1
|
Holt R, Yahyavi SK, Kooij I, Poulsen NN, Juul A, Jørgensen N, Blomberg Jensen M. Effects of vitamin D on sex steroids, luteinizing hormone, and testosterone to luteinizing hormone ratio in 307 infertile men. Andrology 2024; 12:553-560. [PMID: 37555466 DOI: 10.1111/andr.13505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/07/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE Vitamin D status has been associated with sex steroid production. The question is whether vitamin D supplementation has an impact on sex steroid production in infertile men with vitamin D insufficiency? DESIGN A single-center, double-blinded, randomized clinical trial. Differences in sex steroids and reproductive hormones were predefined secondary outcomes, vitamin D status at baseline was a predefined subgroup and the primary outcome was differences in semen quality. METHODS A total of 307 infertile men were included and randomized 1:1 to active or placebo treatment for 150 days. Men in the active group initially received an oral bolus of 300,000 IU cholecalciferol, followed by daily supplementation with 1400 IU cholecalciferol and 500 mg calcium. RESULTS After intervention, no differences were found in serum concentrations of sex steroids, luteinizing hormone, testosterone/luteinizing hormone ratio or SHBG between the vitamin D and placebo group. However, in a predefined subgroup analysis of men with serum 25OHD ≤ 50 nmol/L, men treated with vitamin D had a significantly higher testosterone/luteinizing hormone ratio [4.2 (3.8-4.4) vs. 3.7 (3.4-4.0); p = 0.033] compared with placebo treatment. In men with vitamin D deficiency, the difference between groups was larger but not significant due to few men with serum 25OHD < 25 nmol/L. CONCLUSION Vitamin D + calcium supplementation did not alter sex steroid production in infertile men. However, vitamin D insufficient men treated with vitamin D supplementation had a significantly higher testosterone/LH ratio compared with placebo-treated men, suggesting that optimal Leydig cell function are dependent on adequate vitamin D status.
Collapse
Affiliation(s)
- Rune Holt
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Sam Kafai Yahyavi
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Ireen Kooij
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Nadia Nicholine Poulsen
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| |
Collapse
|
2
|
Sharma A, Rahman G, Gorelik J, Bhargava A. Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 2023; 12:461. [PMID: 36766802 PMCID: PMC9913649 DOI: 10.3390/cells12030461] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Ghazala Rahman
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Julia Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| |
Collapse
|
3
|
Testosterone secretion is affected by receptor tyrosine kinase c-Kit and anoctamin 1 activation in mouse Leydig cells. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.2.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
4
|
Magalhães KS, da Silva MP, Mecawi AS, Paton JFR, Machado BH, Moraes DJA. Intrinsic and synaptic mechanisms controlling the expiratory activity of excitatory lateral parafacial neurones of rats. J Physiol 2021; 599:4925-4948. [PMID: 34510468 DOI: 10.1113/jp281545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Active expiration is essential for increasing pulmonary ventilation during high chemical drive (hypercapnia). The lateral parafacial (pFL ) region, which contains expiratory neurones, drives abdominal muscles during active expiration in response to hypercapnia. However, the electrophysiological properties and synaptic mechanisms determining the activity of pFL expiratory neurones, as well as the specific conditions for their emergence, are not fully understood. Using whole cell electrophysiology and single cell quantitative RT-PCR techniques, we describe the intrinsic electrophysiological properties, the phenotype and the respiratory-related synaptic inputs to the pFL expiratory neurones, as well as the mechanisms for the expression of their expiratory activity under conditions of hypercapnia-induced active expiration, using in situ preparations of juvenile rats. We also evaluated whether these neurones possess intrinsic CO2 /[H+ ] sensitivity and burst generating properties. GABAergic and glycinergic inhibition during inspiration and expiration suppressed the activity of glutamatergic pFL expiratory neurones in normocapnia. In hypercapnia, these neurones escape glycinergic inhibition and generate burst discharges at the end of expiration. Evidence for the contribution of post-inhibitory rebound, CaV 3.2 isoform of T-type Ca2+ channels and intracellular [Ca2+ ] is presented. Neither intrinsic bursting properties, mediated by persistent Na+ current, nor CO2 /[H+ ] sensitivity or expression of CO2 /[H+ ] sensitive ion channels/receptors (TASK or GPR4) were observed. On the other hand, hyperpolarisation-activated cyclic nucleotide-gated and twik-related K+ leak channels were recorded. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats. KEY POINTS: Hypercapnia induces active expiration in rats and the recruitment of a specific population of expiratory neurones in the lateral parafacial (pFL ) region. Post-synaptic GABAergic and glycinergic inhibition both suppress the activity of glutamatergic pFL neurones during inspiratory and expiratory phases in normocapnia. Hypercapnia reduces glycinergic inhibition during expiration leading to burst generation by pFL neurones; evidence for a contribution of post-inhibitory rebound, voltage-gated Ca2+ channels and intracellular [Ca2+ ] is presented. pFL glutamatergic expiratory neurones are neither intrinsic burster neurones, nor CO2 /[H+ ] sensors, and do not express CO2 /[H+ ] sensitive ion channels or receptors. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones both play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats.
Collapse
Affiliation(s)
- Karolyne S Magalhães
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André S Mecawi
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Ham J, Lim W, Song G. Pendimethalin induces apoptosis in testicular cells via hampering ER-mitochondrial function and autophagy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116835. [PMID: 33706242 DOI: 10.1016/j.envpol.2021.116835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Pendimethalin (PDM) is a dinitroaniline crop pesticide that is extensively utilized worldwide. However, the reproductive toxicity and cellular mechanisms of PDM have not been identified. Therefore, we elucidated the adverse effects of PDM on the reproductive system using mouse testicular Leydig and Sertoli cells (TM3 and TM4 cells, respectively). Our results demonstrated that PDM suppressed the viability and proliferation of TM3 and TM4 cells. Additionally, PDM induced cytosolic calcium upregulation and permeabilization of mitochondrial membrane potential in both TM3 and TM4 cells. We also verified that PDM activates the endoplasmic reticulum (ER) stress pathway and autophagy. Furthermore, we confirmed that activation of ER stress and autophagy were blocked by 2-aminoethoxydiphenyl borate (2-APB) treatment. Finally, we confirmed PDM-induced cell cycle arrest and apoptosis in TM3 and TM4 cells. Thus, we first demonstrated that PDM impedes the survival of testis cells, and further, their function.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Ham J, You S, Lim W, Song G. Etoxazole induces testicular malfunction in mice by dysregulating mitochondrial function and calcium homeostasis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114573. [PMID: 33618463 DOI: 10.1016/j.envpol.2020.114573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 06/12/2023]
Abstract
Epidemiological relationships between pesticide use and male infertility have been suggested for a long time. Etoxazole (ETX), an oxazoline pesticide, has been extensively used for pest eradication. It is considered relatively safe and has low mammalian toxicity because it specifically inhibits chitin synthesis. However, ETX may have toxic effects on the reproductive system. In this study, we examined the effects of ETX on the reproductive system using mouse testis cell lines (TM3 for Leydig cells and TM4 for Sertoli cells) and C57BL/6 male mice. We confirmed that ETX has anti-proliferative effects on the TM3 and TM4 cell lines. Moreover, ETX induced mitochondrial dysfunction and hampers calcium homeostasis. Western blot analysis of MAPK and Akt signaling cascades was performed to demonstrate the mode of action of ETX at a molecular level. Moreover, ETX induced misregulation of genes related to testicular function. Upon oral administration of ETX in C57BL/6 male mice, testis weight was reduced and transcriptional expression related to testis function was altered. These results indicate that ETX induces testicular toxicity by inducing mitochondrial dysfunction and calcium imbalance and regulating gene expression.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Effect of heat stress and Hsp90 inhibition on T-type calcium currents and voltage-dependent potassium currents in leydig cells. J Therm Biol 2019; 84:1-7. [PMID: 31466741 DOI: 10.1016/j.jtherbio.2019.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022]
Abstract
Heat can trigger testicular damage and impair fertility. Leydig cells produce testosterone in response to stimulation by luteinizing hormone (LH), which induces Ca2+ entry and K+ efflux through ion channels in their plasma membrane. Considering that mechanisms coordinating the Leydig cell responses to hyperthermic stress remain unclear; the present study analyzed the effects of heat stress (HS, 43°C, 15 min) and inhibition of Hsp90 on T-type calcium currents and voltage-dependent potassium currents (VKC) in mice Leydig cells. Results show that HS reduced the VKC steady state currents at +80 mV (45.3%) and maximum conductance (71.5%), as well as increased the activation time constant (31.7%) and the voltage for which half the channels are open (30%). Hsp90 inhibition did not change the VKC currents. T-type calcium currents were not affected by HS or Hsp90 inhibition. In conclusion, HS can slow the activation, reduce the currents and voltage dependence of the VKC, suggesting a possible role of these currents in the response to hyperthermic stress in Leydig cells.
Collapse
|
8
|
Park H, Park HS, Lim W, Song G. Ochratoxin A suppresses proliferation of Sertoli and Leydig cells in mice. Med Mycol 2019; 58:71-82. [DOI: 10.1093/mmy/myz016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract
Ochratoxin A (OTA) is a mycotoxin originating from Penicillium and Aspergillus. In addition to toxic effects in various tissues and cells, including neurons, immune cells, hepatocytes, and nephrons, it also causes carcinogenesis and teratogenesis. Although the negative effects of OTA with respect to the pathogenesis of diseases and the malfunction of various organs have been studied widely, the biological signaling mechanisms in testicular cells are less well known. Therefore, we determined the hazardous effect of OTA in two types of testicular cells: TM3 (mouse Leydig cells) and TM4 (mouse Sertoli cells). Treatment with OTA led to a significant decrease in the proliferation of both cell lines, as revealed by an increased proportion of cells in the sub-G1 phase. In addition, the phosphorylation of signaling molecules belonging to the PI3K (Akt, P70S6K, and S6) and MAPK (ERK1/2 and JNK) pathways was regulated by OTA in a dose-dependent manner in TM3 and TM4 cells. Furthermore, the combination treatment of OTA and signaling inhibitors (LY294002, U0126, or SP600125) exerted synergistic antiproliferative effects in TM3 and TM4 cells. OTA also reduced the concentration of calcium ions in the cytosol and mitochondria, which disrupted the calcium homeostasis necessary for maintaining the normal physiological functions of testicular cells. In conclusion, the results of the present study demonstrate the mechanism underlying the antiproliferative effects of OTA in mouse testicular cells. Exposure to OTA may result in abnormal sperm maturation and the failure of spermatogenesis, which leads to male infertility.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hee Seo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Xu W, Zhu Q, Liu S, Dai X, Zhang B, Gao C, Gao L, Liu J, Cui Y. Calretinin Participates in Regulating Steroidogenesis by PLC-Ca 2+-PKC Pathway in Leydig Cells. Sci Rep 2018; 8:7403. [PMID: 29743498 PMCID: PMC5943404 DOI: 10.1038/s41598-018-25427-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Calretinin, a Ca2+-binding protein, participates in many cellular events. Our previous studies found the high expression of calretinin in testicular Leydig cells. In this study, (MLTC-1 cells were infected with LV-calb2, R2C cells with LV-siRNA-calb2. The primary mouse Leydig cells were also used to confirm those data from cell lines. Testosterone level was significantly higher in the MLTC-1 cells with over-expressed calretinin than in the control, while progesterone was lower in the R2C cells in which down-regulated calretinin. The expressions of StAR changed in synchrony with hormones. Cytoplasmic Ca2+ level was significantly increased when calretinin was over-expressed. When MLTC-1 cells were infected with LV-calb2 and then stimulated using Clopiazonic, a Ca2+-releasing agent, testosterone was significantly increased. Interestingly, the expression levels of PLC, p-PKCµ (PKD), p-MARCKS and CREB, were significantly increased in the MLTC-1 cells with over-expressed calretinin, while PLC, p-PKD, p-MARCKS, MARCKS and CREB were decreased in the R2C cells with down-regulated calretinin. We also observed the increased expression of calretinin up-regulated testosterone production and the expressions of StAR and PLC in primary mouse Leydig cells. So, calretinin as a Ca2+-binding protein participates in the regulation of steroidogenesis via the PLC-Ca2+-PKC pathway in Leydig cells.
Collapse
Affiliation(s)
- Wendan Xu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Qian Zhu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Shan Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.,Center of Reproductive Medicine, Bethune International Peace Hospital, Hebei Shijiazhuang, China
| | - Xiaonan Dai
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.,Nanjing Maternal and Child Care Service Center, Nanjing Medical University, Nanjing, 210005, China
| | - Bei Zhang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
10
|
Ahn C, Lee MJ, Jeung EB. Expression and Localization of Equine Tissue-Specific Divalent Ion-Transporting Channel Proteins. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
De Toni L, De Filippis V, Tescari S, Ferigo M, Ferlin A, Scattolini V, Avogaro A, Vettor R, Foresta C. Uncarboxylated osteocalcin stimulates 25-hydroxy vitamin D production in Leydig cell line through a GPRC6a-dependent pathway. Endocrinology 2014; 155:4266-74. [PMID: 25093461 DOI: 10.1210/en.2014-1283] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies disclosed a cross talk between testis and bone. By the action of LH, Leydig cells are able to modulate bone metabolism through testosterone and insulin-like factor 3. Moreover, LH modulates the Leydig expression of CYP2R1, the key enzyme involved in vitamin D (Vit D) 25-hydroxylation. However, pathways regulating CYP2R1 expression have been poorly investigated. The cross talk from the bone to the testis of the vitamin D 25-hydroxylase CYP2R1 involves osteocalcin (OC), which is produced by the osteoblasts and stimulates the production of testosterone by the Leydig cells through its putative receptor GPRC6A, a cation-sensing G-protein-coupled receptor. The aim of this study was to investigate the possible action of OC on CYP2R1 expression and 25-hydroxy Vit D (25-OH Vit D) production in a mouse Leydig cell line (MA-10). After confirmation of the expression of GPRC6A by MA-10, we found that stimulation with either human chorionic gonadotropin or uncarboxylated-OC (ucOC) increases CYP2R1 protein expression in a dose-dependent manner and, in turn, increases the release of 25-OH Vit D in culture medium. This effect was abolished by receptor blockade with, respectively, anti-LH receptor and anti-GPRC6A antibodies. Moreover, both agonists converged to phosphorylation of Erk1/2 by a likely differential action on second messengers. Human chorionic gonadotropin induced slow "tonic" increase of intercellular calcium and accumulation of cAMP, whereas ucOC mainly induced phasic increase of cell calcium. Supporting these findings, we found that serum ucOC positively correlated with 25-OH Vit D levels in 40 overweight male patients and 21 controls. Altogether, our results suggest that OC contributes with LH to 25-OH Vit D production by Leydig cells.
Collapse
Affiliation(s)
- Luca De Toni
- Department of Medicine (L.D.T., A.F., C.F.), Centre for Human Reproduction Pathology, University of Padova, 35128 Padova, Italy; Laboratory of Protein Chemistry (V.D.F., S.T.), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; Department of Medicine (V.S., A.A.), Section of Diabetes and Metabolic Diseases, University of Padova, 35120 Padova, Italy; and Department of Molecular Medicine (M.F.) and Internal Medicine 3 (R.V.), Endocrine-Metabolic Laboratory, Department of Medicine, University of Padova, 35121 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wright MF, Bowdridge E, McDermott EL, Richardson S, Scheidler J, Syed Q, Bush T, Inskeep EK, Flores JA. Mechanisms of intracellular calcium homeostasis in developing and mature bovine corpora lutea. Biol Reprod 2014; 90:55. [PMID: 24501170 DOI: 10.1095/biolreprod.113.113662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although calcium (Ca(2+)) is accepted as an intracellular mediator of prostaglandin F2 alpha (PGF2alpha) actions on luteal cells, studies defining mechanisms of Ca(2+) homeostasis in bovine corpora lutea (CL) are lacking. The increase in intracellular Ca(2+) concentration ([Ca(2+)]i) induced by PGF2alpha in steroidogenic cells from mature CL is greater than in those isolated from developing CL. Our hypothesis is that differences in signal transduction associated with developing and mature CL contribute to the increased efficacy of PGF2alpha to induce a Ca(2+) signal capable of inducing regression in mature CL. To test this hypothesis, major genes participating in Ca(2+) homeostasis in the bovine CL were identified, and expression of mRNA, protein, or activity, in the case of phospholipase Cbeta (PLCbeta), in developing and mature bovine CL was compared. In addition, we examined the contribution of external and internal Ca(2+) to the PGF2alpha stimulated rise in [Ca(2+)]i in LLCs isolated from developing and mature bovine CL. Three differences were identified in mechanisms of calcium homeostasis between developing and mature CL, which could account for the lesser increase in [Ca(2+)]i in response to PGF2alpha in developing than in mature CL. First, there were lower concentrations of inositol 1,4,5-trisphosphate (IP3) after similar PGF2alpha challenge, indicating reduced phospholipase C beta (PLCbeta) activity, in developing than mature CL. Second, there was an increased expression of sorcin (SRI) in developing than in mature CL. This cytoplasmic Ca(2+) binding protein modulates the endoplasmic reticulum (ER) Ca(2+) release channel, ryanodine receptor (RyR), to be in the closed configuration. Third, there was greater expression of ATP2A2 or SERCA, which causes calcium reuptake into the ER, in developing than in mature CL. Developmental differences in expression detected in whole CL were confirmed by Western blots using protein samples from steroidogenic cells isolated from developing and mature CL. Localization of these genes in steroidogenic luteal cells was confirmed by immunohistochemistry. Therefore, it is concluded that the cellular mechanisms that allow PGF2alpha to induce a calcium signal of greater magnitude in mature than in developing CL involve 1) greater PLCbeta activity with enhanced generation of IP3, 2) an enhanced Ca(2+) release from the ER via unrestrained RYR2 due to a decrease in SRI expression, and 3) a reduction in calcium reuptake to the ER due to lower expression of ATP2A2. Accordingly, the increase in [Ca(2+)]i induced by PGF2alpha in mature large steroidogenic cells had less dependency from extracellular calcium than in those isolated from immature CL.
Collapse
Affiliation(s)
- Marietta F Wright
- Division of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, West Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Matzkin ME, Lauf S, Spinnler K, Rossi SP, Köhn FM, Kunz L, Calandra RS, Frungieri MB, Mayerhofer A. The Ca2+-activated, large conductance K+-channel (BKCa) is a player in the LH/hCG signaling cascade in testicular Leydig cells. Mol Cell Endocrinol 2013; 367:41-9. [PMID: 23267835 DOI: 10.1016/j.mce.2012.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
In Leydig cells, hormonal stimulation by LH/hCG entails increased intracellular Ca(2+) levels and steroid production, as well as hyperpolarization of the cell membrane. The large-conductance Ca(2+)-activated K(+)-channel (BK(Ca)) is activated by raised intracellular Ca(2+) and voltage and typically hyperpolarizes the cell membrane. Whether BK(Ca) is functionally involved in steroid production of Leydig cells is not known. In order to explore this point we first investigated the localization of BK(Ca) in human and hamster testes and then used a highly specific toxin, the BK(Ca) blocker iberiotoxin (IbTx), to experimentally dissect a role of BK(Ca). Immunohistochemistry and RT-PCR revealed that adult Leydig cells of both species are endowed with these channels. Ontogeny studies in hamsters indicated that BK(Ca) becomes strongly detectable in Leydig cells only after they acquire the ability to produce androgens. Using purified Leydig cells from adult hamsters, membrane potential changes in response to hCG were monitored. HCG hyperpolarized the cell membrane, which was prevented by the selective BK(Ca) blocker IbTx. Steroidogenic acute regulatory (StAR) mRNA expression and testosterone production were not affected by IbTx under basal conditions but markedly increased when hCG, in submaximal and maximal concentration or when db-cAMP was added to the incubation media. A blocker of K(V)4-channels, expressed by Leydig cells, namely phrixotoxin-2 (PhTx-2) was not effective. In summary, the data reveal BK(Ca) as a crucial part of the signaling cascade of LH/hCG in Leydig cells. The hyperpolarizing effect of BK(Ca) in the Leydig cell membrane appears to set in motion events limiting the production of testosterone evoked by stimulatory endocrine mechanisms.
Collapse
Affiliation(s)
- M E Matzkin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abdou HS, Villeneuve G, Tremblay JJ. The calcium signaling pathway regulates leydig cell steroidogenesis through a transcriptional cascade involving the nuclear receptor NR4A1 and the steroidogenic acute regulatory protein. Endocrinology 2013. [PMID: 23183170 DOI: 10.1210/en.2012-1767] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the gonads and adrenal glands, the transient increase in steroidogenesis after hormonal stimulation requires modulation of steroidogenic acute regulatory protein (Star) expression and activity in a tightly regulated process involving cAMP and Ca(2+). In Leydig cells, the cAMP and Ca(2+) pathways account for most if not all of LH-induced steroidogenesis. Although the cAMP-activated molecular network has been well characterized in Leydig cells, little is known about the molecular cascade triggered by the Ca(2+) signaling pathway and the transcription factors responsible for mediating the genomic response. It is established that LH induces an increase in cytoplasmic Ca(2+) from the endoplasmic reticulum primarily through the ryanodine receptors. Previous reports also suggested a role of the Ca(2+) signaling pathway in Star expression based on the fact that inhibition of the Ca(2+)/calmodulin (CaM) protein kinase pathway greatly impaired Star expression in Leydig and adrenal cells. In this study, we used ryanodine receptors and CaM antagonists to show that the increase in intracellular Ca(2+) level is an essential modulator of progesterone synthesis through the regulation of Star gene expression in MA-10 Leydig cells. Furthermore, we mapped a Ca(2+)/CaM-sensitive element in the Star promoter, which led to the identification of the nuclear receptor 4A1 (NR4A1) as a key mediator of the Ca(2+)/CaM signaling pathway in these cells. These data provide new insights into the Ca(2+) molecular pathway essential for steroidogenesis in Leydig cells.
Collapse
Affiliation(s)
- Houssein S Abdou
- Reproduction, Mother and Youth Health, Centre Hospitalier Universitaire de Québec Research Centre, Centre Hospitalier del'Université Laval Room T1-49, 2705 Laurier Boulevard, Québec City, Québec, Canada G1V 4G2
| | | | | |
Collapse
|
15
|
Costa RR, Reis RID, Aguiar JF, Varanda WA. Luteinizing hormone (LH) acts through PKA and PKC to modulate T-type calcium currents and intracellular calcium transients in mice Leydig cells. Cell Calcium 2011; 49:191-9. [PMID: 21367452 DOI: 10.1016/j.ceca.2011.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
LH increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in mice Leydig cells, in a process triggered by calcium influx through T-type Ca(2+) channels. Here we show that LH modulates both T-type Ca(2+) currents and [Ca(2+)](i) transients through the effects of PKA and PKC. LH increases the peak calcium current (at -20mV) by 40%. A similar effect is seen with PMA. The effect of LH is completely blocked by the PKA inhibitors H89 and a synthetic inhibitory peptide (IP-20), but only partially by chelerythrine (PKC inhibitor). LH and the blockers induced only minor changes in the voltage dependence of activation, inactivation or deactivation of the currents. Staurosporine (blocker of PKA and PKC) impaired the [Ca(2+)](i) changes induced by LH. A similar effect was seen with H89. Although PMA slowly increased the [Ca(2+)](i) the subsequent addition of LH still triggered the typical transients in [Ca(2+)](i). Chelerythrine also does not avoid the Ca(2+) transients, showing that blockage of PKC is not sufficient to inhibit the LH induced [Ca(2+)](i) rise. In summary, these two kinases are not only directly involved in promoting testosterone synthesis but also act on the overall calcium dynamics in Leydig cells, mostly through the activation of PKA by LH.
Collapse
Affiliation(s)
- Roberta Ribeiro Costa
- Department of Physiology, School of Medicine of Ribeirão Preto/University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
16
|
Lee JH, Ahn HJ, Lee SJ, Gye MC, Min CK. Effects of L- and T-type Ca²(+) channel blockers on spermatogenesis and steroidogenesis in the prepubertal mouse testis. J Assist Reprod Genet 2010; 28:23-30. [PMID: 20859763 DOI: 10.1007/s10815-010-9480-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/05/2010] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To assess the involvement of L-type and T-type Ca²(+) channel blockers in inducing male infertility. METHODS Prepubertal male mice were fed Ca²(+) channel blockers nifedipine and ethosuximide for 20 days at dosages below maximum tolerated dose (MTD) and assayed for gross morphological changes in the testis such as body weight, testis size and weight. Sperm and Leydig cell counting were conducted concomitantly with serum testosterone level measurement by radioimmunoassay (RIA) and StAR protein mRNA measurement by reverse transcription and polymerase chain reaction (RT-PCR). RESULTS A chronic exposure to nifedipine or ethosuximide caused a significant reduction in body weight, testis size/weight and sperm production in a dose-dependent fashion associated with a spermatogenic arrest largely at the elongating spermatid stage. The number of Leydig cells, the serum testosterone level but not the luteinizing hormone level, and the content of StAR protein mRNA were also drastically reduced relative to the controls. CONCLUSIONS Both T- and L-type Ca²(+) channel blockers play an adverse role in normal spermatogenesis and steroidogenesis partly by blocking postmeiotic germ cell maturation and/or by abrogating StAR protein expression, contributing to male sterility. Therefore, any therapeutic application of Ca²(+) channel blockers must be used with caution due to its potential adverse side effects on male infertility.
Collapse
Affiliation(s)
- Jae Ho Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, South Korea
| | | | | | | | | |
Collapse
|
17
|
Yu PL, Pu HF, Chen SY, Wang SW, Wang PS. Effects of catechin, epicatechin and epigallocatechin gallate on testosterone production in rat leydig cells. J Cell Biochem 2010; 110:333-42. [PMID: 20432242 DOI: 10.1002/jcb.22541] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Catechins have been reported to have many pharmacological properties such as the effects of anti-oxidative, anti-inflammatory, anti-carcinogenic, anti-ultraviolet, and reduction of blood pressure as well as glucose and cholesterol levels. However, the effect of catechins on the reproductive mechanism is still unknown. In the present study, the effects of catechins on testosterone secretion in rat testicular Leydig cells (LCs) were explored. Both in vivo and in vitro investigations were performed. Purified LCs were incubated with or without catechin (CCN), epicatechin (EC), epigallocatechin gallate (EGCG, 10(-10)-10(-8) M) under challenge with human chorionic gonadotropin (hCG, 0.01 IU/ml), forskolin, SQ22536 (an adenylyl cyclase inhibitor), 8-bromo-adenosine 3':5'-cyclic monophosphate (8-Br-cAMP), A23187 (a calcium ionophore), and nifedipine (10(-5) M), respectively. To study the effects of catechins on steroidogenesis, steroidogenic precursors-stimulated testosterone release was examined. The functions of the steroidogenic enzymes including protein expression of cytochrome P450 side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein were investigated and expressed by Western blotting. Catechins increased plasma testosterone in vivo in male rats. In vitro, low-dose concentration of catechins increased gonadotropin releasing hormone (GnRH)-stimulated luteinizing hormone (LH) release by anterior pituitary gland and hCG-stimulated testosterone release by LCs of male rats. These results suggested that catechins stimulated testosterone production by acting on rat LCs via the mechanism of increasing the action of cAMP, but not P450scc, StAR protein or the activity of intracellular calcium. EC, one of the catechins increased the testosterone secretion by rat LCs via the enzyme activities of 17beta-hydroxysteroid dehydrogenase (17beta-HSD).
Collapse
Affiliation(s)
- Po-Ling Yu
- Department of Surgery, Taipei City Hospital, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
18
|
Lee JH, Kim JU, Kim C, Min CK. Inhibitory actions of mibefradil on steroidogenesis in mouse Leydig cells: involvement of Ca(2+) entry via the T-type Ca(2+) channel. Asian J Androl 2010; 12:807-13. [PMID: 20694017 DOI: 10.1038/aja.2010.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intracellular cAMP and Ca(2+) are involved in the regulation of steroidogenic activity in Leydig cells, which coordinate responses to luteinizing hormone (LH) and human chorionic gonadotropin (hCG). However, the identification of Ca(2+) entry implicated in Leydig cell steroidogenesis is not well defined. The objective of this study was to identify the type of Ca(2+) channel that affects Leydig cell steroidogenesis. In vitro steroidogenesis in the freshly dissociated Leydig cells of mice was induced by hCG incubation. The effects of mibefradil (a putative T-type Ca(2+) channel blocker) on steroidogenesis were assessed using reverse transcription (RT)-polymerase chain reaction analysis for the steroidogenic acute regulatory protein (StAR) mRNA expression and testosterone production using radioimmunoassay. In the presence of 1.0 mmol L(-1) extracellular Ca(2+), hCG at 1 to 100 IU noticeably elevated both StAR mRNA level and testosterone secretion (P < 0.05), and the stimulatory effects of hCG were markedly diminished by mibefradil in a dose-dependent manner (P < 0.05). Moreover, the hCG-induced increase in testosterone production was completely removed when external Ca(2+) was omitted, implying that Ca(2+) entry is needed for hCG-induced steroidogenesis. Furthermore, a patch-clamp study revealed the presence of mibefradil-sensitive Ca(2+) currents seen at a concentration range that nearly paralleled those inhibiting steroidogenesis. Collectively, our data provide evidence that hCG-stimulated steroidogenesis is mediated at least in part by Ca(2+) entry carried out by the T-type Ca(2+) channel in the Leydig cells of mice.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330714, South Korea
| | | | | | | |
Collapse
|
19
|
Dechanet C, Anahory T, Mathieu Daude JC, Quantin X, Reyftmann L, Hamamah S, Hedon B, Dechaud H. Effects of cigarette smoking on reproduction. Hum Reprod Update 2010; 17:76-95. [PMID: 20685716 DOI: 10.1093/humupd/dmq033] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cigarette smoking is associated with lower fecundity rates, adverse reproductive outcomes and a higher risk of IVF failures. Over the last few decades, prevalence of smoking among women of reproductive age has increased. This review focuses on current knowledge of the potential effects of smoke toxicants on all reproductive stages and the consequences of smoke exposure on reproductive functions. METHODS We conducted a systematic review of the scientific literature on the impact of cigarette smoking and smoke constituents on the different stages of reproductive function, including epidemiological, clinical and experimental studies. We attempted to create hypotheses and find explanations for the deleterious effects of cigarette smoke observed in experimental studies. RESULTS Cigarette smoke contains several thousand components (e.g. nicotine, polycyclic aromatic hydrocarbons and cadmium) with diverse effects. Each stage of reproductive function, folliculogenesis, steroidogenesis, embryo transport, endometrial receptivity, endometrial angiogenesis, uterine blood flow and uterine myometrium is a target for cigarette smoke components. The effects of cigarette smoke are dose-dependent and are influenced by the presence of other toxic substances and hormonal status. Individual sensitivity, dose, time and type of exposure also play a role in the impact of smoke constituents on human fertility. CONCLUSIONS All stages of reproductive functions are targets of cigarette smoke toxicants. Further studies are necessary to better understand the deleterious effects of cigarette smoke compounds on the reproductive system in order to improve health care, help to reduce cigarette smoking and provide a better knowledge of the molecular mechanisms involved in reproductive toxicology.
Collapse
Affiliation(s)
- C Dechanet
- Department of Medicine and Biology of Reproduction, Hôpital Arnaud de Villeneuve, Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Costa RR, Varanda WA, Franci CR. A calcium-induced calcium release mechanism supports luteinizing hormone-induced testosterone secretion in mouse Leydig cells. Am J Physiol Cell Physiol 2010; 299:C316-23. [DOI: 10.1152/ajpcell.00521.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Leydig cells are responsible for the synthesis and secretion of testosterone, processes controlled by luteinizing hormone (LH). Binding of LH to a G protein-coupled receptor in the plasma membrane results in an increase in cAMP and in intracellular Ca2+ concentration ([Ca2+]i). Here we show, using immunofluorescence, that Leydig cells express ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs). Measurements of intracellular calcium changes using the fluorescent calcium-sensitive dye fluo-3 and confocal microscopy show that both types of receptors are involved in a calcium-induced calcium release (CICR) mechanism, which amplifies the initial Ca2+ influx through plasma membrane T-type calcium channels (CaV3). The RyRs and IP3Rs are functional, as judged from both their activation by caffeine and IP3 and block by ryanodine and 2-aminoethoxydiphenyl borate (2-APB), respectively. RyRs are the principal players involved in the release of Ca2+ from the endoplasmic reticulum, as evidenced by the fact that global Ca2+ changes evoked by LH are readily blocked by 100 μM ryanodine but not by 2-APB or xestospongin C. Finally, steroid production by Leydig cells is inhibited by ryanodine but not by 2-APB. These results not only broaden our understanding of the role played by calcium in Leydig cells but also show, for the first time, that RyRs have an important role in determining testosterone secretion by the testis.
Collapse
Affiliation(s)
- Roberta Ribeiro Costa
- Department of Physiology, School of Medicine of Ribeirão Preto/University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wamberto Antonio Varanda
- Department of Physiology, School of Medicine of Ribeirão Preto/University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Celso Rodrigues Franci
- Department of Physiology, School of Medicine of Ribeirão Preto/University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
21
|
Volume-activated chloride channels in mice Leydig cells. Pflugers Arch 2008; 457:493-504. [PMID: 18574591 DOI: 10.1007/s00424-008-0525-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/08/2008] [Accepted: 04/22/2008] [Indexed: 10/21/2022]
Abstract
Production and secretion of testosterone in Leydig cells are mainly controlled by the luteinizing hormone (LH). Biochemical evidences suggest that the activity of Cl(-) ions can modulate the steroidogenic process, but the specific ion channels involved are not known. Here, we extend the characterization of Cl(-) channels in mice Leydig cells (50-60 days old) by describing volume-activated Cl(-) currents (I(Cl,swell)). The amplitude of I(Cl,swell) is dependent on the osmotic gradient across the cell membrane, with an apparent EC(50) of approximately 75 mOsm. These currents display the typical biophysical signature of volume-activated anion channels (VRAC): dependence on intracellular ATP, outward rectification, inactivation at positive potentials, and selectivity sequence (I(- )> Cl(- )> F(-)). Staurosporine (200 nM) did not block the activation of I(Cl,swell). The block induced by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB; 128 microM), SITS (200 microM), ATP (500 microM), pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 100 miccroM), and Suramin (10 microM) were described by the permeant blocker model with apparent dissociation constant at 0 mV K(do) and fractional distance of the binding site (delta) of 334 microM and 47 %, 880 microM and 35 %, 2,100 microM and 49%, 188 microM and 27%, and 66.5 microM and 49%, respectively. These numbers were derived from the peak value of the currents. We conclude that I(Cl,swell) in Leydig cells are activated independently of purinergic stimulation, that Suramin and PPADS block these currents by a direct interaction with VRAC and that ATP is able to permeate this channel.
Collapse
|
22
|
Manfiolli AO, Maragno ALGC, Baqui MMA, Yokoo S, Teixeira FR, Oliveira EB, Gomes MD. FBXO25-associated nuclear domains: a novel subnuclear structure. Mol Biol Cell 2008; 19:1848-61. [PMID: 18287534 PMCID: PMC2366848 DOI: 10.1091/mbc.e07-08-0815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 01/28/2008] [Accepted: 02/08/2008] [Indexed: 12/13/2022] Open
Abstract
Skp1, Cul1, Rbx1, and the FBXO25 protein form a functional ubiquitin ligase complex. Here, we investigate the cellular distribution of FBXO25 and its colocalization with some nuclear proteins by using immunochemical and biochemical approaches. FBXO25 was monitored with affinity-purified antibodies raised against the recombinant fragment spanning residues 2-62 of the FBXO25 sequence. FBXO25 protein was expressed in all mouse tissues tested except striated muscle, as indicated by immunoblot analysis. Confocal analysis revealed that the endogenous FBXO25 was partially concentrated in a novel dot-like nuclear domain that is distinct from clastosomes and other well-characterized structures. These nuclear compartments contain a high concentration of ubiquitin conjugates and at least two other components of the ubiquitin-proteasome system: 20S proteasome and Skp1. We propose to name these compartments FBXO25-associated nuclear domains. Interestingly, inhibition of transcription by actinomycin D or heat-shock treatment drastically affected the nuclear organization of FBXO25-containing structures, indicating that they are dynamic compartments influenced by the transcriptional activity of the cell. Also, we present evidences that an FBXO25-dependent ubiquitin ligase activity prevents aggregation of recombinant polyglutamine-containing huntingtin protein in the nucleus of human embryonic kidney 293 cells, suggesting that this protein can be a target for the nuclear FBXO25 mediated ubiquitination.
Collapse
Affiliation(s)
- Adriana O Manfiolli
- Departments of Biochemistry and Immunology and Cellular and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | | | | | | | | | | | | |
Collapse
|