodegeneration in JNCL patients and Cln3(-/-) mouse models, or developmental deficiencies in Myh10(-/-) mice, respectively. A scratch assay revealed a migration defect associated with Cln3(-/-) cells. Inhibition of nonmuscle myosin-II with blebbistatin in WT cells resulted in a phenotype that mimics the Cln3(-/-) migration defect. Moreover, inhibiting lysosome function by treating cells with chloroquine exacerbated the migration defect in Cln3(-/-). Cln3(-/-) cells traversing a transwell filter under gradient trophic factor conditions displayed altered migration, further linking lysosomal function and cell migration. The myosin-IIB distribution in Cln3(-/-) cells is elongated, indicating a cytoskeleton defect caused by the loss of CLN3. In summary, cells lacking CLN3 have defects that suggest altered myosin-IIB activity, supporting a functional and physical interaction between CLN3 and myosin-IIB. We propose that the migration defect in Cln3(-/-) results, in part, from the loss of the CLN3-myosin-IIB interaction.
Collapse
Affiliation(s)
- Amanda L Getty
- Center for Neural Development and Disease, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
20
|
Chantler PD, Wylie SR, Wheeler-Jones CP, McGonnell IM. Conventional myosins - unconventional functions. Biophys Rev 2010; 2:67-82. [PMID: 28510009 PMCID: PMC5425674 DOI: 10.1007/s12551-010-0030-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/22/2009] [Indexed: 10/24/2022] Open
Abstract
While the discovery of unconventional myosins raised expectations that their actions were responsible for most aspects of actin-based cell motility, few anticipated the wide range of cellular functions that would remain the purview of conventional two-headed myosins. The three nonsarcomeric, cellular myosins-M2A, M2B and M2C-participate in diverse roles including, but not limited to: neuronal dynamics, axon guidance and synaptic transmission; endothelial cell migration; cell adhesion, polarity, fusion and cytokinesis; vesicle trafficking and viral egress. These three conventional myosins each take on specific, differing functional roles during development and maturity, characteristic of each cell lineage; exact roles depend on the developmental stage of the cell, cellular location, upstream regulatory controls, relative isoform expression, orientation and associated state of the actin cytoscaffolds in which these myosins operate. Here, we discuss the separate yet related roles that characterise the actions of M2A, M2B and M2C in various cell types and show that these conventional myosins are responsible for functions as unconventional as any performed by unconventional myosins.
Collapse
Affiliation(s)
- Peter D Chantler
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK.
| | - Steven R Wylie
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK
| | - Caroline P Wheeler-Jones
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK
| | - Imelda M McGonnell
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
21
|
Bridgman PC. Myosin motor proteins in the cell biology of axons and other neuronal compartments. Results Probl Cell Differ 2010; 48:91-105. [PMID: 19554282 DOI: 10.1007/400_2009_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most neurons of both the central and peripheral nervous systems express multiple members of the myosin superfamily that include nonmuscle myosin II, and a number of classes of unconventional myosins. Several classes of unconventional myosins found in neurons have been shown to play important roles in transport processes. A general picture of the myosin-dependent transport processes in neurons is beginning to emerge, although much more work still needs to be done to fully define these roles and establish the importance of myosin for axonal transport. Myosins appear to contribute to three types of transport processes in neurons; recycling of receptors or other membrane components, dynamic tethering of vesicular components, and transport or tethering of protein translational machinery including mRNA. Defects in one or more of these functions have potential to contribute to disease processes.
Collapse
Affiliation(s)
- Paul C Bridgman
- Department of Anatomy and Neurobiology, Box 8108, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Seabrooke S, Qiu X, Stewart BA. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction. BMC Neurosci 2010; 11:37. [PMID: 20233422 PMCID: PMC2853426 DOI: 10.1186/1471-2202-11-37] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 03/16/2010] [Indexed: 11/22/2022] Open
Abstract
Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic vesicle traffic within Drosophila larval neuromuscular boutons. Nonmuscle Myosin II was found to be localized at the Drosophila larval neuromuscular junction; genetics and pharmacology combined with the time-lapse imaging technique FRAP were used to reveal a contribution of Nonmuscle Myosin II to synaptic vesicle movement. FRAP analysis showed that vesicle dynamics were highly dependent on the expression level of Nonmuscle Myosin II. Conclusion Our results provide evidence that Nonmuscle Myosin II is present presynaptically, is important for synaptic vesicle mobility and suggests a role for Nonmuscle Myosin II in shuttling vesicles at the Drosophila neuromuscular junction. This work begins to reveal the process by which synaptic vesicles traverse within the bouton.
Collapse
Affiliation(s)
- Sara Seabrooke
- Department of Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada
| | | | | |
Collapse
|
23
|
Betapudi V. Myosin II motor proteins with different functions determine the fate of lamellipodia extension during cell spreading. PLoS One 2010; 5:e8560. [PMID: 20052411 PMCID: PMC2797395 DOI: 10.1371/journal.pone.0008560] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 12/09/2009] [Indexed: 11/18/2022] Open
Abstract
Non-muscle cells express multiple myosin-II motor proteins myosin IIA, myosin IIB and myosin IIC transcribed from different loci in the human genome. Due to a significant homology in their sequences, these ubiquitously expressed myosin II motor proteins are believed to have overlapping cellular functions, but the mechanistic details are not elucidated. The present study uncovered a mechanism that coordinates the distinctly localized myosin IIA and myosin IIB with unexpected opposite mechanical roles in maneuvering lamellipodia extension, a critical step in the initiation of cell invasion, spreading, and migration. Myosin IIB motor protein by localizing at the front drives lamellipodia extension during cell spreading. On the other hand, myosin IIA localizes next to myosin IIB and attenuates or retracts lamellipodia extension. Myosin IIA and IIB increase cell adhesion by regulating focal contacts formation in the spreading margins and central part of the spreading cell, respectively. Spreading cells expressing both myosin IIA and myosin IIB motor proteins display an organized actin network consisting of retrograde filaments, arcs and central filaments attached to focal contacts. This organized actin network especially arcs and focal contacts formation in the spreading margins were lost in myosin IIÂ cells. Surprisingly, myosin IIB̂ cells displayed long parallel actin filaments connected to focal contacts in the spreading margins. Thus, with different roles in the regulation of the actin network and focal contacts formation, both myosin IIA and IIB determine the fate of lamellipodia extension during cell spreading.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Cell Biology, Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America.
| |
Collapse
|
24
|
Abstract
Newly synthesized synaptic proteins and mitochondria are transported along lengthy neuronal processes to assist in the proper assembly of developing synapses and activity-dependent remodeling of mature synapses. Neuronal transport is mediated by motor proteins that associate with their cargoes via adaptors and travel along the cytoskeleton within neuronal processes. Our previous studies in developing hippocampal neurons revealed that syntabulin acts as a KIF5B motor adaptor and mediates anterograde transport of presynaptic cargoes and mitochondria, presynaptic assembly, and activity-induced plasticity. Here, using cultured superior cervical ganglion neurons combined with manipulation of syntabulin expression or interference with its interaction with KIF5B, we uncover a crucial role for syntabulin in the maintenance of presynaptic function. Syntabulin loss-of-function delayed the appearance of synaptic activity in developing neurons and impaired synaptic transmission in mature neurons, including reduced basal activity, accelerated synaptic depression under high-frequency firing, slowed recovery rates after synaptic vesicle depletion, and impaired presynaptic short-term plasticity. These defects correlated with reduced mitochondrial distribution along neuronal processes and were rescued by the application of ATP within presynaptic neurons. These results suggest that syntabulin supports the axonal transport of mitochondria and concomitant ATP production at presynaptic terminals. ATP supply from locally stationed mitochondria is in turn necessary for the efficient mobilization of synaptic vesicles into the readily releasable pool. These findings emphasize the critical role of KIF5B-syntabulin-mediated axonal transport in the maintenance of presynaptic function and regulation of synaptic plasticity.
Collapse
|
25
|
Presynaptic release probability and readily releasable pool size are regulated by two independent mechanisms during posttetanic potentiation at the calyx of Held synapse. J Neurosci 2008; 28:7945-53. [PMID: 18685020 DOI: 10.1523/jneurosci.2165-08.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At the immature calyx of Held, the fast decay phase of a Ca(2+) transient induced by tetanic stimulation (TS) was followed by a period of elevated [Ca(2+)](i) for tens of seconds, referred to as posttetanic residual calcium (Ca(res)). We investigated the source of Ca(res) and its contribution to posttetanic potentiation (PTP). After TS (100 Hz for 4 s), posttetanic Ca(res) at the calyx of Held was largely abolished by tetraphenylphosphonium (TPP(+)) or Ru360, which inhibit mitochondrial Na(+)-dependent Ca(2+) efflux and Ca(2+) uniporter, respectively. Whereas the control PTP lasted longer than Ca(res), inhibition of Ca(res) by TPP(+) resulted in preferential suppression of the early phase of PTP, the decay time course of which well matched with that of Ca(res). TS induced significant increases in release probability (P(r)) and the size of the readily releasable pool (RRP), which were estimated from plots of cumulative EPSC amplitudes. TPP(+) or Ru360 suppressed the posttetanic increase in P(r), whereas it had little effect on the increase in RRP size. Moreover, the posttetanic increase in P(r), but not in RRP size, showed a linear correlation with the amount of Ca(res). In contrast, myosin light chain kinase (MLCK) inhibitors and blebbistatin reduced the posttetanic increase in RRP size with no effect on the increase in P(r). Application of TPP(+) in the presence of MLCK inhibitor peptide caused further suppression of PTP. These findings suggest that Ca(res) released from mitochondria and activation of MLCK are primarily responsible for the increase in P(r) and that in the RRP size, respectively.
Collapse
|
26
|
Srinivasan G, Kim JH, von Gersdorff H. The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse. J Neurophysiol 2008; 99:1810-24. [PMID: 18256166 DOI: 10.1152/jn.00949.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic strength is determined by release probability and the size of the readily releasable pool of docked vesicles. Here we describe the effects of blocking myosin light chain kinase (MLCK), a cytoskeletal regulatory protein thought to be involved in myosin-mediated vesicle transport, on synaptic transmission at the mouse calyx of Held synapse. Application of three different MLCK inhibitors increased the amplitude of the early excitatory postsynaptic currents (EPSCs) in a stimulus train, without affecting the late steady-state EPSCs. A presynaptic locus of action for MLCK inhibitors was confirmed by an increase in the frequency of miniature EPSCs that left their average amplitude unchanged. MLCK inhibition did not affect presynaptic Ca(2+) currents or action potential waveform. Moreover, Ca(2+) imaging experiments showed that [Ca(2+)](i) transients elicited by 100-Hz stimulus trains were not altered by MLCK inhibition. Studies using high-frequency stimulus trains indicated that MLCK inhibitors increase vesicle pool size, but do not significantly alter release probability. Accordingly, when AMPA-receptor desensitization was minimized, EPSC paired-pulse ratios were unaltered by MLCK inhibition, suggesting that release probability remains unaltered. MLCK inhibition potentiated EPSCs even when presynaptic Ca(2+) buffering was greatly enhanced by treating slices with EGTA-AM. In addition, MLCK inhibition did not affect the rate of recovery from short-term depression. Finally, developmental studies revealed that EPSC potentiation by MLCK inhibition starts at postnatal day 5 (P5) and remains strong during synaptic maturation up to P18. Overall, our data suggest that MLCK plays a crucial role in determining the size of the pool of synaptic vesicles that undergo fast release at a CNS synapse.
Collapse
Affiliation(s)
- Geetha Srinivasan
- The Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|
27
|
Desnos C, Huet S, Fanget I, Chapuis C, Böttiger C, Racine V, Sibarita JB, Henry JP, Darchen F. Myosin va mediates docking of secretory granules at the plasma membrane. J Neurosci 2007; 27:10636-45. [PMID: 17898234 PMCID: PMC6673143 DOI: 10.1523/jneurosci.1228-07.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D(xy), was observed. Almost immobile SGs (D(xy) < 5 x 10(-4) microm2 x s(-1)) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D(xy) below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D(xy) below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane.
Collapse
Affiliation(s)
- Claire Desnos
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - Sébastien Huet
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - Isabelle Fanget
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - Catherine Chapuis
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - Caroline Böttiger
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - Victor Racine
- Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75248 Paris Cedex 05, France
| | - Jean-Baptiste Sibarita
- Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75248 Paris Cedex 05, France
| | - Jean-Pierre Henry
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - François Darchen
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| |
Collapse
|
28
|
Desnos C, Huet S, Darchen F. 'Should I stay or should I go?': myosin V function in organelle trafficking. Biol Cell 2007; 99:411-23. [PMID: 17635110 DOI: 10.1042/bc20070021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Actin- and microtubule-based motors can propel different cargos along filaments. Within cells, they control the distribution of membrane-bound compartments by performing complementary tasks. Organelles make long journeys along microtubules, with class V myosins ensuring their capture and their dispersal in actin-rich regions. Myosin Va is recruited on to diverse organelles, such as melanosomes and secretory vesicles, by a mechanism involving Rab GTPases. The role of myosin Va in the recruitment of secretory vesicles at the plasma membrane reveals that the cortical actin network cannot merely be seen as a physical barrier hindering vesicle access to release sites. In neurons, myosin Va controls the targeting of IP(3) (inositol 1,4,5-trisphosphate)-sensitive Ca(2+) stores to dendritic spines and the transport of mRNAs. These defects probably account for the severe neurological symptoms observed in Griscelli syndrome due to mutations in the MYO5A gene.
Collapse
Affiliation(s)
- Claire Desnos
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR 1929, Université Paris 7 Denis Diderot, Paris, France.
| | | | | |
Collapse
|
29
|
Ma H, Mochida S. A cholinergic model synapse to elucidate protein function at presynatic terminals. Neurosci Res 2007; 57:491-8. [PMID: 17287041 DOI: 10.1016/j.neures.2006.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 12/21/2006] [Accepted: 12/25/2006] [Indexed: 10/23/2022]
Abstract
A large number of proteins have been identified at nerve terminals and a cascade of protein-protein interactions has been suggested to be involved in cycling of synaptic vesicle states. To explore protein function in presynaptic terminals, only a few unique synapses such as the squid giant synapse, the calyx of Held synapse and the hippocampal neuron autapse have been used. The squid giant synapse and the calyx of Held are useful to introduce reagents into their large presynaptic terminals and the hippocampal neuron autapse is a good system to modify a protein level by exogenous DNA or RNA. The cholinergic synapse formed between superior cervical ganglion (SCG) neurons in long-term culture is a useful model for a fast synapse. The axon of the large cell body contacts with soma of neighboring neurons. The architecture of synaptic connections makes it possible to introduce reagents into the presynaptic terminals by diffusion from a cell body within a short time. Introduction of exogenous cDNA or siRNA performed by microinjection into a SCG neuron allows us to modulate the level of the protein of interest or to express mutant proteins in the neuron. Here, we describe use of the model SCG neuronal synapse to elucidate function of presynaptic proteins in mediating synaptic transmission.
Collapse
Affiliation(s)
- Huan Ma
- Department of Physiology, Tokyo Medical University, 1-1, Shinjuku-6-chome, Shinjuku-ku, Tokyo 160-8402, Japan
| | | |
Collapse
|
30
|
Kidokoro Y. Vesicle trafficking and recycling at the neuromuscular junction: two pathways for endocytosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:145-64. [PMID: 17137927 DOI: 10.1016/s0074-7742(06)75007-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Yoshiaki Kidokoro
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
31
|
Tokuoka H, Goda Y. Myosin light chain kinase is not a regulator of synaptic vesicle trafficking during repetitive exocytosis in cultured hippocampal neurons. J Neurosci 2006; 26:11606-14. [PMID: 17093082 PMCID: PMC6674773 DOI: 10.1523/jneurosci.3400-06.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism by which synaptic vesicles (SVs) are recruited to the release site is poorly understood. One candidate mechanism for trafficking of SVs is the myosin-actin motor system. Myosin activity is modulated by myosin light chain kinase (MLCK), which in turn is activated by calmodulin. Ca(2+) signaling in presynaptic terminals, therefore, may serve to regulate SV mobility along actin filaments via MLCK. Previous studies in different types of synapses have supported such a hypothesis. Here, we further investigated the role of MLCK in neurotransmitter release at glutamatergic synapses in cultured hippocampal neurons by examining the effects of two MLCK inhibitors, 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine.HCl (ML-7) and wortmannin. Bath application of ML-7 enhanced short-term depression of EPSCs to repetitive stimulation, whereas it reduced presynaptic release probability. However, ML-7 also inhibited action potential amplitude and voltage-gated Ca(2+) channel currents. These effects were not mimicked by wortmannin, suggesting that ML-7 was not specific to MLCK in hippocampal neurons. When SV exocytosis was directly triggered by a Ca(2+) ionophore, calcimycin, to bypass voltage-gated Ca(2+) channels, ML-7 had no effect on neurotransmitter release. Furthermore, when SV exocytosis elicited by electrical field stimulation was monitored by styryl dye, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide], the unloading kinetics of the dye was not altered in the presence of wortmannin. These data indicate that MLCK is not a major regulator of presynaptic SV trafficking during repetitive exocytosis at hippocampal synapses.
Collapse
Affiliation(s)
- Hirofumi Tokuoka
- Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and
| | - Yukiko Goda
- Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and
- Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
32
|
Abstract
Early in evolution, the diversification of membrane-bound compartments that characterize eukaryotic cells was accompanied by the elaboration of molecular machineries that mediate intercompartmental communication and deliver materials to specific destinations. Molecular motors that move on tracks of actin filaments or microtubules mediate the movement of organelles and transport between compartments. The subjects of this review are the motors that power the transport steps along the endocytic and recycling pathways, their modes of attachment to cargo and their regulation.
Collapse
Affiliation(s)
- Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, 30 quai Ernest Ansermet, Sciences II, CH-1211-Genève-4, Switzerland.
| | | |
Collapse
|