1
|
Vivaudou M. eeFit: a Microsoft Excel-embedded program for interactive analysis and fitting of experimental dose–response data. Biotechniques 2019; 66:186-193. [DOI: 10.2144/btn-2018-0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We present here a software program dedicated to the fitting of experimental dose–response data, which integrates seamlessly with Excel and allows curve fitting plots and results to reside alongside data within Excel spreadsheets. The program, named eeFit, for Excel-Embedded Fitting software, requires no advanced knowledge of Excel or non-linear least-squares fitting. Any experimental data present in an Excel file, such as dose–effect data obtained with membrane receptor or ion channel ligands, can be graphed and fitted interactively with standard Hill models for activation or inhibition, or with more complex models for biphasic effects resulting from combinations of activation and inhibition. When benchmarked against the commercial program Origin, eeFit yielded equivalent or better results, in terms of accuracy and convergence, and proved much easier to learn and use.
Collapse
Affiliation(s)
- Michel Vivaudou
- Institut de Biologie Structurale (IBS), University of Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
- Laboratories of Excellence, Ion Channel Science & Therapeutics (LabEx ICST), Nice, France
| |
Collapse
|
2
|
Hosy E, Vivaudou M. The unusual stoichiometry of ADP activation of the KATP channel. Front Physiol 2014; 5:11. [PMID: 24478723 PMCID: PMC3904077 DOI: 10.3389/fphys.2014.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/07/2014] [Indexed: 11/27/2022] Open
Abstract
KATP channels, oligomers of 4 pore-forming Kir6.2 proteins and 4 sulfonylurea receptors (SUR), sense metabolism by monitoring both cytosolic ATP, which closes the channel by interacting with Kir6.2, and ADP, which opens it via SUR. SUR mutations that alter activation by ADP are a major cause of KATP channelopathies. We examined the mechanism of ADP activation by analysis of single-channel and macropatch recordings from Xenopus oocytes expressing various mixtures of wild-type SUR2A and an ADP-activation-defective mutant. Evaluation of the data by a binomial distribution model suggests that wild-type and mutant SURs freely co-assemble and that channel activation results from interaction of ADP with only 2 of 4 SURs. This finding explains the heterozygous nature of most KATP channelopathies linked to mutations altering ADP activation. It also suggests that the channel deviates from circular symmetry and could function as a dimer-of-dimers.
Collapse
Affiliation(s)
- Eric Hosy
- Institut de Biologie Structurale, University Grenoble Alpes Grenoble, France ; Laboratory of Excellence, Ion Channel Science and Therapeutics, CNRS, Institut de Biologie Structurale Grenoble, France ; CEA, DSV, Institut de Biologie Structurale Grenoble, France
| | - Michel Vivaudou
- Institut de Biologie Structurale, University Grenoble Alpes Grenoble, France ; Laboratory of Excellence, Ion Channel Science and Therapeutics, CNRS, Institut de Biologie Structurale Grenoble, France ; CEA, DSV, Institut de Biologie Structurale Grenoble, France
| |
Collapse
|
3
|
Nadda N, Setia S, Vaish V, Sanyal SN. Role of cytokines in experimentally induced lung cancer and chemoprevention by COX-2 selective inhibitor, etoricoxib. Mol Cell Biochem 2012; 372:101-12. [PMID: 22991065 DOI: 10.1007/s11010-012-1451-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/05/2012] [Indexed: 01/03/2023]
Abstract
This study explored the role of pro- and anti-inflammatory cytokines in dimethyl benz(a)anthracene (DMBA)-induced lung cancer and its subsequent correction with a COX-2 inhibitory NSAID, etoricoxib. A single dose of DMBA (20 mg/kg body weight) in 0.9 % NaCl administered intratracheally was used to induce tumors in the rat lungs in 20 weeks. The study of pro-inflammatory cytokines like IL-1β, TNF-α, and IFN-γ revealed their upregulation by DMBA administration and restoration of their levels toward normal by the treatment with etoricoxib, while the anti-inflammatory cytokine IL-2 was found to be down-regulated with carcinogen administration and corrected with etoricoxib treatment. Apoptosis was studied by mitochondrial Bcl-2/Bax ratio and staining with fluorescent dyes acridine orange/ethidium bromide. The results showed a decreased apoptotic level with DMBA which was corrected with etoricoxib. Also, mitochondrial membrane potential was studied using JC-1 and rhodamine-123, which are membrane permeant fluorescent dyes, and generate information about cells at lower and higher mitochondrial membrane potential (∆Ψ(M)). The results showed the presence of maximum number of cells with higher ∆Ψ(M) in the DMBA group and their number was considerably lowered in the other three groups.
Collapse
Affiliation(s)
- Neeti Nadda
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | | | | | |
Collapse
|
4
|
Quan Y, Barszczyk A, Feng ZP, Sun HS. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin 2011; 32:765-80. [PMID: 21602835 PMCID: PMC4009965 DOI: 10.1038/aps.2011.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are cell metabolic sensors that couple cell metabolic status to electric activity, thus regulating many cellular functions. In pancreatic beta cells, K(ATP) channels modulate insulin secretion in response to fluctuations in plasma glucose level, and play an important role in glucose homeostasis. Recent studies show that gain-of-function and loss-of-function mutations in K(ATP) channel subunits cause neonatal diabetes mellitus and congenital hyperinsulinism respectively. These findings lead to significant changes in the diagnosis and treatment for neonatal insulin secretion disorders. This review describes the physiological and pathophysiological functions of K(ATP) channels in glucose homeostasis, their specific roles in neonatal diabetes mellitus and congenital hyperinsulinism, as well as future perspectives of K(ATP) channels in neonatal diseases.
Collapse
Affiliation(s)
- Yi Quan
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Andrew Barszczyk
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Hong-shuo Sun
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
5
|
β2-Adrenergic ion-channel coupled receptors as conformational motion detectors. PLoS One 2011; 6:e18226. [PMID: 21464970 PMCID: PMC3064670 DOI: 10.1371/journal.pone.0018226] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/25/2011] [Indexed: 12/14/2022] Open
Abstract
Ion Channel-Coupled Receptors (ICCRs) are artificial proteins comprised of a G protein-coupled receptor and a fused ion channel, engineered to couple channel gating to ligand binding. These novel biological objects have potential use in drug screening and functional characterization, in addition to providing new tools in the synthetic biology repertoire as synthetic K+-selective ligand-gated channels. The ICCR concept was previously validated with fusion proteins between the K+ channel Kir6.2 and muscarinic M2 or dopaminergic D2 receptors. Here, we extend the concept to the distinct, longer β2-adrenergic receptor which, unlike M2 and D2 receptors, displayed barely detectable surface expression in our Xenopus oocyte expression system and did not couple to Kir6.2 when unmodified. Here, we show that a Kir6.2-binding protein, the N-terminal transmembrane domain of the sulfonylurea receptor, can greatly increase plasma membrane expression of β2 constructs. We then demonstrate how engineering of both receptor and channel can produce β2-Kir6.2 ICCRs. Specifically, removal of 62–72 residues from the cytoplasmic C-terminus of the receptor was required to enable coupling, suggesting that ligand-dependent conformational changes do not efficiently propagate to the distal C-terminus. Characterization of the β2 ICCRs demonstrated that full and partial agonists had the same coupling efficacy, that an inverse agonist had no effect and that the stabilizing mutation E122 W reduced agonist-induced coupling efficacy without affecting affinity. Because the ICCRs are expected to report motions of the receptor C-terminus, these results provide novel insights into the conformational dynamics of the β2 receptor.
Collapse
|
6
|
Reyes S, Park S, Terzic A, Alekseev AE. K(ATP) channels process nucleotide signals in muscle thermogenic response. Crit Rev Biochem Mol Biol 2010; 45:506-19. [PMID: 20925594 DOI: 10.3109/10409238.2010.513374] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Uniquely gated by intracellular adenine nucleotides, sarcolemmal ATP-sensitive K(+) (K(ATP)) channels have been typically assigned to protective cellular responses under severe energy insults. More recently, K(ATP) channels have been instituted in the continuous control of muscle energy expenditure under non-stressed, physiological states. These advances raised the question of how K(ATP) channels can process trends in cellular energetics within a milieu where each metabolic system is set to buffer nucleotide pools. Unveiling the mechanistic basis of the K(ATP) channel-driven thermogenic response in muscles thus invites the concepts of intracellular compartmentalization of energy and proteins, along with nucleotide signaling over diffusion barriers. Furthermore, it requires gaining insight into the properties of reversibility of intrinsic ATPase activity associated with K(ATP) channel complexes. Notwithstanding the operational paradigm, the homeostatic role of sarcolemmal K(ATP) channels can be now broadened to a wider range of environmental cues affecting metabolic well-being. In this way, under conditions of energy deficit such as ischemic insult or adrenergic stress, the operation of K(ATP) channel complexes would result in protective energy saving, safeguarding muscle performance and integrity. Under energy surplus, downregulation of K(ATP) channel function may find potential implications in conditions of energy imbalance linked to obesity, cold intolerance and associated metabolic disorders.
Collapse
Affiliation(s)
- Santiago Reyes
- Marriott Heart Diseases Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
7
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1115] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Hosy E, Dupuis JP, Vivaudou M. Impact of disease-causing SUR1 mutations on the KATP channel subunit interface probed with a rhodamine protection assay. J Biol Chem 2009; 285:3084-91. [PMID: 19933268 DOI: 10.1074/jbc.m109.043307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the ATP-sensitive potassium (K(ATP)) channel relies on the proper coupling between its two subunits: the pore-forming Kir6.2 and the regulator SUR. The conformation of the interface between these two subunits can be monitored using a rhodamine 123 (Rho) protection assay because Rho blocks Kir6.2 with an efficiency that depends on the relative position of transmembrane domain (TMD) 0 of the associated SUR (Hosy, E., Dérand, R., Revilloud, J., and Vivaudou, M. (2007) J. Physiol. 582, 27-39). Here we find that the natural and synthetic K(ATP) channel activators MgADP, zinc, and SR47063 induced a Rho-insensitive conformation. The activating mutation F132L in SUR1, which causes neonatal diabetes, also rendered the channel resistant to Rho block, suggesting that it stabilized an activated conformation by uncoupling TMD0 from the rest of SUR1. At a nearby residue, the SUR1 mutation E128K impairs trafficking, thereby reducing surface expression and causing hyperinsulinism. To augment channel density at the plasma membrane to investigate the effect of mutating this residue on channel function, we introduced the milder mutation E126A at the matching residue of SUR2A. Mutation E126A imposed a hypersensitive Rho phenotype indicative of a functional uncoupling between TMD0 and Kir6.2. These results suggest that the TMD0-Kir6.2 interface is mobile and that the gating modes of Kir6.2 correlate with distinct positions of TMD0. They further demonstrate that the second intracellular loop of SUR, which contains the two residues studied here, is a key structural element of the TMD0-Kir6.2 interface.
Collapse
Affiliation(s)
- Eric Hosy
- Institut de Biologie Structurale (CEA, CNRS, UJF), Laboratoire des Protéines Membranaires, 41 Rue Jules Horowitz, 38027 Grenoble, France
| | | | | |
Collapse
|
9
|
Tousch D, Lajoix AD, Hosy E, Azay-Milhau J, Ferrare K, Jahannault C, Cros G, Petit P. Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem Biophys Res Commun 2008; 377:131-5. [PMID: 18834859 DOI: 10.1016/j.bbrc.2008.09.088] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 12/19/2022]
Abstract
Caffeic acid and chlorogenic acid (CGA), a mono-caffeoyl ester, have been described as potential antidiabetic agents. Using in vitro studies, we report the effects of a dicaffeoyl ester, chicoric acid (CRA) purified from Cichorium intybus, on glucose uptake and insulin secretion. Our results show that CRA and CGA increased glucose uptake in L6 muscular cells, an effect only observed in the presence of stimulating concentrations of insulin. Moreover, we found that both CRA and CGA were able to stimulate insulin secretion from the INS-1E insulin-secreting cell line and rat islets of Langerhans. In the later case, the effect of CRA is only observed in the presence of subnormal glucose levels. Patch clamps studies show that the mechanism of CRA and CGA was different from that of sulfonylureas, as they did not close K(ATP) channels. Chicoric acid is a new potential antidiabetic agent carrying both insulin sensitizing and insulin-secreting properties.
Collapse
Affiliation(s)
- Didier Tousch
- Faculté de Pharmacie, Centre de Pharmacologie & Innovation dans le Diabète, CNRS UMR 5232, Université Montpellier 1, Montpellier cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Moreau CJ, Dupuis JP, Revilloud J, Arumugam K, Vivaudou M. Coupling ion channels to receptors for biomolecule sensing. NATURE NANOTECHNOLOGY 2008; 3:620-625. [PMID: 18839002 DOI: 10.1038/nnano.2008.242] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 07/24/2008] [Indexed: 05/26/2023]
Abstract
Nanoscale electrical biosensors are promising tools for diagnostics and high-throughput screening systems. The electrical signal allows label-free assays with a high signal-to-noise ratio and fast real-time measurements. The challenge in developing such biosensors lies in functionally connecting a molecule detector to an electrical switch. Advances in this field have relied on synthetic ion-conducting pores and modified ion channels that are not yet suitable for biomolecule screening. Here we report the design and characterization of a novel bioelectric-sensing platform engineered by coupling an ion channel, which serves as the electrical probe, to G-protein-coupled receptors (GPCRs), a family of receptors that detect molecules outside the cell. These ion-channel-coupled receptors may potentially detect a wide range of ligands recognized by natural or altered GPCRs, which are known to be major pharmaceutical targets. This could form a unique platform for label-free drug screening.
Collapse
MESH Headings
- Animals
- Biosensing Techniques/methods
- Dopamine D2 Receptor Antagonists
- Drug Evaluation, Preclinical/methods
- Electric Conductivity
- Humans
- Ion Transport/drug effects
- Ligands
- Mice
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Protein Engineering/methods
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/antagonists & inhibitors
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Christophe J Moreau
- Laboratoire des Protéines Membranaires, Institut de Biologie Structurale (CEA, CNRS, UJF), 41 rue Jules Horowitz, 38027 Grenoble, France
| | | | | | | | | |
Collapse
|
11
|
Karger AB, Park S, Reyes S, Bienengraeber M, Dyer RB, Terzic A, Alekseev AE. Role for SUR2A ED domain in allosteric coupling within the K(ATP) channel complex. ACTA ACUST UNITED AC 2008; 131:185-96. [PMID: 18299394 PMCID: PMC2248718 DOI: 10.1085/jgp.200709852] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allosteric regulation of heteromultimeric ATP-sensitive potassium (KATP) channels is unique among protein systems as it implies transmission of ligand-induced structural adaptation at the regulatory SUR subunit, a member of ATP-binding cassette ABCC family, to the distinct pore-forming K+ (Kir6.x) channel module. Cooperative interaction between nucleotide binding domains (NBDs) of SUR is a prerequisite for KATP channel gating, yet pathways of allosteric intersubunit communication remain uncertain. Here, we analyzed the role of the ED domain, a stretch of 15 negatively charged aspartate/glutamate amino acid residues (948–962) of the SUR2A isoform, in the regulation of cardiac KATP channels. Disruption of the ED domain impeded cooperative NBDs interaction and interrupted the regulation of KATP channel complexes by MgADP, potassium channel openers, and sulfonylurea drugs. Thus, the ED domain is a structural component of the allosteric pathway within the KATP channel complex integrating transduction of diverse nucleotide-dependent states in the regulatory SUR subunit to the open/closed states of the K+-conducting channel pore.
Collapse
Affiliation(s)
- Amy B Karger
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Burke MA, Mutharasan RK, Ardehali H. The Sulfonylurea Receptor, an Atypical ATP-Binding Cassette Protein, and Its Regulation of the KATPChannel. Circ Res 2008; 102:164-76. [DOI: 10.1161/circresaha.107.165324] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael A. Burke
- From the Division of Cardiology, Feinberg Cardiovascular Institute, Northwestern University, Chicago, Ill
| | - R. Kannan Mutharasan
- From the Division of Cardiology, Feinberg Cardiovascular Institute, Northwestern University, Chicago, Ill
| | - Hossein Ardehali
- From the Division of Cardiology, Feinberg Cardiovascular Institute, Northwestern University, Chicago, Ill
| |
Collapse
|