1
|
Ten Barge JA, van den Bosch GE, Slater R, van den Hoogen NJ, Reiss IKM, Simons SHP. Visceral Pain in Preterm Infants with Necrotizing Enterocolitis: Underlying Mechanisms and Implications for Treatment. Paediatr Drugs 2025:10.1007/s40272-024-00676-0. [PMID: 39752054 DOI: 10.1007/s40272-024-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a relatively rare but very severe gastrointestinal disease primarily affecting very preterm infants. NEC is characterized by excessive inflammation and ischemia in the intestines, and is associated with prolonged, severe visceral pain. Despite its recognition as a highly painful disease, current pain management for NEC is often inadequate, and research on optimal analgesic therapy for these patients is lacking. Insight into the mechanisms underlying intestinal pain in infants with NEC-visceral pain-could help identify the most effective analgesics for these vulnerable patients. Therefore, this comprehensive review aims to provide an overview of visceral nociception, including transduction, transmission, modulation, and experience, and discuss the implications for analgesic therapy in preterm infants with NEC. The transmission of visceral pain differs from that of somatic pain, contributing to the diffuse nature of visceral pain. Studies evaluating the effectiveness of analgesics for treating visceral pain in infants are scarce. However, research in visceral pain models highlights agents that may be particularly effective for treating visceral pain based on their mechanisms of action. Further research is necessary to determine whether agents that have shown promise for treating visceral pain in preclinical studies and adults are effective in infants with NEC as well.
Collapse
Affiliation(s)
- Judith A Ten Barge
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Gerbrich E van den Bosch
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | - Irwin K M Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sinno H P Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Alves-Simões M, Teege L, Tomni C, Lürkens M, Schmidt A, Iseppon F, Millet Q, Kühs S, Katona I, Weis J, Heinemann SH, Hübner CA, Wood J, Leipold E, Kurth I, Haag N. NaV1.8/NaV1.9 double deletion mildly affects acute pain responses in mice. Pain 2024:00006396-990000000-00728. [PMID: 39382328 DOI: 10.1097/j.pain.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/30/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The 2 tetrodotoxin-resistant (TTXr) voltage-gated sodium channel subtypes NaV1.8 and NaV1.9 are important for peripheral pain signaling. As determinants of sensory neuron excitability, they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and the release of neurotransmitters from sensory neuron terminals. NaV1.8 and NaV1.9, which are encoded by SCN10A and SCN11A, respectively, are predominantly expressed in pain-sensitive (nociceptive) neurons localized in the dorsal root ganglia (DRG) along the spinal cord and in the trigeminal ganglia. Mutations in these genes cause various pain disorders in humans. Gain-of-function missense variants in SCN10A result in small fiber neuropathy, while distinct SCN11A mutations cause, i. a., congenital insensitivity to pain, episodic pain, painful neuropathy, and cold-induced pain. To determine the impact of loss-of-function of both channels, we generated NaV1.8/NaV1.9 double knockout (DKO) mice using clustered regularly interspaced short palindromic repeats/Cas-mediated gene editing to achieve simultaneous gene disruption. Successful knockout of both channels was verified by whole-cell recordings demonstrating the absence of NaV1.8- and NaV1.9-mediated Na+ currents in NaV1.8/NaV1.9 DKO DRG neurons. Global RNA sequencing identified significant deregulation of C-LTMR marker genes as well as of pain-modulating neuropeptides in NaV1.8/NaV1.9 DKO DRG neurons, which fits to the overall only moderately impaired acute pain behavior observed in DKO mice. Besides addressing the function of both sodium channels in pain perception, we further demonstrate that the null-background is a very valuable tool for investigations on the functional properties of individual human disease-causing variants in NaV1.8 or NaV1.9 in their native physiological environment.
Collapse
Affiliation(s)
- Marta Alves-Simões
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Laura Teege
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Cecilia Tomni
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Martha Lürkens
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Annika Schmidt
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Queensta Millet
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Samuel Kühs
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Istvan Katona
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - John Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Enrico Leipold
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Natja Haag
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Maruta T, Kouroki S, Kurogi M, Hidaka K, Koshida T, Miura A, Nakagawa H, Yanagita T, Takeya R, Tsuneyoshi I. Comparison of Nocifensive Behavior in Na V1.7-, Na V1.8-, and Na V1.9-Channelrhodopsin-2 Mice by Selective Optogenetic Activation of Targeted Sodium Channel Subtype-Expressing Afferents. J Neurosci Res 2024; 102:e25386. [PMID: 39364619 DOI: 10.1002/jnr.25386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
Voltage-gated sodium channels, including NaV1.7, NaV1.8, and NaV1.9, play important roles in pain transmission and chronic pain development. However, the specific mechanisms of their action remain unclear, highlighting the need for in vivo stimulation studies of these channels. Optogenetics, a novel technique for targeting the activation or inhibition of specific neural circuits using light, offers a promising solution. In our previous study, we used optogenetics to selectively excite NaV1.7-expressing neurons in the dorsal root ganglion of mice to induce nocifensive behavior. Here, we further characterize the impact of nocifensive behavior by activation of NaV1.7, NaV1.8, or NaV1.9-expressing neurons. Using CRISPR/Cas9-mediated homologous recombination, NaV1.7-iCre, NaV1.8-iCre, or NaV1.9-iCre mice expressing iCre recombinase under the control of the endogenous NaV1.7, NaV1.8, or NaV1.9 gene promoter were produced. These mice were then bred with channelrhodopsin-2 (ChR2) Cre-reporter Ai32 mice to obtain NaV1.7-ChR2, NaV1.8-ChR2, or NaV1.9-ChR2 mice. Blue light exposure triggered paw withdrawal in all mice, with the strongest response in NaV1.8-ChR2 mice. These light sensitivity differences observed across NaV1.x-ChR2 mice may be dependent on ChR2 expression or reflect the inherent disparities in their pain transmission roles. In conclusion, we have generated noninvasive pain models, with optically activated peripheral nociceptors. We believe that studies using optogenetics will further elucidate the role of sodium channel subtypes in pain transmission.
Collapse
Affiliation(s)
- Toyoaki Maruta
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Kouroki
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mio Kurogi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kotaro Hidaka
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomohiro Koshida
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Miura
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hikaru Nakagawa
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihiko Yanagita
- Department of Clinical Pharmacology, School of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Isao Tsuneyoshi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
4
|
Heinle JW, Dalessio S, Janicki P, Ouyang A, Vrana KE, Ruiz-Velasco V, Coates MD. Insights into the voltage-gated sodium channel, Na V1.8, and its role in visceral pain perception. Front Pharmacol 2024; 15:1398409. [PMID: 38855747 PMCID: PMC11158627 DOI: 10.3389/fphar.2024.1398409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Pain is a major issue in healthcare throughout the world. It remains one of the major clinical issues of our time because it is a common sequela of numerous conditions, has a tremendous impact on individual quality of life, and is one of the top drivers of cost in medicine, due to its influence on healthcare expenditures and lost productivity in those affected by it. Patients and healthcare providers remain desperate to find new, safer and more effective analgesics. Growing evidence indicates that the voltage-gated sodium channel Nav1.8 plays a critical role in transmission of pain-related signals throughout the body. For that reason, this channel appears to have strong potential to help develop novel, more selective, safer, and efficacious analgesics. However, many questions related to the physiology, function, and clinical utility of Nav1.8 remain to be answered. In this article, we discuss the latest studies evaluating the role of Nav1.8 in pain, with a particular focus on visceral pain, as well as the steps taken thus far to evaluate its potential as an analgesic target. We also review the limitations of currently available studies related to this topic, and describe the next scientific steps that have already been undertaken, or that will need to be pursued, to fully unlock the capabilities of this potential therapeutic target.
Collapse
Affiliation(s)
- J. Westley Heinle
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Shannon Dalessio
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Piotr Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Ann Ouyang
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Matthew D. Coates
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Londregan A, Alexander TD, Covarrubias M, Waldman SA. Fundamental Neurochemistry Review: The role of enteroendocrine cells in visceral pain. J Neurochem 2023; 167:719-732. [PMID: 38037432 PMCID: PMC10917140 DOI: 10.1111/jnc.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
While visceral pain is commonly associated with disorders of the gut-brain axis, underlying mechanisms are not fully understood. Dorsal root ganglion (DRG) neurons innervate visceral structures and undergo hypersensitization in inflammatory models. The characterization of peripheral DRG neuron terminals is an active area of research, but recent work suggests that they communicate with enteroendocrine cells (EECs) in the gut. EECs sense stimuli in the intestinal lumen and communicate information to the brain through hormonal and electrical signaling. In that context, EECs are a target for developing therapeutics to treat visceral pain. Linaclotide is an FDA-approved treatment for chronic constipation that activates the intestinal membrane receptor guanylyl cyclase C (GUCY2C). Clinical trials revealed that linaclotide relieves both constipation and visceral pain. We recently demonstrated that the analgesic effect of linaclotide reflects the overexpression of GUCY2C on neuropod cells, a specialized subtype of EECs. While this brings some clarity to the relationship between linaclotide and visceral analgesia, questions remain about the intracellular signaling mechanisms and neurotransmitters mediating this communication. In this Fundamental Neurochemistry Review, we discuss what is currently known about visceral nociceptors, enteroendocrine cells, and the gut-brain axis, and ongoing areas of research regarding that axis and visceral pain.
Collapse
Affiliation(s)
- Annie Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Tyler D. Alexander
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Manuel Covarrubias
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
6
|
Maruta T, Hidaka K, Kouroki S, Koshida T, Kurogi M, Kage Y, Mizuno S, Shirasaka T, Yanagita T, Takahashi S, Takeya R, Tsuneyoshi I. Selective optogenetic activation of NaV1.7-expressing afferents in NaV1.7-ChR2 mice induces nocifensive behavior without affecting responses to mechanical and thermal stimuli. PLoS One 2022; 17:e0275751. [PMID: 36201719 PMCID: PMC9536842 DOI: 10.1371/journal.pone.0275751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
In small and large spinal dorsal root ganglion neurons, subtypes of voltage-gated sodium channels, such as NaV1.7, NaV1.8, and NaV1.9 are expressed with characteristically localized and may play different roles in pain transmission and intractable pain development. Selective stimulation of each specific subtype in vivo may elucidate its role of each subtype in pain. So far, this has been difficult with current technology. However, Optogenetics, a recently developed technique, has enabled selective activation or inhibition of specific neural circulation in vivo. Moreover, optogenetics had even been used to selectively excite NaV1.8-expressing dorsal root ganglion neurons to induce nocifensive behavior. In recent years, genetic modification technologies such as CRISPR/Cas9 have advanced, and various knock-in mice can be easily generated using such technology. We aimed to investigate the effects of selective optogenetic activation of NaV1.7-expressing afferents on mouse behavior. We used CRISPR/Cas9-mediated homologous recombination to generate bicistronic NaV1.7-iCre knock-in mice, which express iCre recombinase under the endogenous NaV1.7 gene promoter without disrupting NaV1.7. The Cre-driver mice were crossed with channelrhodopsin-2 (ChR2) Cre-reporter Ai32 mice to obtain NaV1.7iCre/+;Ai32/+, NaV1.7iCre/iCre;Ai32/+, NaV1.7iCre/+;Ai32/Ai32, and NaV1.7iCre/iCre;Ai32/Ai32 mice. Compared with wild-type mice behavior, no differences were observed in the behaviors associated with mechanical and thermal stimuli exhibited by mice of the aforementioned genotypes, indicating that the endogenous NaV1.7 gene was not affected by the targeted insertion of iCre. Blue light irradiation to the hind paw induced paw withdrawal by mice of all genotypes in a light power-dependent manner. The threshold and incidence of paw withdrawal and aversive behavior in a blue-lit room were dependent on ChR2 expression level; the strongest response was observed in NaV1.7iCre/iCre;Ai32/Ai32 mice. Thus, we developed a non-invasive pain model in which peripheral nociceptors were optically activated in free-moving transgenic NaV1.7-ChR2 mice.
Collapse
Affiliation(s)
- Toyoaki Maruta
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
- * E-mail:
| | - Kotaro Hidaka
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Satoshi Kouroki
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Tomohiro Koshida
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Mio Kurogi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Yohko Kage
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tetsuro Shirasaka
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Toshihiko Yanagita
- Department of Clinical Pharmacology, School of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Isao Tsuneyoshi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| |
Collapse
|
7
|
Tetrodotoxin: A New Strategy to Treat Visceral Pain? Toxins (Basel) 2021; 13:toxins13070496. [PMID: 34357968 PMCID: PMC8310099 DOI: 10.3390/toxins13070496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Visceral pain is one of the most common symptoms associated with functional gastrointestinal (GI) disorders. Although the origin of these symptoms has not been clearly defined, the implication of both the central and peripheral nervous systems in visceral hypersensitivity is well established. The role of several pathways in visceral nociception has been explored, as well as the influence of specific receptors on afferent neurons, such as voltage-gated sodium channels (VGSCs). VGSCs initiate action potentials and dysfunction of these channels has recently been associated with painful GI conditions. Current treatments for visceral pain generally involve opioid based drugs, which are associated with important side-effects and a loss of effectiveness or tolerance. Hence, efforts have been intensified to find new, more effective and longer-lasting therapies. The implication of VGSCs in visceral hypersensitivity has drawn attention to tetrodotoxin (TTX), a relatively selective sodium channel blocker, as a possible and promising molecule to treat visceral pain and related diseases. As such, here we will review the latest information regarding this toxin that is relevant to the treatment of visceral pain and the possible advantages that it may offer relative to other treatments, alone or in combination.
Collapse
|
8
|
Puthanmadhom Narayanan S, Linden DR, Peters SA, Desai A, Kuwelker S, O’Brien D, Smyrk TJ, Graham RP, Grover M, Bharucha AE. Duodenal mucosal secretory disturbances in functional dyspepsia. Neurogastroenterol Motil 2020; 33:e13955. [PMID: 32776463 PMCID: PMC7772227 DOI: 10.1111/nmo.13955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/31/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is increased recognition of duodenal disturbances (inflammation, altered mucosal protein expression, and chemosensitivity) in functional dyspepsia (FD). Besides sensorimotor functions, enteric submucosal neurons also regulate epithelial ion transport. We hypothesized that duodenal mucosal ion transport and expression of associated genes are altered in FD. METHODS Duodenal mucosal ion transport (basal and acetylcholine- and glucose-evoked changes in short-circuit current [Isc]) and expression of associated genes and regulatory miRNAs were evaluated in 40 FD patients and 24 healthy controls. RESULTS Basal Isc (FD: 88.2 [52.6] μA/cm2 vs healthy: 20.3 [50.2] μA/cm2 ; P ≤ .0001), acetylcholine-evoked Isc (FD: Emax 50.4 [35.8] μA/cm2 vs healthy: 16.6 [15] μA/cm2 ; P ≤ .001), and glucose-evoked Isc responses (FD: Emax 69.8 [42.1] μA/cm2 vs healthy: 40.3 [24.6] μA/cm2 ; P = .02) were greater in FD than in controls. The Emax for glucose was greater in FD patients on selective serotonin reuptake inhibitors. In FD, the mRNA expression of SLC4A7 and SLC4A4, which transport bicarbonate into cells at the basolateral surface, and the apical anion exchanger SLC26A3 were reduced (false discovery rate <0.05), the serotonin receptor HTR4 was increased, and the serotonin transporter SLC6A4 was decreased. Selected miRNAs (hsa-miR-590-3p, hsa-miR-32-5p) that target genes associated with ionic transport were upregulated in FD. CONCLUSIONS Compared to controls, FD patients had greater baseline and agonist-evoked duodenal mucosal secretory responses. These findings may be explained by reduced gene expression, which would be anticipated to reduce luminal bicarbonate secretion. The upregulated miRNAs may partly explain the downregulation of these genes in FD.
Collapse
Affiliation(s)
| | - David R. Linden
- Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN USA
| | - Stephanie A. Peters
- Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN USA
| | - Anshuman Desai
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN USA
| | - Saatchi Kuwelker
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN USA
| | - Daniel O’Brien
- Division of Biomedical Statistics and Informatics Mayo Clinic Rochester MN USA
| | - Thomas J. Smyrk
- Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN USA
| | - Rondell P. Graham
- Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN USA
| | - Adil E. Bharucha
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN USA
| |
Collapse
|
9
|
Huang T, Okauchi T, Hu D, Shigeta M, Wu Y, Wada Y, Hayashinaka E, Wang S, Kogure Y, Noguchi K, Watanabe Y, Dai Y, Cui Y. Pain matrix shift in the rat brain following persistent colonic inflammation revealed by voxel-based statistical analysis. Mol Pain 2020; 15:1744806919891327. [PMID: 31709891 PMCID: PMC6886279 DOI: 10.1177/1744806919891327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly comprising Crohn’s disease and ulcerative colitis, is characterized by chronic inflammation in the digestive tract. Approximately 60% of the patients experience abdominal pain during acute IBD episodes, which severely impairs their quality of life. Both peripheral and central mechanisms are thought to be involved in such abdominal pain in IBD. Although much attention has been paid to peripheral mechanisms of abdominal pain in IBD pathophysiology, the involvement of supraspinal mechanisms remains poorly understood. To address this issue, we investigated regional brain activity in response to colorectal distension in normal and IBD model rats using voxel-based statistical analysis of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography imaging. The rat IBD model was generated by colorectal administration of 2,4,6-trinitrobenzene sulfonic acid, a chemical compound widely used to generate colitis. Tissue damage and inflammation were induced and dynamically changed with time after 2,4,6-trinitrobenzene sulfonic acid injection, while colorectal distension-induced visceromotor response showed corresponding temporal changes. We found that characteristic brain activations were observed in response to visceral innocuous and noxious colorectal distension and supraspinal nociception shared some physiological sensory pathway. Moreover, widespread brain regions were activated, and the functional coupling between the central medial thalamic nucleus and anterior cingulate cortex was enhanced after noxious colorectal distension in IBD model of rats. Increased brain activity in the anterior insular cortex and anterior cingulate cortex was positively correlated with noxious colorectal distension-induced pain severity in normal and IBD rats, respectively. These findings suggest that the pain matrix was shifted following persistent colonic inflammation, and thalamocortical sensitization in the pathway from the central medial thalamic nucleus to anterior cingulate cortex might be a central mechanism of the visceral hyperalgesia in IBD pathophysiology.
Collapse
Affiliation(s)
- Tianliang Huang
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Takashi Okauchi
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Di Hu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mika Shigeta
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuping Wu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Emi Hayashinaka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shenglan Wang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
10
|
Marine Toxins and Nociception: Potential Therapeutic Use in the Treatment of Visceral Pain Associated with Gastrointestinal Disorders. Toxins (Basel) 2019; 11:toxins11080449. [PMID: 31370176 PMCID: PMC6723473 DOI: 10.3390/toxins11080449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Visceral pain, of which the pathogenic basis is currently largely unknown, is a hallmark symptom of both functional disorders, such as irritable bowel syndrome, and inflammatory bowel disease. Intrinsic sensory neurons in the enteric nervous system and afferent sensory neurons of the dorsal root ganglia, connecting with the central nervous system, represent the primary neuronal pathways transducing gut visceral pain. Current pharmacological therapies have several limitations, owing to their partial efficacy and the generation of severe adverse effects. Numerous cellular targets of visceral nociception have been recognized, including, among others, channels (i.e., voltage-gated sodium channels, VGSCs, voltage-gated calcium channels, VGCCs, Transient Receptor Potential, TRP, and Acid-sensing ion channels, ASICs) and neurotransmitter pathways (i.e., GABAergic pathways), which represent attractive targets for the discovery of novel drugs. Natural biologically active compounds, such as marine toxins, able to bind with high affinity and selectivity to different visceral pain molecular mediators, may represent a useful tool (1) to improve our knowledge of the physiological and pathological relevance of each nociceptive target, and (2) to discover therapeutically valuable molecules. In this review we report the most recent literature describing the effects of marine toxin on gastrointestinal visceral pain pathways and the possible clinical implications in the treatment of chronic pain associated with gut diseases.
Collapse
|
11
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
12
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
13
|
Coates MD, Vrana KE, Ruiz-Velasco V. The influence of voltage-gated sodium channels on human gastrointestinal nociception. Neurogastroenterol Motil 2019; 31:e13460. [PMID: 30216585 DOI: 10.1111/nmo.13460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain is a frequent and persistent problem in the most common gastrointestinal disorders, including irritable bowel syndrome and inflammatory bowel disease. Pain adversely impacts quality of life, incurs significant healthcare expenditures, and remains a challenging issue to manage with few safe therapeutic options currently available. It is imperative that new methods are developed for identifying and treating this symptom. A variety of peripherally active neuroendocrine signaling elements have the capability to influence gastrointestinal pain perception. A large and growing body of evidence suggests that voltage-gated sodium channels (VGSCs) play a critical role in the development and modulation of nociceptive signaling associated with the gut. Several VGSC isoforms demonstrate significant promise as potential targets for improved diagnosis and treatment of gut-based disorders associated with hyper- and hyposensitivity to abdominal pain. PURPOSE In this article, we critically review key investigations that have evaluated the potential role that VGSCs play in visceral nociception and discuss recent advances related to this topic. Specifically, we discuss the following: (a) what is known about the structure and basic function of VGSCs, (b) the role that each VGSC plays in gut nociception, particularly as it relates to human physiology, and (c) potential diagnostic and therapeutic uses of VGSCs to manage disorders associated with chronic abdominal pain.
Collapse
Affiliation(s)
- Matthew D Coates
- Division of Gastroenterology & Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Kent E Vrana
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
14
|
Barbara G, Grover M, Bercik P, Corsetti M, Ghoshal UC, Ohman L, Rajilić-Stojanović M. Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology 2019; 156:46-58.e7. [PMID: 30009817 PMCID: PMC6309514 DOI: 10.1053/j.gastro.2018.07.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The existence of postinfection irritable bowel syndrome (PI-IBS) has been substantiated by epidemiology studies conducted in diverse geographic and clinical settings. However, the available evidence has not been well summarized, and there is little guidance for diagnosis and treatment of PI-IBS. The ROME Foundation has produced a working team report to summarize the available evidence on the pathophysiology of PI-IBS and provide guidance for diagnosis and treatment, based on findings reported in the literature and clinical experience. METHODS The working team conducted an evidence-based review of publication databases for articles describing the clinical features (diagnosis), pathophysiology (intestinal sensorimotor function, microbiota, immune dysregulation, barrier dysfunction, enteroendocrine pathways, and genetics), and animal models of PI-IBS. We used a Delphi-based consensus system to create guidelines for management of PI-IBS and a developed treatment algorithm based on published findings and experiences of team members. RESULTS PI-IBS develops in about 10% of patients with infectious enteritis. Risk factors include female sex, younger age, psychological distress during or before acute gastroenteritis, and severity of the acute episode. The pathogenesis of PI-PBS appears to involve changes in the intestinal microbiome as well as epithelial, serotonergic, and immune system factors. However, these mechanisms are incompletely understood. There are no evidence-based, effective pharmacologic strategies for treatment of PI-IBS. We provide a consensus-based treatment algorithm, based on clinical presentation and potential disease mechanisms. CONCLUSIONS Based on a systematic review of the literature and team experience, we summarize the clinical features, pathophysiology (from animal models and human studies), and progression of PI-IBS. Based on these findings, we present an algorithm for diagnosis and treatment of PI-IBS based on team consensus. We also propose areas for future investigation.
Collapse
Affiliation(s)
- Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Madhusudan Grover
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Maura Corsetti
- Nottingham Digestive Diseases Biomedical Research Centre, National Institute for Health Research, Nottingham University Hospitals NHS Trust, University of Nottingham, UK
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Lena Ohman
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Erickson A, Deiteren A, Harrington AM, Garcia‐Caraballo S, Castro J, Caldwell A, Grundy L, Brierley SM. Voltage-gated sodium channels: (Na V )igating the field to determine their contribution to visceral nociception. J Physiol 2018; 596:785-807. [PMID: 29318638 PMCID: PMC5830430 DOI: 10.1113/jp273461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic visceral pain, altered motility and bladder dysfunction are common, yet poorly managed symptoms of functional and inflammatory disorders of the gastrointestinal and urinary tracts. Recently, numerous human channelopathies of the voltage-gated sodium (NaV ) channel family have been identified, which induce either painful neuropathies, an insensitivity to pain, or alterations in smooth muscle function. The identification of these disorders, in addition to the recent utilisation of genetically modified NaV mice and specific NaV channel modulators, has shed new light on how NaV channels contribute to the function of neuronal and non-neuronal tissues within the gastrointestinal tract and bladder. Here we review the current pre-clinical and clinical evidence to reveal how the nine NaV channel family members (NaV 1.1-NaV 1.9) contribute to abdominal visceral function in normal and disease states.
Collapse
Affiliation(s)
- Andelain Erickson
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Annemie Deiteren
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Sonia Garcia‐Caraballo
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| |
Collapse
|
16
|
Abstract
Fibromyalgia appears to present in subgroups with regard to biological pain induction, with primarily inflammatory, neuropathic/neurodegenerative, sympathetic, oxidative, nitrosative, or muscular factors and/or central sensitization. Recent research has also discussed glial activation or interrupted dopaminergic neurotransmission, as well as increased skin mast cells and mitochondrial dysfunction. Therapy is difficult, and the treatment options used so far mostly just have the potential to address only one of these aspects. As ambroxol addresses all of them in a single substance and furthermore also reduces visceral hypersensitivity, in fibromyalgia existing as irritable bowel syndrome or chronic bladder pain, it should be systematically investigated for this purpose. Encouraged by first clinical observations of two working groups using topical or oral ambroxol for fibromyalgia treatments, the present paper outlines the scientific argument for this approach by looking at each of the aforementioned aspects of this complex disease and summarizes putative modes of action of ambroxol. Nevertheless, at this point the evidence basis for ambroxol is not strong enough for clinical recommendation.
Collapse
Affiliation(s)
- Kai-Uwe Kern
- Institute of Pain Medicine/Pain Practice, Wiesbaden, Germany
| | | |
Collapse
|
17
|
Kern KU, Weiser T. Topical ambroxol for the treatment of neuropathic pain. An initial clinical observation. Schmerz 2017; 29 Suppl 3:S89-96. [PMID: 26589711 PMCID: PMC4701773 DOI: 10.1007/s00482-015-0060-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuropathic pain is difficult to treat, and the available options are often inadequate. The expectorant ambroxol also acts as a strong local anaesthetic and blocks sodium channels about 40 times more potently than lidocaine. It preferentially inhibits the channel subtype Nav 1.8, which is expressed especially in nociceptive C-fibres. In view of the low toxicity of ambroxol, it seemed reasonable to try using it for the treatment of neuropathic pain that failed to respond to other standard options. MATERIAL AND METHODS The medical records of seven patients with severe neuropathic pain and pain reduction following topical ambroxol treatment are reported retrospectively. As standard therapies had not proved sufficient, a topical ambroxol 20% cream was repeatedly applied by the patients in the area of neuropathic pain. RESULTS The reasons for neuropathic pain were postherpetic neuralgia (2 ×), mononeuropathy multiplex, phantom pain, deafferentation pain, postoperative neuralgia and foot neuropathy of unknown origin. The individual mean pain intensity reported was between 4 and 6/10 (NRS), maximum pain at 6-10/10 (NRS). The pain reduction achieved individually following ambroxol cream was 2-8 points (NRS) within 5-30 min and lasted for 3-8 h. Pain attacks were reduced in all five patients presenting with this problem. Four patients with no improvement after lidocaine 5% and one patient with no response to capsaicin 8% nevertheless experienced a pain reduction with topical ambroxol. No patient reported any side effects or skin changes during a treatment that has since been continued for up to 4 years. CONCLUSION Ambroxol acts as a strong local anaesthetic and preferentially inhibits the nociceptively relevant sodium channel subtype Nav 1.8. For the first time, we report below on a relevant pain relief following topical ambroxol 20% cream in patients with neuropathic pain. In view of the positive side effect profile, the clinical benefit in patients with pain should be investigated further.
Collapse
Affiliation(s)
- K-U Kern
- Institut für Schmerzmedizin/Schmerzpraxis Wiesbaden, Sonnenberger Str. 68, 65193, Wiesbaden, Germany.
| | - T Weiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| |
Collapse
|
18
|
Kern KU, Weiser T. [Topical ambroxol for the treatment of neuropathic pain: A first clinical observation. German version]. Schmerz 2017; 29:632-40. [PMID: 26597641 DOI: 10.1007/s00482-015-0065-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Neuropathic pain is difficult to treat and available options are frequently not sufficient. The expectorant ambroxol also works as a strong local anesthetic and blocks sodium channels about 40 times more potently than lidocaine. Ambroxol preferentially inhibits the channel subtype Nav 1.8, which is expressed particularly in nociceptive C fibers. Due to the low toxicity, topical ambroxol seemed to represent a reasonable therapeutic attempt for treatment of neuropathic pain resistant to other standard options. MATERIALS AND METHODS Medical records of 7 patients with severe neuropathic pain, in whom many attempts at treatment with approved substances were not sufficient or possible, are reported retrospectively. Patients were then treated with topical ambroxol 20% cream applied in the area of neuropathic pain. RESULTS Causes of neuropathic pain were postherpetic neuralgia (2-×), mononeuropathy multiplex, phantom pain, deafferentation pain, postoperative neuralgia and an unclear allodynia of the foot. Mean pain intensity was reported as 4-6/10 on a numeric rating scale (NRS) and maximum pain intensity as 6-10/10. Pain reduction following ambroxol cream was 2-8 points (NRS) within 15-30 min and lasted 3-8 h. Pain attacks were reduced in all 5 patients presenting this problem. Topical ambroxol achieved pain reduction in 4 patients with no improvement after lidocaine 5% and 1 patient with no response to capsaicin 8%. No adverse events or skin changes have been observed, and the longest treatment duration is currently 4 years. CONCLUSION Ambroxol acts as a strong local anesthetic and preferentially inhibits the nociceptive-relevant sodium channel subtype Nav 1.8. For the first time, we report relevant pain reduction following topical Ambroxol 20% cream in patients with neuropathic pain. Regarding the advantageous profile with rare side effects, the clinical benefit for pain patients should be further investigated.
Collapse
Affiliation(s)
- K-U Kern
- Institut für Schmerzmedizin / Schmerzpraxis Wiesbaden, Wiesbaden, Deutschland. .,Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Deutschland.
| | - T Weiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Deutschland
| |
Collapse
|
19
|
O'Donnell AM, Coyle D, Puri P. Decreased Nav1.9 channel expression in Hirschsprung's disease. J Pediatr Surg 2016; 51:1458-61. [PMID: 27297039 DOI: 10.1016/j.jpedsurg.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/08/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
AIM Voltage-gated sodium channel subtype 9 (Nav1.9) are expressed in dorsal root ganglion neurons and are known to be involved in pain during inflammation. Animal studies have reported Nav1.9 channel expression in myenteric intrinsic primary afferent neurons (IPANs). More recently, a study involving Nav1.9 knockout mice showed clear evidence of colonic dysmotility. However, there are no data regarding the expression of these channels in the human intestine, thus, the aim of our study was to determine Nav1.9 channel expression within the human colon and to elucidate if Nav1.9 channel expression is altered in Hirschsprung's disease (HD). METHODS HD tissue specimens (n=10) were collected at the time of pull-through surgery, while normal controls were obtained at the time of colostomy closure in patients with imperforate anus (n=10). Nav1.9 immunofluorescence was visualized using confocal microscopy to assess the distribution of the protein. Western blot analysis was undertaken to determine Nav1.9 protein quantification. RESULTS Confocal microscopy revealed Nav1.9-immunoreactive neurons within the submucosal and myenteric plexus in normal controls, with a reduction in the HD specimens. Calbindin double-labeling showed that Nav1.9-immunoreactive neurons were IPANs. Nav1.9 channels were also seen to be co-localized on smooth muscle cells in all tissues. Western blotting revealed high levels of Nav1.9 protein expression in normal controls, while there was a marked decrease in Nav1.9 protein expression in the HD tissue. CONCLUSION Our results show the expression of Nav1.9 channels within the human colon for the first time. Furthermore, Nav1.9 channel expression is decreased in HD versus normal controls.
Collapse
Affiliation(s)
- Anne-Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - David Coyle
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.
| |
Collapse
|
20
|
Emery EC, Luiz AP, Wood JN. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 2016; 20:975-83. [PMID: 26941184 PMCID: PMC4950419 DOI: 10.1517/14728222.2016.1162295] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction: Chronic pain is a massive clinical problem. We discuss the potential of subtype selective sodium channel blockers that may provide analgesia with limited side effects. Areas covered: Sodium channel subtypes have been linked to human pain syndromes through genetic studies. Gain of function mutations in Nav1.7, 1.8 and 1.9 can cause pain, whilst loss of function Nav1.7 mutations lead to loss of pain in otherwise normal people. Intriguingly, both human and mouse Nav1.7 null mutants have increased opioid drive, because naloxone, an opioid antagonist, can reverse the analgesia associated with the loss of Nav1.7 expression. Expert Opinion: We believe there is a great future for sodium channel antagonists, particularly Nav1.7 antagonists in treating most pain syndromes. This review deals with recent attempts to develop specific sodium channel blockers, the mechanisms that underpin the Nav1.7 null pain-free phenotype and new routes to analgesia using, for example, gene therapy or combination therapy with subtype specific sodium channel blockers and opioids. The use of selective Nav1.7 antagonists together with either enkephalinase inhibitors or low dose opioids has the potential for side effect-free analgesia, as well as an important opioid sparing function that may be clinically very significant.
Collapse
Affiliation(s)
- Edward C Emery
- a Molecular Nociception Group, Department of Medicine , WIBR, University College London , London WC1E 6BT , UK
| | - Ana Paula Luiz
- a Molecular Nociception Group, Department of Medicine , WIBR, University College London , London WC1E 6BT , UK
| | - John N Wood
- a Molecular Nociception Group, Department of Medicine , WIBR, University College London , London WC1E 6BT , UK
| |
Collapse
|
21
|
Hockley JRF, Winchester WJ, Bulmer DC. The voltage-gated sodium channel NaV 1.9 in visceral pain. Neurogastroenterol Motil 2016; 28:316-26. [PMID: 26462871 DOI: 10.1111/nmo.12698] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/06/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Visceral pain is a common symptom for patients with gastrointestinal (GI) disease. It is unpleasant, debilitating, and represents a large unmet medical need for effective clinical treatments. Recent studies have identified NaV 1.9 as an important regulator of afferent sensitivity in visceral pain pathways to mechanical and inflammatory stimuli, suggesting that NaV 1.9 could represent an important therapeutic target for the treatment of visceral pain. This potential has been highlighted by the identification of patients who have an insensitivity to pain or painful neuropathies associated with mutations in SCN11A, the gene encoding voltage-gated sodium channel subtype 1.9 (NaV 1.9). PURPOSE Here, we address the role of NaV 1.9 in visceral pain and what known human NaV 1.9 mutants can tell us about NaV 1.9 function in gut physiology and pathophysiology.
Collapse
Affiliation(s)
- J R F Hockley
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - D C Bulmer
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
22
|
Altered Ion Channel/Receptor Expression and Function in Extrinsic Sensory Neurons: The Cause of and Solution to Chronic Visceral Pain? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:75-90. [PMID: 27379637 DOI: 10.1007/978-3-319-27592-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gastrointestinal tract is unique in that it is innervated by several distinct populations of neurons, whose cell bodies are either intrinsic (enteric, viscerofugal) or extrinsic (sympathetic, sensory afferents) to the wall of the gut. We are usually completely unaware of the continuous, complicated orchestra of functions that these neurons conduct. However, for patients with Inflammatory Bowel Disease (IBD) or functional gastrointestinal disorders, such as Functional Dyspepsia (FD) and Irritable Bowel Syndrome (IBS) altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Whilst bouts of inflammation underlie the symptoms associated with IBD, over the past few years there is increased pre-clinical and clinical evidence that infection and inflammation are key risk factors for the development of several functional gastrointestinal disorders, in particular IBS. There is a strong correlation between prior exposure to gut infection and symptom occurrence; with the duration and severity of the initial illness the strongest associated risk factors. This review discusses the current body of evidence for neuroplasticity during inflammation and how in many cases fails to reset back to normal, long after healing of the damaged tissues. Recent evidence suggests that the altered expression and function of key ion channels and receptors within extrinsic sensory neurons play fundamental roles in the aberrant pain sensation associated with these gastrointestinal diseases and disorders.
Collapse
|
23
|
Luiz AP, Kopach O, Santana-Varela S, Wood JN. The role of Nav1.9 channel in the development of neuropathic orofacial pain associated with trigeminal neuralgia. Mol Pain 2015; 11:72. [PMID: 26607325 PMCID: PMC4658751 DOI: 10.1186/s12990-015-0076-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Trigeminal neuralgia is accompanied by severe mechanical, thermal and chemical hypersensitivity of the orofacial area innervated by neurons of trigeminal ganglion (TG). We examined the role of the voltage-gated sodium channel subtype Nav1.9 in the development of trigeminal neuralgia. RESULTS We found that Nav1.9 is required for the development of both thermal and mechanical hypersensitivity induced by constriction of the infraorbital nerve (CION). The CION model does not induce change on Nav1.9 mRNA expression in the ipsilateral TG neurons when evaluated 9 days after surgery. CONCLUSIONS These results demonstrate that Nav1.9 channels play a critical role in the development of orofacial neuropathic pain. New routes for the treatment of orofacial neuropathic pain focussing on regulation of the voltage-gated Nav1.9 sodium channel activity should be investigated.
Collapse
Affiliation(s)
- Ana Paula Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower St, London, WC1E 6BT, UK.
| | - Olga Kopach
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower St, London, WC1E 6BT, UK.
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower St, London, WC1E 6BT, UK.
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower St, London, WC1E 6BT, UK. .,Department of Molecular Medicine and Biopharmaceutical Sciences, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
24
|
Feng B, Zhu Y, La JH, Wills ZP, Gebhart GF. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings. J Neurophysiol 2015; 113:2618-34. [PMID: 25652923 DOI: 10.1152/jn.00717.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron.
Collapse
Affiliation(s)
- Bin Feng
- Department of Anesthesiology, Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Yi Zhu
- Department of Anesthesiology, Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Jun-Ho La
- Department of Anesthesiology, Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Zachary P Wills
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - G F Gebhart
- Department of Anesthesiology, Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
25
|
Abstract
The gastrointestinal tract is innervated by several distinct populations of neurons, whose cell bodies either reside within (intrinsic) or outside (extrinsic) the gastrointestinal wall. Normally, most individuals are unaware of the continuous, complicated functions of these neurons. However, for patients with gastrointestinal disorders, such as IBD and IBS, altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Although bouts of intestinal inflammation underlie the symptoms associated with IBD, increasing preclinical and clinical evidence indicates that infection and inflammation are also key risk factors for the development of other gastrointestinal disorders. Notably, a strong correlation exists between prior exposure to gut infection and symptom occurrence in IBS. This Review discusses the evidence for neuroplasticity (structural, synaptic or intrinsic changes that alter neuronal function) affecting gastrointestinal function. Such changes are evident during inflammation and, in many cases, long after healing of the damaged tissues, when the nervous system fails to reset back to normal. Neuroplasticity within distinct populations of neurons has a fundamental role in the aberrant motility, secretion and sensation associated with common clinical gastrointestinal disorders. To find appropriate therapeutic treatments for these disorders, the extent and time course of neuroplasticity must be fully appreciated.
Collapse
|
26
|
Belkouch M, Dansereau MA, Tétreault P, Biet M, Beaudet N, Dumaine R, Chraibi A, Mélik-Parsadaniantz S, Sarret P. Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation. J Neuroinflammation 2014; 11:45. [PMID: 24606981 PMCID: PMC4007624 DOI: 10.1186/1742-2094-11-45] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/21/2014] [Indexed: 02/05/2023] Open
Abstract
Background Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation. Methods Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. Results Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain. Conclusions Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philippe Sarret
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
27
|
Rahman W, Dickenson AH. Voltage gated sodium and calcium channel blockers for the treatment of chronic inflammatory pain. Neurosci Lett 2013; 557 Pt A:19-26. [PMID: 23941888 DOI: 10.1016/j.neulet.2013.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 01/16/2023]
Abstract
The inflammatory response is a natural response of the body that occurs immediately following tissue damage, which may be due to injury, infection or disease. The acute inflammatory response is an essential mechanism that promotes healing and a key aspect is the ensuing pain, which warns the subject to protect the site of injury. Thus, it is common to see a zone of primary sensitization as well as consequential central sensitization that generally, is maintained by a peripheral drive from the zone of tissue injury. Inflammation associated with chronic pain states, such as rheumatoid and osteoarthritis, cancer and migraine etc. is deleterious to health and often debilitating for the patient. Thus there is a large unmet clinical need. The mechanisms underlying both acute and chronic inflammatory pain are extensive and complex, involving a diversity of cell types, receptors and proteins. Among these the contribution of voltage gated sodium and calcium channels on peripheral nociceptors is critical for nociceptive transmission beyond the peripheral transducers and changes in their distribution, accumulation, clustering and functional activities have been linked to both inflammatory and neuropathic pain. The latter has been the main area for trials and use of drugs that modulate ion channels such as carbamazepine and gabapentin, but given the large peripheral drive that follows tissue damage, there is a clear rationale for blocking voltage gated sodium and calcium channels in these pain states. It has been hypothesized that pain of inflammatory origin may evolve into a condition that resembles neuropathic pain, but mixed pains such as low back pain and cancer pain often include elements of both pain states. This review considers the therapeutic potential for sodium and calcium channel blockers for the treatment of chronic inflammatory pain states.
Collapse
Affiliation(s)
- Wahida Rahman
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
28
|
Copel C, Clerc N, Osorio N, Delmas P, Mazet B. The Nav1.9 channel regulates colonic motility in mice. Front Neurosci 2013; 7:58. [PMID: 23596386 PMCID: PMC3625748 DOI: 10.3389/fnins.2013.00058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 03/28/2013] [Indexed: 01/07/2023] Open
Abstract
The colonic migrating motor complex (CMMC) is a major pattern of motility that is entirely generated and organized by the enteric nervous system. We have previously demonstrated that the Nav1.9 channel underlies a tetrodotoxin-resistant sodium current which modulates the excitability of enteric neurons. The aim of this study was to observe the effect of loss of the Nav1.9 channel in enteric neurons on mouse colonic motility in vitro. The mechanical activity of the circular muscle was simultaneously recorded from three sites, namely, proximal, mid- and distal, along the whole colon of male, age-matched wild-type and Nav1.9 null mice. Spontaneous CMMCs were observed in all preparations. The mean frequency of CMMCs was significantly higher in the Nav1.9 null mice (one every 2.87 ± 0.1 min compared to one every 3.96 ± 0.23 min in the wild type). The mean duration of CMMCs was shorter and the mean area-under-contraction was larger in the Nav1.9 null mice compared to the wild type. In addition, CMMCs propagated preferentially in an aboral direction in the Nav1.9 null mice. Our study demonstrates that CMMCs do occur in mice lacking the Nav1.9 channel, but their characteristics are significantly different from controls. Up to now, the Nav1.9 channel was mainly associated with nociceptive neurons and involved in their hyperexcitability after inflammation. Our result shows for the first time a role for the Nav1.9 channel in a complex colonic motor pattern.
Collapse
Affiliation(s)
- Carine Copel
- Aix Marseille Université, CNRS, CRN2M UMR 7286 Marseille, France
| | | | | | | | | |
Collapse
|
29
|
Freisinger W, Schatz J, Ditting T, Lampert A, Heinlein S, Lale N, Schmieder R, Veelken R. Sensory renal innervation: a kidney-specific firing activity due to a unique expression pattern of voltage-gated sodium channels? Am J Physiol Renal Physiol 2013; 304:F491-7. [PMID: 23283993 DOI: 10.1152/ajprenal.00011.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sensory neurons with afferent axons from the kidney are extraordinary in their response to electrical stimulation. More than 50% exhibit a tonic firing pattern, i.e., sustained action potential firing throughout depolarizing, pointing to an increased excitability, whereas nonrenal neurons show mainly a phasic response, i.e., less than five action potentials. Here we investigated whether these peculiar firing characteristics of renal afferent neurons are due to differences in the expression of voltage-gated sodium channels (Navs). Dorsal root ganglion (DRG) neurons from rats (Th11-L2) were recorded by the current-clamp technique and distinguished as "tonic" or "phasic." In voltage-clamp recordings, Navs were characterized by their tetrodotoxoxin (TTX) sensitivity, and their molecular identity was revealed by RT-PCR. The firing pattern of 66 DRG neurons (41 renal and 25 nonrenal) was investigated. Renal neurons exhibited more often a tonic firing pattern (56.1 vs. 12%). Tonic neurons showed a more positive threshold (-21.75 ± 1.43 vs.-29.33 ± 1.63 mV; P < 0.05), a higher overshoot (56.74 [53.6-60.96] vs. 46.79 mV [38.63-54.75]; P < 0.05) and longer action potential duration (4.61 [4.15-5.85] vs. 3.35 ms [2.12-5.67]; P < 0.05). These findings point to an increased presence of the TTX-resistant Navs 1.8 and 1.9. Furthermore, tonic neurons exhibited a relatively higher portion of TTX-resistant sodium currents. Interestingly, mRNA expression of TTX-resistant sodium channels was significantly increased in renal, predominantly tonic, DRG neurons. Hence, under physiological conditions, renal sensory neurons exhibit predominantly a firing pattern associated with higher excitability. Our findings support that this is due to an increased expression and activation of TTX-resistant Navs.
Collapse
Affiliation(s)
- Wolfgang Freisinger
- Dept. of Medicine 4, Univ. of Erlangen-Nürnberg, Loschgestraβe 8, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Arisawa T, Tahara T, Shiroeda H, Minato T, Matsue Y, Saito T, Fukuyama T, Otsuka T, Fukumura A, Nakamura M, Shibata T. Genetic polymorphisms of SCN10A are associated with functional dyspepsia in Japanese subjects. J Gastroenterol 2013; 48:73-80. [PMID: 22618805 DOI: 10.1007/s00535-012-0602-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/05/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Visceral sensory impulses are transmitted via C-fibers from the gastrointestinal tract to the central nervous system. The tetrodotoxinresistant (TTX-r) sodium channel, Na(V) 1.8/SNS (sensory-neuron specific), encoded by SCN10A, has been identified on C-fibers. We attempted to clarify the association between functional dyspepsia (FD) and SCN10A non-synonymous polymorphisms (2884 A>G, 3218 C>T and 3275 T>C). METHODS The study was performed in 642 subjects (345 with no symptoms and 297 with FD). We employed a multiplex polymerase chain reaction single-strand confirmation polymorphism (PCR-SSCP) method to detect the gene polymorphisms. RESULTS The 3218 CC homozygotes had a reduced risk for the development of FD [odds ratio (OR) 0.589; 95 % confidence interval (CI) 0.402-0.864; p = 0.0067]. In addition, both 2884 A>G and 3275 T>C, which were in linkage disequilibrium, were also associated with the development of FD (p = 0.039 and 0.028, respectively). Each 2884 G carrier, 3218 CC homozygote, and 3275 C carrier had a reduced risk for the development of both epigastric pain syndrome (EPS) and postprandial distress syndrome (PDS). The subjects with the 2884 G allele, 3275 C allele, and no 3218 T allele had a reduced risk for FD (OR 0.618; 95 % CI 0.448-0.853; p = 0.0034). This haplotype was associated with a reduced risk for both EPS and PDS (p = 0.0011 and 0.0056, respectively). In addition, there was a significant association between FD and this haplotype in Helicobacter pylori-negative subjects (OR 0.463; 95 % CI 0279-0.9768; p = 0.0029). CONCLUSION We conclude that genetic polymorphisms of SCN10A are closely associated with FD (both EPS and PDS), especially in H. pylori-negative subjects, in Japanese.
Collapse
Affiliation(s)
- Tomiyasu Arisawa
- Department of Gastroenterology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa, 920-0293, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu YQ, Zhao ZY, Chen XF, Xie F, Yang Y, Chen J. Activation of tetrodotoxin-resistant sodium channel NaV1.9 in rat primary sensory neurons contributes to melittin-induced pain behavior. Neuromolecular Med 2012; 15:209-17. [PMID: 23264124 DOI: 10.1007/s12017-012-8211-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/29/2012] [Indexed: 01/25/2023]
Abstract
Tetrodotoxin-resistant (TTX-R) sodium channels NaV1.8 and NaV1.9 in dorsal root ganglion (DRG) neurons play important roles in pathological pain. We recently reported that melittin, the major toxin of whole bee venom, induced action potential firings in DRG neurons even in the presence of a high concentration (500 nM) of TTX, indicating the contribution of TTX-R sodium channels. This hypothesis is fully investigated in the present study. After subcutaneous injection of melittin, NaV1.8 and NaV1.9 significantly upregulate mRNA and protein expressions, and related sodium currents also increase. Double immunohistochemical results show that NaV1.8-positive neurons are mainly medium- and small-sized, whereas NaV1.9-positive ones are only small-sized. Antisense oligodeoxynucleotides (AS ODNs) targeting NaV1.8 and NaV1.9 are used to evaluate functional significance of the increased expressions of TTX-R sodium channels. Behavioral tests demonstrate that AS ODN targeting NaV1.9, but not NaV1.8, reverses melittin-induced heat hypersensitivity. Neither NaV1.8 AS ODN nor NaV1.9 AS ODN affects melittin-induced mechanical hypersensitivity. These results provide previously unknown evidence that upregulation of NaV1.9, but not NaV1.8, in small-sized DRG neurons contributes to melittin-induced heat hypersensitivity. Furthermore, melittin-induced biological effect indicates a potential strategy to study properties of TTX-R sodium channels.
Collapse
Affiliation(s)
- Yao-Qing Yu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, #1 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Gilchrist J, Bosmans F. Animal toxins can alter the function of Nav1.8 and Nav1.9. Toxins (Basel) 2012; 4:620-32. [PMID: 23012651 PMCID: PMC3446747 DOI: 10.3390/toxins4080620] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022] Open
Abstract
Human voltage-activated sodium (Nav) channels are adept at rapidly transmitting electrical signals across long distances in various excitable tissues. As such, they are amongst the most widely targeted ion channels by drugs and animal toxins. Of the nine isoforms, Nav1.8 and Nav1.9 are preferentially expressed in DRG neurons where they are thought to play an important role in pain signaling. Although the functional properties of Nav1.8 have been relatively well characterized, difficulties with expressing Nav1.9 in established heterologous systems limit our understanding of the gating properties and toxin pharmacology of this particular isoform. This review summarizes our current knowledge of the role of Nav1.8 and Nav1.9 in pain perception and elaborates on the approaches used to identify molecules capable of influencing their function.
Collapse
Affiliation(s)
- John Gilchrist
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Frank Bosmans
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-410-955-4428
| |
Collapse
|
33
|
Davis MP. Drug management of visceral pain: concepts from basic research. PAIN RESEARCH AND TREATMENT 2012; 2012:265605. [PMID: 22619712 PMCID: PMC3348642 DOI: 10.1155/2012/265605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Visceral pain is experienced by 40% of the population, and 28% of cancer patients suffer from pain arising from intra- abdominal metastasis or from treatment. Neuroanatomy of visceral nociception and neurotransmitters, receptors, and ion channels that modulate visceral pain are qualitatively or quantitatively different from those that modulate somatic and neuropathic pain. Visceral pain should be recognized as distinct pain phenotype. TRPV1, Na 1.8, and ASIC3 ion channels and peripheral kappa opioid receptors are important mediators of visceral pain. Mu agonists, gabapentinoids, and GABAB agonists reduce pain by binding to central receptors and channels. Combinations of analgesics and adjuvants in animal models have supra-additive antinociception and should be considered in clinical trials. This paper will discuss the neuroanatomy, receptors, ion channels, and neurotransmitters important to visceral pain and provide a basic science rationale for analgesic trials and management.
Collapse
Affiliation(s)
- Mellar P. Davis
- Cleveland Clinic Lerner School of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Solid Tumor Division, Harry R. Horvitz Center for Palliative Medicine, Taussig Cancer Institute, USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Visceral pain represents a major clinical problem, yet far less is known about its mechanisms compared with somatic pains, for example, from cutaneous and muscular structures. RECENT FINDINGS In this review, we describe the neuroanatomical bases of visceral pain signalling in the peripheral and central nervous system, comparing to somatic pains and also the channels and receptors involved in these events. We include an overview of potential new targets in the context of mechanisms of visceral pain and hypersensitivity. SUMMARY This review should inform on the recognition of what occurs in patients with visceral pain, why comorbidities are common and how analgesic treatments work.
Collapse
Affiliation(s)
- Shafaq Sikandar
- Department of Neuroscience, Physiology and Pharmacology University College London, London UK.
| | | |
Collapse
|
35
|
Ross GR, Gade AR, Dewey WL, Akbarali HI. Opioid-induced hypernociception is associated with hyperexcitability and altered tetrodotoxin-resistant Na+ channel function of dorsal root ganglia. Am J Physiol Cell Physiol 2011; 302:C1152-61. [PMID: 22189556 DOI: 10.1152/ajpcell.00171.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Opiates are potent analgesics for moderate to severe pain. Paradoxically, patients under chronic opiates have reported hypernociception, the mechanisms of which are unknown. Using standard patch-clamp technique, we examined the excitability, biophysical properties of tetrodotoxin-resistant (TTX-R) Na(+) and transient receptor potential vanilloid 1 (TRPV1) channels of dorsal root ganglia neurons (DRG) (L(5)-S(1)) from mice pelleted with morphine (75 mg) or placebo (7 days). Hypernociception was confirmed by acetic acid-writhing test following 7-day morphine. Chronic morphine enhanced the neuronal excitability, since the rheobase for action potential (AP) firing was significantly (P < 0.01) lower (38 ± 7 vs. 100 ± 15 pA) while the number of APs at 2× rheobase was higher (4.4 ± 0.8 vs. 2 ± 0.5) than placebo (n = 13-20). The potential of half-maximum activation (V(1/2)) of TTX-R Na(+) currents was shifted to more hyperpolarized potential in the chronic morphine group (-37 ± 1 mV) vs. placebo (-28 ± 1 mV) without altering the V(1/2) of inactivation (-41 ± 1 vs. -33 ± 1 mV) (n = 8-11). Recovery rate from inactivation of TTX-R Na(+) channels or the mRNA level of any Na(+) channel subtypes did not change after chronic morphine. Also, chronic morphine significantly (P < 0.05) enhanced the magnitude of TRPV1 currents (-64 ± 11 pA/pF) vs. placebo (-18 ± 6 pA/pF). The increased excitability of sensory neurons by chronic morphine may be due to the shift in the voltage threshold of activation of TTX-R Na(+) currents. Enhanced TRPV1 currents may have a complementary effect, with TTX-R Na(+) currents on opiate-induced hyperexcitability of sensory neurons causing hypernociception. In conclusion, chronic morphine-induced hypernociception is associated with hyperexcitability and functional remodeling of TTX-R Na(+) and TRPV1 channels of sensory neurons.
Collapse
Affiliation(s)
- Gracious R Ross
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, 23298-0524, USA
| | | | | | | |
Collapse
|
36
|
Achieving translation in models of visceral pain. Curr Opin Pharmacol 2011; 11:575-81. [PMID: 22000605 DOI: 10.1016/j.coph.2011.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/23/2011] [Indexed: 02/08/2023]
Abstract
The failure of drugs to modify pain end points in clinical trials for irritable bowel syndrome (IBS) highlights the knowledge gap that exists in the translation of efficacy in animal models of visceral pain into the clinic. Recent progress has been made towards improving the translation of visceral pain, particularly with regard to the activation of the sensory nerves which relay pain from the gut to the brain. This review will focus on studies which have identified the presence of an altered gastrointestinal and immune environment in IBS patients. The development of human gastrointestinal visceral afferent recordings has allowed direct comparison between sensory nerve studies in animals and human, as well as important advances in our understanding of the ion channels that underpin the changes in sensory nerve excitability.
Collapse
|
37
|
Qi FH, Zhou YL, Xu GY. Targeting voltage-gated sodium channels for treatment for chronic visceral pain. World J Gastroenterol 2011; 17:2357-64. [PMID: 21633634 PMCID: PMC3103787 DOI: 10.3748/wjg.v17.i19.2357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/16/2011] [Accepted: 03/23/2011] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated sodium channels (VGSCs) play a fundamental role in controlling cellular excitability, and their abnormal activity is related to several pathological processes, including cardiac arrhythmias, epilepsy, neurodegenerative diseases, spasticity and chronic pain. In particular, chronic visceral pain, the central symptom of functional gastrointestinal disorders such as irritable bowel syndrome, is a serious clinical problem that affects a high percentage of the world population. In spite of intense research efforts and after the dedicated decade of pain control and research, there are not many options to treat chronic pain conditions. However, there is a wealth of evidence emerging to give hope that a more refined approach may be achievable. By using electronic databases, available data on structural and functional properties of VGSCs in chronic pain, particularly functional gastrointestinal hypersensitivity, were reviewed. We summarize the involvement and molecular bases of action of VGSCs in the pathophysiology of several organic and functional gastrointestinal disorders. We also describe the efficacy of VGSC blockers in the treatment of these neurological diseases, and outline future developments that may extend the therapeutic use of compounds that target VGSCs. Overall, clinical and experimental data indicate that isoform-specific blockers of these channels or targeting of their modulators may provide effective and novel approaches for visceral pain therapy.
Collapse
|
38
|
Yu YQ, Zhao F, Guan SM, Chen J. Antisense-mediated knockdown of Na(V)1.8, but not Na(V)1.9, generates inhibitory effects on complete Freund's adjuvant-induced inflammatory pain in rat. PLoS One 2011; 6:e19865. [PMID: 21572961 PMCID: PMC3091880 DOI: 10.1371/journal.pone.0019865] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 04/12/2011] [Indexed: 02/01/2023] Open
Abstract
Tetrodotoxin-resistant (TTX-R) sodium channels NaV1.8 and NaV1.9 in sensory neurons were known as key pain modulators. Comparing with the widely reported NaV1.8, roles of NaV1.9 on inflammatory pain are poorly studied by antisense-induced specific gene knockdown. Here, we used molecular, electrophysiological and behavioral methods to examine the effects of antisense oligodeoxynucleotide (AS ODN) targeting NaV1.8 and NaV1.9 on inflammatory pain. Following complete Freund's adjuvant (CFA) inflammation treatment, NaV1.8 and NaV1.9 in rat dorsal root ganglion (DRG) up-regulated mRNA and protein expressions and increased sodium current densities. Immunohistochemical data demonstrated that NaV1.8 mainly localized in medium and small-sized DRG neurons, whereas NaV1.9 only expressed in small-sized DRG neurons. Intrathecal (i.t.) delivery of AS ODN was used to down-regulate NaV1.8 or NaV1.9 expressions confirmed by immunohistochemistry and western blot. Unexpectedly, behavioral tests showed that only NaV1.8 AS ODN, but not NaV1.9 AS ODN could reverse CFA-induced heat and mechanical hypersensitivity. Our data indicated that TTX-R sodium channels NaV1.8 and NaV1.9 in primary sensory neurons played distinct roles in CFA-induced inflammatory pain and suggested that antisense oligodeoxynucleotide-mediated blocking of key pain modulator might point toward a potential treatment strategy against certain types of inflammatory pain.
Collapse
Affiliation(s)
- Yao-Qing Yu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Feng Zhao
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Su-Min Guan
- School of Stomatology, the Fourth Military Medical University, Xi'an, People's Republic of China
- * E-mail: (JC); (SG)
| | - Jun Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing, People's Republic of China
- * E-mail: (JC); (SG)
| |
Collapse
|
39
|
Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol 2011; 46:164-74. [PMID: 20848144 DOI: 10.1007/s00535-010-0321-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 08/19/2010] [Indexed: 02/07/2023]
Abstract
AIMS Post-infectious irritable bowel syndrome (PI-IBS) is a subset of IBS which occurs after an episode of acute gastrointestinal infections. The mechanisms of PI-IBS are not fully understood. Currently, numerous animal models have been used in the study of PI-IBS. This article reviews the strengths and weaknesses of these models. METHODS All relevant articles were identified by searching in Ovid SP from 1962, the year the term PI-IBS was coined, up to December 31, 2009. The types of model were categorized as either post-infectious or post-inflammatory, and the characteristics of each kind of model were listed. RESULTS Based on our literature search, 268 articles were identified. Of those articles, 50 were included in this review. The existing PI-IBS models include infection with bacteria (e.g., Campylobacter jejuni, Salmonella enterica, and Campylobacter rodentium), and infection with parasites (e.g., Trichinella spiralis, Nippostrongylus brasiliensis, and Cryptosporidium parvum). The post-inflammatory IBS models are commonly induced with chemical agents, such as acetic acid, deoxycholic acid, dextran sulfate sodium, mustard oil, zymosan, and trinitrobenzene sulfonic acid (TNBS). TNBS is the most commonly used agent for post-inflammatory IBS models, but the experimental protocol varies. These models have one or more aspects similar to IBS patients. CONCLUSIONS Different methods have been used for the development of post-infectious or post-inflammatory IBS models. Each model has its weaknesses and strengths. More studies are needed to establish post-infection IBS models using more common pathogens. A standard protocol in developing TNBS-induced post-inflammatory IBS model is needed.
Collapse
|
40
|
Identifying the Ion Channels Responsible for Signaling Gastro-Intestinal Based Pain. Pharmaceuticals (Basel) 2010; 3:2768-2798. [PMID: 27713376 PMCID: PMC4034097 DOI: 10.3390/ph3092768] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/05/2010] [Accepted: 08/20/2010] [Indexed: 12/20/2022] Open
Abstract
We are normally unaware of the complex signalling events which continuously occur within our internal organs. Most of us only become cognisant when sensations of hunger, fullness, urgency or gas arise. However, for patients with organic and functional bowel disorders pain is an unpleasant and often debilitating reminder. Furthermore, chronic pain still represents a large unmet need for clinical treatment. Consequently, chronic pain has a considerable economic impact on health care systems and the afflicted individuals. In order to address this need we must understand how symptoms are generated within the gut, the molecular pathways responsible for generating these signals and how this process changes in disease states.
Collapse
|
41
|
Abstract
Nociception is essential for survival whereas pathological pain is maladaptive and often unresponsive to pharmacotherapy. Voltage-gated sodium channels, Na(v)1.1-Na(v)1.9, are essential for generation and conduction of electrical impulses in excitable cells. Human and animal studies have identified several channels as pivotal for signal transmission along the pain axis, including Na(v)1.3, Na(v)1.7, Na(v)1.8, and Na(v)1.9, with the latter three preferentially expressed in peripheral sensory neurons and Na(v)1.3 being upregulated along pain-signaling pathways after nervous system injuries. Na(v)1.7 is of special interest because it has been linked to a spectrum of inherited human pain disorders. Here we review the contribution of these sodium channel isoforms to pain.
Collapse
Affiliation(s)
- Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Drugs inhibiting voltage-gated sodium channels have long been used as analgesics, beginning with the use of local anaesthetics for sensory blockade and then with the discovery that Nav-blocking anticonvulsants also have benefit for pain therapy. These drugs were discovered without knowledge of their molecular target, using traditional pharmacological methods, and their clinical utility is limited by relatively narrow therapeutic windows. Until recently, attempts to develop improved inhibitors using modern molecular-targeted screening approaches have met with limited success. However, in the last few years there has been renewed activity following the discovery of human Nav1.7 mutations that cause striking insensitivity to pain. Together with recent advances in the technologies required to prosecute ion channels as drug targets, this has led to significant progress being made. This article reviews these developments and summarises current findings with these emerging new Nav inhibitors, highlighting some of the unanswered questions and the challenges that remain before they can be developed for clinical use.
Collapse
Affiliation(s)
- Jeffrey J Clare
- Cell-Based Assays Group, Millipore Corporation, St Charles, Missouri 63304, USA.
| |
Collapse
|
43
|
Lampert A, O'Reilly AO, Reeh P, Leffler A. Sodium channelopathies and pain. Pflugers Arch 2010; 460:249-63. [PMID: 20101409 DOI: 10.1007/s00424-009-0779-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/13/2009] [Accepted: 12/18/2009] [Indexed: 12/19/2022]
Abstract
Chronic pain often represents a severe, debilitating condition. Up to 10% of the worldwide population are affected, and many patients are poorly responsive to current treatment strategies. Nociceptors detect noxious conditions to produce the sensation of pain, and this signal is conveyed to the CNS by means of action potentials. The fast upstroke of action potentials is mediated by voltage-gated sodium channels, of which nine pore-forming alpha-subunits (Nav1.1-1.9) have been identified. Heterogeneous functional properties and distinct expression patterns denote specialized functions of each subunit. The Nav1.7 and Nav1.8 subunits have emerged as key molecules involved in peripheral pain processing and in the development of an increased pain sensitivity associated with inflammation and tissue injury. Several mutations in the SCN9A gene encoding for Nav1.7 have been identified as important cellular substrates for different heritable pain syndromes. This review aims to cover recent progress on our understanding of how biophysical properties of mutant Nav1.7 translate into an aberrant electrogenesis of nociceptors. We also recapitulate the role of Nav1.8 for peripheral pain processing and of additional sodium channelopathies which have been linked to disorders with pain as a significant component.
Collapse
Affiliation(s)
- Angelika Lampert
- Department of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Universitätsstrasse 17, 91054, Erlangen, Germany.
| | | | | | | |
Collapse
|
44
|
Leo S, D'Hooge R, Meert T. Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and Nav1.9 knockout mice. Behav Brain Res 2009; 208:149-57. [PMID: 19931571 DOI: 10.1016/j.bbr.2009.11.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 11/06/2009] [Accepted: 11/15/2009] [Indexed: 11/19/2022]
Abstract
Two voltage gated sodium channels, Na(v)1.8 and Na(v)1.9, are exclusively expressed in primary sensory neurons and are suggested to play a role in different pain conditions, including chronic inflammatory and neuropathic pain states. Since no selective pharmacological tools are available, we investigated the involvement of Na(v)1.8 and Na(v)1.9 in pain transmission by the phenotypic characterization of Na(v)1.8 and Na(v)1.9 knockout mice and their wild-type littermates in models of acute nociception, peripheral inflammation and neuropathic pain. The present study provides evidence for a modulatory role of Na(v)1.9, and to a lesser extent Na(v)1.8 in the development of cold, but not mechanical allodynia in neuropathic pain conditions. Moreover, our results also indicate that Na(v)1.9 signaling might be involved in visceral pain. In contrast, the presumed critical role of these two sodium channel subtypes to inflammatory pain hypersensitivity seem, according to our results, to be limited and temporarily.
Collapse
Affiliation(s)
- Sandra Leo
- Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Turnhoutseweg 30, B- 2340 Beerse, Belgium.
| | | | | |
Collapse
|
45
|
Dib-Hajj SD, Black JA, Waxman SG. Voltage-Gated Sodium Channels: Therapeutic Targets for Pain. PAIN MEDICINE 2009; 10:1260-9. [DOI: 10.1111/j.1526-4637.2009.00719.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Mueller MH, Xue B, Glatzle J, Hahn J, Grundy D, Kreis ME. Extrinsic afferent nerve sensitivity and enteric neurotransmission in murine jejunum in vitro. Am J Physiol Gastrointest Liver Physiol 2009; 297:G655-62. [PMID: 19679823 DOI: 10.1152/ajpgi.00128.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enteric and extrinsic sensory neurons respond to similar stimuli. Thus they may be activated in series or in parallel. Because signal transmission via synapses or mediator release would depend on calcium, we investigated its role for extrinsic afferent sensitivity to chemical and mechanical stimulation. Extracellular multiunit afferent recordings were made in vitro from paravascular nerve bundles supplying the mouse jejunum. Intraluminal pressure and afferent nerve responses were recorded under control conditions and under four conditions designed to interfere with enteric neurotransmission. We found that phasic intestinal contractions ceased after switching perfusion to Ca(2+)-free buffer with or without a purinergic P2 receptor antagonist, pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS) or cadmium (blocking all Ca(2+)-channels) but not following omega-conotoxin GVIA (N-type Ca(2+)-channel blocker). Luminal HCl (pH 2) and 5-HT (500 microM) evoked peak firing of 17 +/- 4 impulses per second (imp/s) (n = 10) and 21 +/- 4 imp/s (n = 13) under control conditions. These responses were reduced to 4 +/- 2 imp/s and 5 +/- 2 imp/s by cadmium (n = 7, P < 0.05), to 7 +/- 2 imp/s and 6 +/- 1 imp/s by Ca(2+)-free perfusion (n = 6, P < 0.05), and to 3 +/- 1 imp/s and 4 +/- 1 imp/s by Ca(2+)-free perfusion with PPADS (n = 6, P < 0.05). Responses were unchanged by omega-conotoxin GVIA. Mechanical ramp distension of the intestinal segment to 60 cmH(2)O was not altered by any of the experimental conditions. We concluded that HCl and 5-HT activate extrinsic afferents via a calcium-dependent mechanism, which is unlikely to involve enteric neurons carrying N-type calcium channels. Extrinsic mechanosensitivity is independent of enteric neurotransmission. It appears that cross talk from the enteric to the extrinsic nervous system does not mediate extrinsic afferent sensitivity.
Collapse
Affiliation(s)
- Mario H Mueller
- Department of Surgery and 2Walter-Brendel Institute of Surgical Research, Ludwig-Maximilian's University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Beyak MJ. Visceral afferents - determinants and modulation of excitability. Auton Neurosci 2009; 153:69-78. [PMID: 19674942 DOI: 10.1016/j.autneu.2009.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 02/06/2023]
Abstract
An essential property of visceral sensory afferents is to be able to alter their firing properties in response to changes in the microenvironment at the level of the sensory ending. Significant progress has been made in recent years in understanding the ionic mechanisms of the regulation of afferent neuronal excitability, and in identifying the mechanisms by which this can be altered. This article will review some of the recent developments in the state of knowledge regarding mechanisms of increased excitability after inflammation, and pharmacological modulation of excitability, concentrating on afferent nerves innervating the GI tract and urinary bladder.
Collapse
Affiliation(s)
- Michael J Beyak
- Department of Medicine, Queen's University, GIDRU Wing, Kingston General Hospital, 76 Stuart St, Kingston, ON, Canada K7L 2V7.
| |
Collapse
|
48
|
King DE, Macleod RJ, Vanner SJ. Trinitrobenzenesulphonic acid colitis alters Na 1.8 channel expression in mouse dorsal root ganglia neurons. Neurogastroenterol Motil 2009; 21:880-e64. [PMID: 19239624 DOI: 10.1111/j.1365-2982.2009.01279.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Visceral inflammation evokes hyperexcitability in nociceptive dorsal root ganglia (DRG) neurons and these changes are associated with increased voltage-gated sodium channel (Na(v)) 1.8 current density, but the molecular determinants of these changes are unclear. This study used Western blotting to measure changes in Na(v) 1.7, 1.8 and 1.9 protein expression during trinitrobenzenesulphonic acid (TNBS) colitis and quantitative polymerase chain reaction (PCR) to examine corresponding changes in mRNA. Colonic neurons were labelled with the retrograde tracer Fast Blue injected into the wall of the distal colon and quantitative PCR performed on laser-captured labelled colonic neurons from ganglia at T9-13 or unlabelled DRG neurons from the upper spinal cord. Immunohistochemistry and western blots were performed on whole DRG from the same sites. Fast Blue-labelled neurons demonstrated Na(v) 1.7, 1.8 and 1.9 immunoreactivity. On day 7 of colitis, which correlated with electrophysiological studies, there was a threefold increase in Na(v) 1.8 protein in ganglia from T9 to 13, but Na(v) 1.7 and 1.9 levels were unchanged. There was no corresponding change in the Na(v) 1.8 alpha-subunit mRNA levels. However, on days 2 and 4, Na(v) 1.8 mRNA was decreased 10-fold. Na(v) 1.8 protein and mRNA levels were unchanged in neurons isolated from ganglia in the upper spinal cord, where colonic neurons are not found. These findings suggest that the TNBS evoked increase in Na(v) 1.8 currents is associated with increased numbers of channels. The absence of corresponding changes in transcript suggests a translational or post-translational mechanism, but the 10-fold recovery of transcript preceding this time point also demonstrates a complex transcriptional regulation.
Collapse
Affiliation(s)
- D E King
- Kingston General Hospital, Queen's University, ON, Canada
| | | | | |
Collapse
|
49
|
Ibeakanma C, Miranda-Morales M, Richards M, Bautista-Cruz F, Martin N, Hurlbut D, Vanner S. Citrobacter rodentium colitis evokes post-infectious hyperexcitability of mouse nociceptive colonic dorsal root ganglion neurons. J Physiol 2009; 587:3505-21. [PMID: 19470777 DOI: 10.1113/jphysiol.2009.169110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To investigate the possible contribution of peripheral sensory mechanisms to abdominal pain following infectious colitis, we examined whether the Citrobacter rodentium mouse model of human E. coli infection caused hyperexcitability of nociceptive colonic dorsal root ganglion (DRG) neurons and whether these changes persisted following recovery from infection. Mice were gavaged with C. rodentium or distilled water. Perforated patch clamp recordings were obtained from acutely dissociated Fast Blue labelled colonic DRG neurons and afferent nerve recordings were obtained from colonic afferents during ramp colonic distensions. Recordings were obtained on day 10 (acute infection) and day 30 (infection resolved). Following gavage, colonic weights, myeloperoxidase (MPO) activity, stool cultures, and histological scoring established that infection caused colitis at day 10 which resolved by day 30 in most tissues. Electrophysiological recordings at day 10 demonstrated hyperexcitability of colonic DRG neurons (40% mean decrease in rheobase, P = 0.02; 50% mean increase in action potential discharge at twice rheobase, P = 0.02). At day 30, the increase in action potential discharge persisted (approximately 150% increase versus control; P = 0.04). In voltage clamp studies, transient outward (I(A)) and delayed rectifier (I(K)) currents were suppressed at day 10 and I(A) currents remained suppressed at day 30. Colonic afferent nerve recordings during colonic distension demonstrated enhanced firing at day 30 in infected animals. These studies demonstrate that acute infectious colitis evokes hyperexcitability of colonic DRG neurons which persists following resolution of the infection and that suppression of I(A) currents may play a role. Together, these findings suggest that peripheral pain mechanisms could contribute to post-infectious symptoms in conditions such as post-infectious irritable bowel syndrome.
Collapse
Affiliation(s)
- Charles Ibeakanma
- Kingston General Hospital, GIDRU Wing, 76 Stuart Street, Kingston, Ontario, Canada K7L 2V7
| | | | | | | | | | | | | |
Collapse
|
50
|
Mawe GM, Strong DS, Sharkey KA. Plasticity of enteric nerve functions in the inflamed and postinflamed gut. Neurogastroenterol Motil 2009; 21:481-91. [PMID: 19368664 PMCID: PMC2717558 DOI: 10.1111/j.1365-2982.2009.01291.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation of the gut alters the properties of the intrinsic and extrinsic neurons that innervate it. While the mechanisms of neuroplasticity differ amongst the inflammatory models that have been used, amongst various regions of the gut, and between intrinsic vs extrinsic neurons, a number of consistent features have been observed. For example, intrinsic and extrinsic primary afferent neurons become hyperexcitable in response to inflammation, and interneuronal synaptic transmission is facilitated in the enteric circuitry. These changes contribute to alterations in gut function and sensation in the inflamed bowel as well as functional disorders, and these changes persist for weeks beyond the point at which detectable inflammation has subsided. Thus, gaining a more thorough understanding of the mechanisms responsible for inflammation-induced neuroplasticity, and strategies to reverse these changes are clinically relevant goals. The purpose of this review is to summarize our current knowledge regarding neurophysiological changes that occur during and following intestinal inflammation, and to identify and address gaps in our knowledge regarding the role of enteric neuroplasticity in inflammatory and functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Gary M. Mawe
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, VT, USA, Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | - Derek S. Strong
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, VT, USA
| | - Keith A. Sharkey
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, VT, USA, Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|