1
|
Li Y, Dai W, Wang T, Wu Y, Dou F, Xing D. Visual surround suppression at the neural and perceptual levels. Cogn Neurodyn 2024; 18:741-756. [PMID: 38699623 PMCID: PMC11061091 DOI: 10.1007/s11571-023-10027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 05/05/2024] Open
Abstract
Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron's receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders. Here, we combined results from related literature and summarized the findings derived from physiological and psychophysical evidence. We first outline the basic properties of surround suppression in the visual system and perceptions. Then, we mainly summarize the differences in perceptual surround suppression among different human subjects. Our review suggests that there is no consensus regarding whether the strength of perceptual surround suppression could be used as an effective index to distinguish particular populations. Then, we summarized the similar mechanisms for surround suppression and cognitive impairments to further explore the potential clinical applications of surround suppression. A clearer understanding of the mechanisms of surround suppression in neural responses and perceptions is necessary for facilitating its clinical applications.
Collapse
Affiliation(s)
- Yang Li
- School of Criminology, People’s Public Security University of China, Beijing, 100038 China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
2
|
Chen YD, Kaestner M, Norcia AM. Cognitive penetrability of scene representations based on horizontal image disparities. Sci Rep 2022; 12:17902. [PMID: 36284130 PMCID: PMC9596438 DOI: 10.1038/s41598-022-22670-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/18/2022] [Indexed: 01/20/2023] Open
Abstract
The structure of natural scenes is signaled by many visual cues. Principal amongst them are the binocular disparities created by the laterally separated viewpoints of the two eyes. Disparity cues are believed to be processed hierarchically, first in terms of local measurements of absolute disparity and second in terms of more global measurements of relative disparity that allow extraction of the depth structure of a scene. Psychophysical and oculomotor studies have suggested that relative disparities are particularly relevant to perception, whilst absolute disparities are not. Here, we compare neural responses to stimuli that isolate the absolute disparity cue with stimuli that contain additional relative disparity cues, using the high temporal resolution of EEG to determine the temporal order of absolute and relative disparity processing. By varying the observers' task, we assess the extent to which each cue is cognitively penetrable. We find that absolute disparity is extracted before relative disparity, and that task effects arise only at or after the extraction of relative disparity. Our results indicate a hierarchy of disparity processing stages leading to the formation of a proto-object representation upon which higher cognitive processes can act.
Collapse
Affiliation(s)
- Yulan D Chen
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA, USA
| | - Milena Kaestner
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, USA.
- Wu-Tsai Neuroscience Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA, USA.
| | - Anthony M Norcia
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA, USA
| |
Collapse
|
3
|
Hou B, Chen K, Jia A, Liu S, Bao X, Liao B, Zhao YL, Guo D, Xia Y, Yao D. Visually induced γ band rhythm in spatial summation beyond the receptive field in mouse primary visual cortex. Cereb Cortex 2022; 33:4350-4359. [PMID: 36124829 DOI: 10.1093/cercor/bhac347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
Recent studies in many kinds of mammals have established the existence of multiple γ rhythms in the cerebral cortex subserving different functions. In the primary visual cortex (V1), visually induced γ rhythms are dependent on stimulus features. However, experimental findings of γ power induced by varying the size of the drifting grating are inconsistent. Here, we reinvestigated the spatial summation properties of visually induced spike and γ rhythm activities in mouse V1. Our results show that drifting sinusoidal grating stimuli mainly induce 2 γ band rhythms, including a low-frequency band (25-45 Hz) and a high-frequency band (55-75 Hz). Unlike previous findings, we discovered that visually induced γ power could also exhibit extrareceptive field (ERF) modulatory properties. The modulation by ERF stimulation could be either suppressive, countersuppressive, or nonsuppressive, mostly similar to the local spike activity. Moreover, further analysis of the neuron group exhibiting surround suppression in both spike and γ activity revealed that the strength of the surround suppression and the receptive field size showed moderate correlations between measurements by spike and γ rhythm activity. Our findings improve the understanding of the characteristics and neural mechanisms of induced γ rhythms in visual spatial summation.
Collapse
Affiliation(s)
- BoJun Hou
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ke Chen
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ang Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shanshan Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaojing Bao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Baitao Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Lei Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Xia
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dezhong Yao
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Xiyuan road 2006, Chengdu 611731, China
| |
Collapse
|
4
|
Keller AJ. Hidden in plain sight. Science 2021; 374:548. [PMID: 34709912 DOI: 10.1126/science.abl7124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Andreas J Keller
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4057 Basel, Switzerland
| |
Collapse
|
5
|
Keller AJ, Roth MM, Scanziani M. Feedback generates a second receptive field in neurons of the visual cortex. Nature 2020; 582:545-549. [PMID: 32499655 PMCID: PMC7790439 DOI: 10.1038/s41586-020-2319-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/10/2020] [Indexed: 01/29/2023]
Abstract
Animals sense the environment through pathways that link sensory organs to the brain. In the visual system, these feedforward pathways define the classical feedforward receptive field (ffRF), the area in space in which visual stimuli excite a neuron1. The visual system also uses visual context-the visual scene surrounding a stimulus-to predict the content of the stimulus2, and accordingly, neurons have been identified that are excited by stimuli outside their ffRF3-8. However, the mechanisms that generate excitation to stimuli outside the ffRF are unclear. Here we show that feedback projections onto excitatory neurons in the mouse primary visual cortex generate a second receptive field that is driven by stimuli outside the ffRF. The stimulation of this feedback receptive field (fbRF) elicits responses that are slower and are delayed in comparison with those resulting from the stimulation of the ffRF. These responses are preferentially reduced by anaesthesia and by silencing higher visual areas. Feedback inputs from higher visual areas have scattered receptive fields relative to their putative targets in the primary visual cortex, which enables the generation of the fbRF. Neurons with fbRFs are located in cortical layers that receive strong feedback projections and are absent in the main input layer, which is consistent with a laminar processing hierarchy. The observation that large, uniform stimuli-which cover both the fbRF and the ffRF-suppress these responses indicates that the fbRF and the ffRF are mutually antagonistic. Whereas somatostatin-expressing inhibitory neurons are driven by these large stimuli, inhibitory neurons that express parvalbumin and vasoactive intestinal peptide have mutually antagonistic fbRF and ffRF, similar to excitatory neurons. Feedback projections may therefore enable neurons to use context to estimate information that is missing from the ffRF and to report differences in stimulus features across visual space, regardless of whether excitation occurs inside or outside the ffRF. By complementing the ffRF, the fbRF that we identify here could contribute to predictive processing.
Collapse
Affiliation(s)
- Andreas J Keller
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Morgane M Roth
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Massimo Scanziani
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Image Segmentation Based on Relative Motion and Relative Disparity Cues in Topographically Organized Areas of Human Visual Cortex. Sci Rep 2019; 9:9308. [PMID: 31243297 PMCID: PMC6594975 DOI: 10.1038/s41598-019-45036-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/31/2019] [Indexed: 11/09/2022] Open
Abstract
The borders between objects and their backgrounds create discontinuities in image feature maps that can be used to recover object shape. Here we used functional magnetic resonance imaging to identify cortical areas that encode two of the most important image segmentation cues: relative motion and relative disparity. Relative motion and disparity cues were isolated by defining a central 2-degree disk using random-dot kinematograms and stereograms, respectively. For motion, the disk elicited retinotopically organized activations starting in V1 and extending through V2 and V3. In the surrounding region, we observed phase-inverted activations indicative of suppression, extending out to at least 6 degrees of retinal eccentricity. For disparity, disk activations were only found in V3, while suppression was observed in all early visual areas. Outside of early visual cortex, several areas were sensitive to both types of cues, most notably LO1, LO2 and V3B, making them additional candidate areas for motion- and disparity-cue combination. Adding an orthogonal task at fixation did not diminish these effects, and in fact led to small but measurable disk activations in V1 and V2 for disparity. The overall pattern of extra-striate activations is consistent with recent three-stream models of cortical organization.
Collapse
|
7
|
Li M, Song XM, Xu T, Hu D, Roe AW, Li CY. Subdomains within orientation columns of primary visual cortex. SCIENCE ADVANCES 2019; 5:eaaw0807. [PMID: 31183405 PMCID: PMC6551190 DOI: 10.1126/sciadv.aaw0807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
In the mammalian visual system, early stages of visual form processing begin with orientation-selective neurons in primary visual cortex (V1). In many species (including humans, monkeys, tree shrews, cats, and ferrets), these neurons are organized in a beautifully arrayed pinwheel-like orientation columns, which shift in orientation preference across V1. However, to date, the relationship of orientation architecture to the encoding of multiple elemental aspects of visual contours is still unknown. Here, using a novel, highly accurate method of targeting electrode position, we report for the first time the presence of three subdomains within single orientation domains. We suggest that these zones subserve computation of distinct aspects of visual contours and propose a novel tripartite pinwheel-centered view of an orientation hypercolumn.
Collapse
Affiliation(s)
- Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Xue Mei Song
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Interdisciplinary Institute of Neuroscience and Technology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Tao Xu
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Chao-Yi Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
8
|
Kohler PJ, Meredith WJ, Norcia AM. Revisiting the functional significance of binocular cues for perceiving motion-in-depth. Nat Commun 2018; 9:3511. [PMID: 30158523 PMCID: PMC6115357 DOI: 10.1038/s41467-018-05918-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022] Open
Abstract
Binocular differencing of spatial cues required for perceiving depth relationships is associated with decreased sensitivity to the corresponding retinal image displacements. However, binocular summation of contrast signals increases sensitivity. Here, we investigated this divergence in sensitivity by making direct neural measurements of responses to suprathreshold motion in human adults and 5-month-old infants using steady-state visually evoked potentials. Interocular differences in retinal image motion generated suppressed response functions and correspondingly elevated perceptual thresholds compared to motion matched between the two eyes. This suppression was of equal strength for horizontal and vertical motion and therefore not specific to the perception of motion-in-depth. Suppression is strongly dependent on the presence of spatial references in the image and highly immature in infants. Suppression appears to be the manifestation of a succession of spatial and interocular opponency operations that occur at an intermediate processing stage either before or in parallel with the extraction of motion-in-depth.
Collapse
Affiliation(s)
- Peter J Kohler
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA.
| | - Wesley J Meredith
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA
| | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Kang X, Kong Q, Zeng Y, Xu B. A Fast Contour Detection Model Inspired by Biological Mechanisms in Primary Vision System. Front Comput Neurosci 2018; 12:28. [PMID: 29760656 PMCID: PMC5936787 DOI: 10.3389/fncom.2018.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/10/2018] [Indexed: 11/30/2022] Open
Abstract
Compared to computer vision systems, the human visual system is more fast and accurate. It is well accepted that V1 neurons can well encode contour information. There are plenty of computational models about contour detection based on the mechanism of the V1 neurons. Multiple-cue inhibition operator is one well-known model, which is based on the mechanism of V1 neurons' non-classical receptive fields. However, this model is time-consuming and noisy. To solve these two problems, we propose an improved model which integrates some additional other mechanisms of the primary vision system. Firstly, based on the knowledge that the salient contours only occupy a small portion of the whole image, the prior filtering is introduced to decrease the running time. Secondly, based on the physiological finding that nearby neurons often have highly correlated responses and thus include redundant information, we adopt the uniform samplings to speed up the algorithm. Thirdly, sparse coding is introduced to suppress the unwanted noises. Finally, to validate the performance, we test it on Berkeley Segmentation Data Set. The results show that the improved model can decrease running time as well as keep the accuracy of the contour detection.
Collapse
Affiliation(s)
- Xiaomei Kang
- Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingqun Kong
- Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zeng
- Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
10
|
Li F, Jiang W, Wang TY, Xie T, Yao H. Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity. Neuroscience 2018; 379:359-374. [PMID: 29608945 DOI: 10.1016/j.neuroscience.2018.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/03/2018] [Accepted: 03/21/2018] [Indexed: 02/04/2023]
Abstract
In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity.
Collapse
Affiliation(s)
- Fengling Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqian Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Yi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
11
|
Xu X, Zhong L, Xie M, Liu X, Qin J, Wong TT. ASCII Art Synthesis from Natural Photographs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:1910-1923. [PMID: 27323365 DOI: 10.1109/tvcg.2016.2569084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While ASCII art is a worldwide popular art form, automatic generating structure-based ASCII art from natural photographs remains challenging. The major challenge lies on extracting the perception-sensitive structure from the natural photographs so that a more concise ASCII art reproduction can be produced based on the structure. However, due to excessive amount of texture in natural photos, extracting perception-sensitive structure is not easy, especially when the structure may be weak and within the texture region. Besides, to fit different target text resolutions, the amount of the extracted structure should also be controllable. To tackle these challenges, we introduce a visual perception mechanism of non-classical receptive field modulation (non-CRF modulation) from physiological findings to this ASCII art application, and propose a new model of non-CRF modulation which can better separate the weak structure from the crowded texture, and also better control the scale of texture suppression. Thanks to our non-CRF model, more sensible ASCII art reproduction can be obtained. In addition, to produce more visually appealing ASCII arts, we propose a novel optimization scheme to obtain the optimal placement of proportional-font characters. We apply our method on a rich variety of images, and visually appealing ASCII art can be obtained in all cases.
Collapse
|
12
|
End-Stopping Predicts Curvature Tuning along the Ventral Stream. J Neurosci 2017; 37:648-659. [PMID: 28100746 DOI: 10.1523/jneurosci.2507-16.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 11/21/2022] Open
Abstract
Neurons in primate inferotemporal cortex (IT) are clustered into patches of shared image preferences. Functional imaging has shown that these patches are activated by natural categories (e.g., faces, body parts, and places), artificial categories (numerals, words) and geometric features (curvature and real-world size). These domains develop in the same cortical locations across monkeys and humans, which raises the possibility of common innate mechanisms. Although these commonalities could be high-level template-based categories, it is alternatively possible that the domain locations are constrained by low-level properties such as end-stopping, eccentricity, and the shape of the preferred images. To explore this, we looked for correlations among curvature preference, receptive field (RF) end-stopping, and RF eccentricity in the ventral stream. We recorded from sites in V1, V4, and posterior IT (PIT) from six monkeys using microelectrode arrays. Across all visual areas, we found a tendency for end-stopped sites to prefer curved over straight contours. Further, we found a progression in population curvature preferences along the visual hierarchy, where, on average, V1 sites preferred straight Gabors, V4 sites preferred curved stimuli, and many PIT sites showed a preference for curvature that was concave relative to fixation. Our results provide evidence that high-level functional domains may be mapped according to early rudimentary properties of the visual system. SIGNIFICANCE STATEMENT The macaque occipitotemporal cortex contains clusters of neurons with preferences for categories such as faces, body parts, and places. One common question is how these clusters (or "domains") acquire their cortical position along the ventral stream. We and other investigators previously established an fMRI-level correlation among these category domains, retinotopy, and curvature preferences: for example, in inferotemporal cortex, face- and curvature-preferring domains show a central visual field bias whereas place- and rectilinear-preferring domains show a more peripheral visual field bias. Here, we have found an electrophysiological-level explanation for the correlation among domain preference, curvature, and retinotopy based on neuronal preference for short over long contours, also called end-stopping.
Collapse
|
13
|
Schallmo MP, Grant AN, Burton PC, Olman CA. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study. J Vis 2017; 16:19. [PMID: 27565016 PMCID: PMC5015919 DOI: 10.1167/16.10.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.
Collapse
|
14
|
Yang KF, Li CY, Li YJ. Potential roles of the interaction between model V1 neurons with orientation-selective and non-selective surround inhibition in contour detection. Front Neural Circuits 2015; 9:30. [PMID: 26136664 PMCID: PMC4468869 DOI: 10.3389/fncir.2015.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/30/2015] [Indexed: 11/29/2022] Open
Abstract
Both the neurons with orientation-selective and with non-selective surround inhibition have been observed in the primary visual cortex (V1) of primates and cats. Though the inhibition coming from the surround region (named as non-classical receptive field, nCRF) has been considered playing critical role in visual perception, the specific role of orientation-selective and non-selective inhibition in the task of contour detection is less known. To clarify above question, we first carried out computational analysis of the contour detection performance of V1 neurons with different types of surround inhibition, on the basis of which we then proposed two integrated models to evaluate their role in this specific perceptual task by combining the two types of surround inhibition with two different ways. The two models were evaluated with synthetic images and a set of challenging natural images, and the results show that both of the integrated models outperform the typical models with orientation-selective or non-selective inhibition alone. The findings of this study suggest that V1 neurons with different types of center–surround interaction work in cooperative and adaptive ways at least when extracting organized structures from cluttered natural scenes. This work is expected to inspire efficient phenomenological models for engineering applications in field of computational machine-vision.
Collapse
Affiliation(s)
- Kai-Fu Yang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Chao-Yi Li
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China ; Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yong-Jie Li
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| |
Collapse
|
15
|
Abstract
In primary visual cortex (V1), neuronal responses are sensitive to context. For example, responses to stimuli presented within the receptive field (RF) center are often suppressed by stimuli within the RF surround, and this suppression tends to be strongest when the center and surround stimuli match. We sought to identify the mechanism that gives rise to these properties of surround modulation. To do so, we exploited the stability of implanted multielectrode arrays to record from neurons in V1 of alert monkeys with multiple stimulus sets that more exhaustively probed center-surround interactions. We first replicated previous results concerning center-surround similarity using gratings representing all combinations of center and surround orientation. With this stimulus set, the surround simply scaled population responses to the center, such that the overall population tuning curve had the same shape and peak response. However, when the center contained two superimposed gratings (i.e., a visual "plaid"), one component of which always matched the surround orientation, suppression selectively affected the portion of the response driven by the matching center component, thereby producing shifts in the peak of the population orientation tuning curve. In effect, the surround caused neurons to respond predominantly to the component grating of the center plaid that was unmatched to the surround grating, as if by reducing the effective strength of whichever stimulus attributes were matched to the surround. These results provide key physiological support for theoretical models that propose feature-specific, input-gain control as the mechanism underlying surround suppression.
Collapse
|
16
|
Yang KF, Li CY, Li YJ. Multifeature-based surround inhibition improves contour detection in natural images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2014; 23:5020-5032. [PMID: 25291794 DOI: 10.1109/tip.2014.2361210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To effectively perform visual tasks like detecting contours, the visual system normally needs to integrate multiple visual features. Sufficient physiological studies have revealed that for a large number of neurons in the primary visual cortex (V1) of monkeys and cats, neuronal responses elicited by the stimuli placed within the classical receptive field (CRF) are substantially modulated, normally inhibited, when difference exists between the CRF and its surround, namely, non-CRF, for various local features. The exquisite sensitivity of V1 neurons to the center-surround stimulus configuration is thought to serve important perceptual functions, including contour detection. In this paper, we propose a biologically motivated model to improve the performance of perceptually salient contour detection. The main contribution is the multifeature-based center-surround framework, in which the surround inhibition weights of individual features, including orientation, luminance, and luminance contrast, are combined according to a scale-guided strategy, and the combined weights are then used to modulate the final surround inhibition of the neurons. The performance was compared with that of single-cue-based models and other existing methods (especially other biologically motivated ones). The results show that combining multiple cues can substantially improve the performance of contour detection compared with the models using single cue. In general, luminance and luminance contrast contribute much more than orientation to the specific task of contour extraction, at least in gray-scale natural images.
Collapse
|
17
|
Chen M, Li P, Zhu S, Han C, Xu H, Fang Y, Hu J, Roe AW, Lu HD. An Orientation Map for Motion Boundaries in Macaque V2. Cereb Cortex 2014; 26:279-287. [PMID: 25260703 DOI: 10.1093/cercor/bhu235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to extract the shape of moving objects is fundamental to visual perception. However, where such computations are processed in the visual system is unknown. To address this question, we used intrinsic signal optical imaging in awake monkeys to examine cortical response to perceptual contours defined by motion contrast (motion boundaries, MBs). We found that MB stimuli elicit a robust orientation response in area V2. Orientation maps derived from subtraction of orthogonal MB stimuli aligned well with the orientation maps obtained with luminance gratings (LGs). In contrast, area V1 responded well to LGs, but exhibited a much weaker orientation response to MBs. We further show that V2 direction domains respond to motion contrast, which is required in the detection of MB in V2. These results suggest that V2 represents MB information, an important prerequisite for shape recognition and figure-ground segregation.
Collapse
Affiliation(s)
- Ming Chen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Peichao Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shude Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Han
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Haoran Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Fang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaming Hu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Anna W Roe
- Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA
| | - Haidong D Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Pecka M, Han Y, Sader E, Mrsic-Flogel TD. Experience-dependent specialization of receptive field surround for selective coding of natural scenes. Neuron 2014; 84:457-69. [PMID: 25263755 PMCID: PMC4210638 DOI: 10.1016/j.neuron.2014.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2014] [Indexed: 11/16/2022]
Abstract
At eye opening, neurons in primary visual cortex (V1) are selective for stimulus features, but circuits continue to refine in an experience-dependent manner for some weeks thereafter. How these changes contribute to the coding of visual features embedded in complex natural scenes remains unknown. Here we show that normal visual experience after eye opening is required for V1 neurons to develop a sensitivity for the statistical structure of natural stimuli extending beyond the boundaries of their receptive fields (RFs), which leads to improvements in coding efficiency for full-field natural scenes (increased selectivity and information rate). These improvements are mediated by an experience-dependent increase in the effectiveness of natural surround stimuli to hyperpolarize the membrane potential specifically during RF-stimulus epochs triggering action potentials. We suggest that neural circuits underlying surround modulation are shaped by the statistical structure of visual input, which leads to more selective coding of features in natural scenes. V1 firing is more selective to natural than phase-scrambled surround stimuli Improved selectivity is caused by Vm hyperpolarisation prior to RF-spiking events Natural surround sensitivity is experience dependent, absent in immature/deprived V1 Vision shapes circuits to improve V1 coding of natural scenes across RF and surround
Collapse
Affiliation(s)
- Michael Pecka
- Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK.
| | - Yunyun Han
- Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK; Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Elie Sader
- Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | - Thomas D Mrsic-Flogel
- Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK; Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
19
|
The detection of orientation continuity and discontinuity by cat V1 neurons. PLoS One 2013; 8:e79723. [PMID: 24278163 PMCID: PMC3836789 DOI: 10.1371/journal.pone.0079723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 10/04/2013] [Indexed: 12/04/2022] Open
Abstract
The orientation tuning properties of the non-classical receptive field (nCRF or “surround”) relative to that of the classical receptive field (CRF or “center”) were tested for 119 neurons in the cat primary visual cortex (V1). The stimuli were concentric sinusoidal gratings generated on a computer screen with the center grating presented at an optimal orientation to stimulate the CRF and the surround grating with variable orientations stimulating the nCRF. Based on the presence or absence of surround suppression, measured by the suppression index at the optimal orientation of the cells, we subdivided the neurons into two categories: surround-suppressive (SS) cells and surround-non-suppressive (SN) cells. When stimulated with an optimally oriented grating centered at CRF, the SS cells showed increasing surround suppression when the stimulus grating was expanded beyond the boundary of the CRF, whereas for the SN cells, expanding the stimulus grating beyond the CRF caused no suppression of the center response. For the SS cells, strength of surround suppression was dependent on the relative orientation between CRF and nCRF: an iso-orientation grating over center and surround at the optimal orientation evoked strongest suppression and a surround grating orthogonal to the optimal center grating evoked the weakest or no suppression. By contrast, the SN cells showed slightly increased responses to an iso-orientation stimulus and weak suppression to orthogonal surround gratings. This iso-/orthogonal orientation selectivity between center and surround was analyzed in 22 SN and 97 SS cells, and for the two types of cells, the different center-surround orientation selectivity was dependent on the suppressive strength of the cells. We conclude that SN cells are suitable to detect orientation continuity or similarity between CRF and nCRF, whereas the SS cells are adapted to the detection of discontinuity or differences in orientation between CRF and nCRF.
Collapse
|
20
|
Karl JA, Bohn PS, Wiseman RW, Nimityongskul FA, Lank SM, Starrett GJ, O’Connor DH. Major histocompatibility complex class I haplotype diversity in Chinese rhesus macaques. G3 (BETHESDA, MD.) 2013; 3:1195-201. [PMID: 23696100 PMCID: PMC3704247 DOI: 10.1534/g3.113.006254] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
The use of Chinese-origin rhesus macaques (Macaca mulatta) for infectious disease immunity research is increasing despite the relative lack of major histocompatibility complex (MHC) class I immunogenetics information available for this population. We determined transcript-based MHC class I haplotypes for 385 Chinese rhesus macaques from five different experimental cohorts, providing a concise representation of the full complement of MHC class I major alleles expressed by each animal. In total, 123 Mamu-A and Mamu-B haplotypes were defined in the full Chinese rhesus macaque cohort. We then performed an analysis of haplotype frequencies across the experimental cohorts of Chinese rhesus macaques, as well as a comparison against a group of 96 Indian rhesus macaques. Notably, 35 of the 51 Mamu-A and Mamu-B haplotypes observed in Indian rhesus macaques were also detected in the Chinese population, with 85% of the 385 Chinese-origin rhesus macaques expressing at least one of these class I haplotypes. This unexpected conservation of Indian rhesus macaque MHC class I haplotypes in the Chinese rhesus macaque population suggests that immunologic insights originally gleaned from studies using Indian rhesus macaques may be more applicable to Chinese rhesus macaques than previously appreciated and may provide an opportunity for studies of CD8(+) T-cell responses between populations. It may also be possible to extend these studies across multiple species of macaques, as we found evidence of shared ancestral haplotypes between Chinese rhesus and Mauritian cynomolgus macaques.
Collapse
Affiliation(s)
- Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Patrick S. Bohn
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | | | - Simon M. Lank
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Gabriel J. Starrett
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
21
|
Wei H, Lang B, Zuo Q. Contour detection model with multi-scale integration based on non-classical receptive field. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2012.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Gharat A, Baker CL. Motion-defined contour processing in the early visual cortex. J Neurophysiol 2012; 108:1228-43. [PMID: 22673328 DOI: 10.1152/jn.00840.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
From our daily experience, it is very clear that relative motion cues can contribute to correctly identifying object boundaries and perceiving depth. Motion-defined contours are not only generated by the motion of objects in a scene but also by the movement of an observer's head and body (motion parallax). However, the neural mechanism involved in detecting these contours is still unknown. To explore this mechanism, we extracellularly recorded visual responses of area 18 neurons in anesthetized and paralyzed cats. The goal of this study was to determine if motion-defined contours could be detected by neurons that have been previously shown to detect luminance-, texture-, and contrast-defined contours cue invariantly. Motion-defined contour stimuli were generated by modulating the velocity of high spatial frequency sinusoidal luminance gratings (carrier gratings) by a moving squarewave envelope. The carrier gratings were outside the luminance passband of a neuron, such that presence of the carrier alone within the receptive field did not elicit a response. Most neurons that responded to contrast-defined contours also responded to motion-defined contours. The orientation and direction selectivity of these neurons for motion-defined contours was similar to that of luminance gratings. A given neuron also exhibited similar selectivity for the spatial frequency of the carrier gratings of contrast- and motion-defined contours. These results suggest that different second-order contours are detected in a form-cue invariant manner, through a common neural mechanism in area 18.
Collapse
Affiliation(s)
- Amol Gharat
- Department of Psychology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
23
|
Appelbaum LG, Ales JM, Norcia AM. The time course of segmentation and cue-selectivity in the human visual cortex. PLoS One 2012; 7:e34205. [PMID: 22479566 PMCID: PMC3313990 DOI: 10.1371/journal.pone.0034205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/23/2012] [Indexed: 11/29/2022] Open
Abstract
Texture discontinuities are a fundamental cue by which the visual system segments objects from their background. The neural mechanisms supporting texture-based segmentation are therefore critical to visual perception and cognition. In the present experiment we employ an EEG source-imaging approach in order to study the time course of texture-based segmentation in the human brain. Visual Evoked Potentials were recorded to four types of stimuli in which periodic temporal modulation of a central 3° figure region could either support figure-ground segmentation, or have identical local texture modulations but not produce changes in global image segmentation. The image discontinuities were defined either by orientation or phase differences across image regions. Evoked responses to these four stimuli were analyzed both at the scalp and on the cortical surface in retinotopic and functional regions-of-interest (ROIs) defined separately using fMRI on a subject-by-subject basis. Texture segmentation (tsVEP: segmenting versus non-segmenting) and cue-specific (csVEP: orientation versus phase) responses exhibited distinctive patterns of activity. Alternations between uniform and segmented images produced highly asymmetric responses that were larger after transitions from the uniform to the segmented state. Texture modulations that signaled the appearance of a figure evoked a pattern of increased activity starting at ∼143 ms that was larger in V1 and LOC ROIs, relative to identical modulations that didn't signal figure-ground segmentation. This segmentation-related activity occurred after an initial response phase that did not depend on the global segmentation structure of the image. The two cue types evoked similar tsVEPs up to 230 ms when they differed in the V4 and LOC ROIs. The evolution of the response proceeded largely in the feed-forward direction, with only weak evidence for feedback-related activity.
Collapse
Affiliation(s)
- Lawrence G Appelbaum
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina, United States of America.
| | | | | |
Collapse
|
24
|
Coen-Cagli R, Dayan P, Schwartz O. Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics. PLoS Comput Biol 2012; 8:e1002405. [PMID: 22396635 PMCID: PMC3291533 DOI: 10.1371/journal.pcbi.1002405] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/13/2012] [Indexed: 11/19/2022] Open
Abstract
Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are incompletely understood. We introduce a model of natural images that includes grouping and segmentation of neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1 computes visual salience.
Collapse
Affiliation(s)
- Ruben Coen-Cagli
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America.
| | | | | |
Collapse
|
25
|
Chen K, Song XM, Li CY. Contrast-dependent variations in the excitatory classical receptive field and suppressive nonclassical receptive field of cat primary visual cortex. Cereb Cortex 2012; 23:283-92. [PMID: 22302117 DOI: 10.1093/cercor/bhs012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In area V1 of cat and monkey, there is a surround region beyond the classical receptive field (CRF) which alone is unresponsive but may modulate the cell's response. This field is referred to as the "nonclassical receptive field" (nCRF). It has been reported in monkey that the extent of CRF and/or nCRF of V1 neurons is not fixed but varies with stimulus contrast. We reexamined the contrast dependence of V1 neurons in cat to determine whether this differs from previous studies in macaque. By fitting the spatial summation curves obtained at different contrasts with a difference of Gaussians model, we estimated quantitatively the effect of contrast on the spatial extent of the CRF and nCRF as well as the strength of surround suppression. Our results showed that both the CRF and nCRF expanded at low contrast, but the expansion is more marked for the CRF than for the nCRF. Although the effect of contrast on surround suppression was varied, the overall suppression increased significantly at high contrast. Moreover, the contrast-dependent change in the extent of CRF is independent of the change in suppression strength. Overall, our results in cat are in agreement with those obtained in macaque money.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory for Neuroinformatics, Ministry of Education of China, University of Electronic Sciences and Technology, Chengdu 610054, China
| | | | | |
Collapse
|
26
|
Fesi JD, Yannes MP, Brinckman DD, Norcia AM, Ales JM, Gilmore RO. Distinct cortical responses to 2D figures defined by motion contrast. Vision Res 2011; 51:2110-20. [DOI: 10.1016/j.visres.2011.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 11/25/2022]
|
27
|
Zeng C, Li Y, Li C. Center–surround interaction with adaptive inhibition: A computational model for contour detection. Neuroimage 2011; 55:49-66. [DOI: 10.1016/j.neuroimage.2010.11.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/22/2010] [Indexed: 11/28/2022] Open
|
28
|
Song XM, Wang Y, Zhu Z, Li CY. Morphological bases of suppressive and facilitative spatial summation in the striate cortex of the cat. PLoS One 2010; 5:e15025. [PMID: 21151335 PMCID: PMC2994074 DOI: 10.1371/journal.pone.0015025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022] Open
Abstract
In V1 of cats and monkeys, activity of neurons evoked by stimuli within the receptive field can be modulated by stimuli in the extra-receptive field (ERF). This modulating effect can be suppressive (S-ERF) or facilitatory (F-ERF) and plays different roles in visual information processing. Little is known about the cellular bases underlying the different types of ERF modulating effects. Here, we focus on the morphological differences between the S-ERF and F-ERF neurons. Single unit activities were recorded from V1 of the cat. The ERF properties of each neuron were assessed by area-response functions using sinusoidal grating stimuli. On completion of the functional tests, the cells were injected intracellularly with biocytin. The labeled cells were reconstructed and morphologically characterized in terms of the ERF modulation effects. We show that the vast majority of S-ERF neurons and F-ERF neurons are pyramidal cells and that the two types of cells clearly differ in the size of the soma, in complexity of dendrite branching, in spine size and density, and in the range of innervations of the axon collaterals. We propose that different pyramidal cell phenotypes reflect a high degree of specificity of neuronal connections associated with different types of spatial modulation.
Collapse
Affiliation(s)
- Xue-Mei Song
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ye Wang
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Zhu
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao-Yi Li
- Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory for Neuroinformatics, Ministry of Education of China, University of Electronic Sciences and Technology, Chengdu, China
- * E-mail:
| |
Collapse
|
29
|
Karube F, Kisvárday ZF. Axon topography of layer IV spiny cells to orientation map in the cat primary visual cortex (area 18). ACTA ACUST UNITED AC 2010; 21:1443-58. [PMID: 21062952 DOI: 10.1093/cercor/bhq232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our aim was to reveal the relationship between layer IV horizontal connections and the functional architecture of the cat primary visual cortex because these connections play important roles in the first cortical stage of visual signals integration. We investigated bouton distribution of spiny neurons over an orientation preference map using in vivo optical imaging, unit recordings, and single neuron reconstructions. The radial extent of reconstructed axons (14 star pyramidal and 9 spiny stellate cells) was ~1.5 mm. In the vicinity of the parent somata (<400 μm), boutons occupied chiefly iso-orientations, however, more distally, 7 cells projected preferentially to non-iso-orientations. Boutons of each cell were partitioned into 1-15 distinct clusters based on the mean-shift algorithm, of which 57 clusters preferred iso-orientations and 43 clusters preferred cross-orientations, each showing sharp orientation preference "tuning." However, unlike layer III/V pyramidal cells preferring chiefly iso-orientations, layer IV cells were engaged with broad orientations because each bouton cluster from the same cell could show different orientation preference. These results indicate that the circuitry of layer IV spiny cells is organized differently from that of iso-orientation dominant layer III/V cells and probably processes visual signals in a different manner from that of the superficial and deeper layers.
Collapse
Affiliation(s)
- Fuyuki Karube
- Laboratory for Cortical Systems Neuroscience, Department of Anatomy, Histology and Embryology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
30
|
Analysis of the context integration mechanisms underlying figure-ground organization in the visual cortex. J Neurosci 2010; 30:6482-96. [PMID: 20463212 DOI: 10.1523/jneurosci.5168-09.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most neurons in visual cortex respond to contrast borders and are orientation selective, and some are also selective for which side of a border is figure and which side is ground ("border ownership coding"). These neurons are influenced by the image context far beyond the classical receptive field (CRF) and as early as 25 ms after the onset of activity in the cortex. The nature of the fast context integration mechanism is not well understood. What parts of a figure contribute to the context effect? What is the structure of the "extraclassical surround"? Is the context information propagated through horizontal fibers within cortex or through reciprocal connections via higher-level areas? To address these questions, we studied border ownership modulation with fragmented figures. Neurons were recorded in areas V1 and V2 of Macaca mulatta under behaviorally induced fixation. Test figures were fragmented rectangles. While one edge was centered on the CRF, the presence of the fragments outside the CRF was varied. The surround fragments produced facilitation on the preferred border ownership side as well as suppression on the nonpreferred side, with approximately 80% of the locations contributing on average. Fragments far from the CRF influenced the responses even in the absence of fragments closer to the CRF, and without the extra delay that would incur from propagation through horizontal fibers. Three principally different models are discussed. The results support a model in which the antagonistic surround influences are produced by reentrant signals from a higher-level area.
Collapse
|
31
|
Supèr H, Romeo A, Keil M. Feed-forward segmentation of figure-ground and assignment of border-ownership. PLoS One 2010; 5:e10705. [PMID: 20502718 PMCID: PMC2873306 DOI: 10.1371/journal.pone.0010705] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/22/2010] [Indexed: 11/19/2022] Open
Abstract
Figure-ground is the segmentation of visual information into objects and their surrounding backgrounds. Two main processes herein are boundary assignment and surface segregation, which rely on the integration of global scene information. Recurrent processing either by intrinsic horizontal connections that connect surrounding neurons or by feedback projections from higher visual areas provide such information, and are considered to be the neural substrate for figure-ground segmentation. On the contrary, a role of feedforward projections in figure-ground segmentation is unknown. To have a better understanding of a role of feedforward connections in figure-ground organization, we constructed a feedforward spiking model using a biologically plausible neuron model. By means of surround inhibition our simple 3-layered model performs figure-ground segmentation and one-sided border-ownership coding. We propose that the visual system uses feed forward suppression for figure-ground segmentation and border-ownership assignment.
Collapse
Affiliation(s)
- Hans Supèr
- Department of Basic Psychology, University of Barcelona, Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
32
|
Yao H, Lu H, Wang W. Visual neuroscience research in China. SCIENCE CHINA-LIFE SCIENCES 2010; 53:363-373. [DOI: 10.1007/s11427-010-0071-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/19/2010] [Indexed: 11/28/2022]
|
33
|
Baker DH, Graf EW. Contextual effects in speed perception may occur at an early stage of processing. Vision Res 2009; 50:193-201. [PMID: 19925820 DOI: 10.1016/j.visres.2009.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 11/29/2022]
Abstract
How does nearby motion affect the perceived speed of a target region? When a central drifting Gabor patch is surrounded by translating noise, its speed can be misperceived over a fourfold range. Typically, when a surround moves in the same direction, perceived centre speed is reduced; for opposite-direction surrounds it increases. Measuring this illusion for a variety of surround properties reveals that the motion context effects are a saturating function of surround speed (Experiment I) and contrast (Experiment II). Our analyses indicate that the effects are consistent with a subtractive process, rather than with speed being averaged over area. In Experiment III we exploit known properties of the motion system to ask where these surround effects impact. Using 2D plaid stimuli, we find that surround-induced shifts in perceived speed of one plaid component produce substantial shifts in perceived plaid direction. This indicates that surrounds exert their influence early in processing, before pattern motion direction is computed. These findings relate to ongoing investigations of surround suppression for direction discrimination, and are consistent with single-cell findings of direction-tuned suppressive and facilitatory interactions in primary visual cortex (V1).
Collapse
Affiliation(s)
- Daniel H Baker
- School of Psychology, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | | |
Collapse
|
34
|
Tanaka H, Ohzawa I. Surround suppression of V1 neurons mediates orientation-based representation of high-order visual features. J Neurophysiol 2008; 101:1444-62. [PMID: 19109456 DOI: 10.1152/jn.90749.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons with surround suppression have been implicated in processing high-order visual features such as contrast- or texture-defined boundaries and subjective contours. However, little is known regarding how these neurons encode high-order visual information in a systematic manner as a population. To address this issue, we have measured detailed spatial structures of classical center and suppressive surround regions of receptive fields of primary visual cortex (V1) neurons and examined how a population of such neurons allow encoding of various high-order features and shapes in visual scenes. Using a novel method to reconstruct structures, we found that the center and surround regions are often both elongated parallel to each other, reminiscent of on and off subregions of simple cells without surround suppression. These structures allow V1 neurons to extract high-order contours of various orientations and spatial frequencies, with a variety of optimal values across neurons. The results show that a wide range of orientations and widths of the high-order features are systematically represented by the population of V1 neurons with surround suppression.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Graduate School of Frontier Biosciences and School of Engineering Science, Osaka University, Osaka, Japan
| | | |
Collapse
|