1
|
Zhu J, Lv C, Henry D, Viviano S, Santos-Sacchi J, Matthews G, Zenisek D. Role of Ribeye PXDLS/T-binding cleft in normal synaptic ribbon function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571266. [PMID: 38168344 PMCID: PMC10760060 DOI: 10.1101/2023.12.12.571266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Non-spiking sensory hair cells of the auditory and vestibular systems encode a dynamic range of graded signals with high fidelity by vesicle exocytosis at ribbon synapses. Ribeye, the most abundant protein in the synaptic ribbon, is composed of a unique A domain specific for ribbons and a B-domain nearly identical to the transcriptional corepressor CtBP2. CTBP2 and the B-domain of Ribeye contain a surface cleft that binds to proteins harboring a PXDLS/T peptide motif. Little is known about the importance of this binding site in synaptic function. Piccolo has a well-conserved PVDLT motif and we find that overexpressed Ribeye exhibits striking co-localization with Piccolo in INS-cells, while two separate mutants containing mutations in PXDLS/T-binding region, fail to co-localize with Piccolo. Similarly, co-transfected Ribeye and a piccolo fragment containing the PVDLT region co-localize in HEK cells. Expression of wild-type Ribeye-YFP in zebrafish neuromast hair cells returns electron densities to ribbon structures and mostly rescued normal synaptic transmission and morphological phenotypes in a mutant zebrafish lacking most Ribeye. By contrast, Ribeye-YFP harboring a mutation in the PXDLS/T-binding cleft resulted in ectopic electron dense aggregates that did not collect vesicles and the persistence of ribbons lacking electron densities. Furthermore, overexpression failed to return capacitance responses to normal levels. These results point toward a role for the PXDLS/T-binding cleft in the recruitment of Ribeye to ribbons and in normal synaptic function.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Caixia Lv
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Diane Henry
- Program in Neuroscience, State University of New York, Stony Brook, New York 11759
| | - Stephen Viviano
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Joseph Santos-Sacchi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06520
| | - Gary Matthews
- Program in Neuroscience, State University of New York, Stony Brook, New York 11759
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520
- Neuroscience, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
2
|
An SJ, Stagi M, Gould TJ, Wu Y, Mlodzianoski M, Rivera-Molina F, Toomre D, Strittmatter SM, De Camilli P, Bewersdorf J, Zenisek D. Multimodal imaging of synaptic vesicles with a single probe. CELL REPORTS METHODS 2022; 2:100199. [PMID: 35497490 PMCID: PMC9046237 DOI: 10.1016/j.crmeth.2022.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 05/17/2023]
Abstract
A complete understanding of synaptic-vesicle recycling requires the use of multiple microscopy methods to obtain complementary information. However, many currently available probes are limited to a specific microscopy modality, which necessitates the use of multiple probes and labeling paradigms. Given the complexity of vesicle populations and recycling pathways, having new single-vesicle probes that could be used for multiple microscopy techniques would complement existing sets of tools for studying vesicle function. Here, we present a probe based on the membrane-binding C2 domain of cytosolic phospholipase A2 (cPLA2) that fulfills this need. By conjugating the C2 domain with different detectable tags, we demonstrate that a single, modular probe can allow synaptic vesicles to be imaged at multiple levels of spatial and temporal resolution. Moreover, as a general endocytic marker, the C2 domain may also be used to study membrane recycling in many cell types.
Collapse
Affiliation(s)
- Seong J. An
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Massimiliano Stagi
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool 69 3BX, UK
| | - Travis J. Gould
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Physics and Astronomy, Bates College, Lewiston, ME 04240, USA
| | - Yumei Wu
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael Mlodzianoski
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen M. Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pietro De Camilli
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Direct Observation of Vesicle Transport on the Synaptic Ribbon Provides Evidence That Vesicles Are Mobilized and Prepared Rapidly for Release. J Neurosci 2020; 40:7390-7404. [PMID: 32847965 DOI: 10.1523/jneurosci.0605-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/23/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synaptic ribbons are thought to provide vesicles for continuous release in some retinal nonspiking neurons, yet recent studies indicate that genetic removal of the ribbon has little effect on release kinetics. To investigate vesicle replenishment at synaptic ribbons, we used total internal reflection fluorescence microscopy to image synaptic vesicles and ribbons in retinal bipolar cells of goldfish (Carassius auratus) of both sexes. Analysis of vesicles released by trains of 30 ms depolarizations revealed that most releasable vesicles reside within 300 nm of the ribbon center. A single 30 ms step to 0 mV was sufficient to deplete the membrane-proximal vesicle pool, while triggering rapid stepwise movements of distal vesicles along the ribbon and toward the plasma membrane. Replenishment only becomes rate-limiting for recovery from paired-pulse depression for interstimulus intervals shorter than 250 ms. For longer interstimulus intervals, vesicle movement down the ribbon is fast enough to replenish released vesicles, but newly arrived vesicles are not release-ready. Notably, the rates of vesicle resupply and maturation of newcomers are among the fastest measured optically at any synapse. Lastly, our data show that the delay in vesicle departure increases and vesicle speed decreases with multiple stimuli. Our results support a role for ribbons in the supply of vesicles for release, provide direct measurements of vesicle movement down the ribbon, and suggest that multiple factors contribute to paired-pulse depression.SIGNIFICANCE STATEMENT Synaptic ribbons are macromolecular scaffolds that tether synaptic vesicles close to release sites in nonspiking neurons of the retina and cochlea. Because these neurons release neurotransmitter continuously, synaptic ribbons are assumed to act as platforms for supplying vesicles rapidly in the face of prolonged stimulation. Yet, ribbon synapses suffer from profound paired-pulse depression, which takes seconds to subside. We investigated the mechanistic origin of this phenomenon by directly imaging triggered vesicle movement and release at ribbon sites in retinal bipolar cells, and find that, although ribbon synapses deliver and prime vesicles faster than most conventional synapses, both vesicle absence and vesicle priming contribute to the long recovery from paired-pulse depression.
Collapse
|
4
|
Castellano-Muñoz M, Schnee ME, Ricci AJ. Calcium-induced calcium release supports recruitment of synaptic vesicles in auditory hair cells. J Neurophysiol 2015; 115:226-39. [PMID: 26510758 DOI: 10.1152/jn.00559.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/23/2015] [Indexed: 01/31/2023] Open
Abstract
Hair cells from auditory and vestibular systems transmit continuous sound and balance information to the central nervous system through the release of synaptic vesicles at ribbon synapses. The high activity experienced by hair cells requires a unique mechanism to sustain recruitment and replenishment of synaptic vesicles for continuous release. Using pre- and postsynaptic electrophysiological recordings, we explored the potential contribution of calcium-induced calcium release (CICR) in modulating the recruitment of vesicles to auditory hair cell ribbon synapses. Pharmacological manipulation of CICR with agents targeting endoplasmic reticulum calcium stores reduced both spontaneous postsynaptic multiunit activity and the frequency of excitatory postsynaptic currents (EPSCs). Pharmacological treatments had no effect on hair cell resting potential or activation curves for calcium and potassium channels. However, these drugs exerted a reduction in vesicle release measured by dual-sine capacitance methods. In addition, calcium substitution by barium reduced release efficacy by delaying release onset and diminishing vesicle recruitment. Together these results demonstrate a role for calcium stores in hair cell ribbon synaptic transmission and suggest a novel contribution of CICR in hair cell vesicle recruitment. We hypothesize that calcium entry via calcium channels is tightly regulated to control timing of vesicle fusion at the synapse, whereas CICR is used to maintain a tonic calcium signal to modulate vesicle trafficking.
Collapse
Affiliation(s)
- Manuel Castellano-Muñoz
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California; and
| | - Michael E Schnee
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California; and
| | - Anthony J Ricci
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
5
|
Castellano-Muñoz M, Ricci AJ. Role of intracellular calcium stores in hair-cell ribbon synapse. Front Cell Neurosci 2014; 8:162. [PMID: 24971053 PMCID: PMC4054790 DOI: 10.3389/fncel.2014.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/28/2014] [Indexed: 11/13/2022] Open
Abstract
Intracellular calcium stores control many neuronal functions such as excitability, gene expression, synaptic plasticity, and synaptic release. Although the existence of calcium stores along with calcium-induced calcium release (CICR) has been demonstrated in conventional and ribbon synapses, functional significance and the cellular mechanisms underlying this role remains unclear. This review summarizes recent experimental evidence identifying contribution of CICR to synaptic transmission and synaptic plasticity in the CNS, retina and inner ear. In addition, the potential role of CICR in the recruitment of vesicles to releasable pools in hair-cell ribbon synapses will be specifically discussed.
Collapse
Affiliation(s)
| | - Anthony J Ricci
- Department of Otolaryngology, Stanford University School of Medicine Stanford, CA, USA ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
6
|
Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon endocytic load and calcium. Vis Neurosci 2014; 31:227-35. [PMID: 24735554 DOI: 10.1017/s095252381400011x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Release from rods is triggered by the opening of L-type Ca2+ channels that lie beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic load. We measured exocytosis and endocytosis from membrane capacitance (C m) changes evoked by depolarizing steps in voltage clamped rods from tiger salamander retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, averaging <200 ms. We manipulated Ca2+ influx and the amount of vesicle release by altering the duration and voltage of depolarizing steps. Unlike cones, endocytosis kinetics in rods slowed after increasing Ca2+ channel activation with longer step durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in rods is regulated by both endocytic load and local Ca2+ levels.
Collapse
|
7
|
Abstract
Synaptic vesicle recycling sustains high rates of neurotransmission at the ribbon-type active zones (AZs) of mouse auditory inner hair cells (IHCs), but its modes and molecular regulation are poorly understood. Electron microscopy indicated the presence of clathrin-mediated endocytosis (CME) and bulk endocytosis. The endocytic proteins dynamin, clathrin, and amphiphysin are expressed and broadly distributed in IHCs. We used confocal vglut1-pHluorin imaging and membrane capacitance (Cm) measurements to study the spatial organization and dynamics of IHC exocytosis and endocytosis. Viral gene transfer expressed vglut1-pHluorin in IHCs and targeted it to synaptic vesicles. The intravesicular pH was ∼6.5, supporting only a modest increase of vglut1-pHluorin fluorescence during exocytosis and pH neutralization. Ca(2+) influx triggered an exocytic increase of vglut1-pHluorin fluorescence at the AZs, around which it remained for several seconds. The endocytic Cm decline proceeded with constant rate (linear component) after exocytosis of the readily releasable pool (RRP). When exocytosis exceeded three to four RRP equivalents, IHCs additionally recruited a faster Cm decline (exponential component) that increased with the amount of preceding exocytosis and likely reflects bulk endocytosis. The dynamin inhibitor Dyngo-4a and the clathrin blocker pitstop 2 selectively impaired the linear component of endocytic Cm decline. A missense mutation of dynamin 1 (fitful) inhibited endocytosis to a similar extent as Dyngo-4a. We propose that IHCs use dynamin-dependent endocytosis via CME to support vesicle cycling during mild stimulation but recruit bulk endocytosis to balance massive exocytosis.
Collapse
|
8
|
Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 2013; 76:301-31. [PMID: 24274740 DOI: 10.1146/annurev-physiol-021113-170305] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892; ,
| | | | | | | |
Collapse
|
9
|
Amperometric resolution of a prespike stammer and evoked phases of fast release from retinal bipolar cells. J Neurosci 2013; 33:8144-58. [PMID: 23658155 DOI: 10.1523/jneurosci.5062-12.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neurotransmitter glutamate is used by most neurons in the brain to activate a multitude of different types of glutamate receptors and transporters involved in fast and relatively slower signaling. Synaptic ribbons are large presynaptic structures found in neurons involved in vision, balance, and hearing, which use a large number of glutamate-filled synaptic vesicles to meet their signaling demands. To directly measure synaptic vesicle release events, the ribbon-type presynaptic terminals of goldfish retinal bipolar cells were coaxed to release a false transmitter that could be monitored with amperometry by placing the carbon fiber directly on the larger synaptic terminal. Spontaneous secretion events formed a unimodal charge distribution, but single spike properties were heterogeneous. Larger events rose exponentially without interruption (τ ∼ 30 μs), and smaller events exhibited a stammer in their rising phase that is interpreted as a brief pause in pore dilation, a characteristic commonly associated with large dense core granule fusion pores. These events were entirely Ca(2+)-dependent. Holding the cells at -60 mV halted spontaneous release; and when the voltage was stepped to >-40 mV, secretion ensued. When stepping the voltage to 0 mV, novel kinetic phases of vesicle recruitment were revealed. Approximately 14 vesicles were released per ribbon in two kinetic phases with time constants of 1.5 and 16 ms, which are proposed to represent different primed states within the population of docked vesicles.
Collapse
|
10
|
Stewart RS, Teng H, Wilkinson RS. "Late" macroendosomes and acidic endosomes in vertebrate motor nerve terminals. J Comp Neurol 2012; 520:4275-93. [PMID: 22740045 PMCID: PMC4209591 DOI: 10.1002/cne.23176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Activity at the vertebrate nerve-muscle synapse creates large macroendosomes (MEs) via bulk membrane infolding. Visualized with the endocytic probe FM1-43, most (94%) of the ∼25 MEs/terminal created by brief (30-Hz, 18-second) stimulation dissipate rapidly (∼1 minute) into vesicles. Others, however, remain for hours. Here we study these "late" MEs by using 4D live imaging over a period of ∼1 hour after stimulation. We find that some (51/398 or 13%) disappear spontaneously via exocytosis, releasing their contents into the extracellular milieu. Others (at least 15/1,960 or 1%) fuse or closely associate with a second class of endosomes that take up acidophilic dyes (acidic endosomes [AEs]). AEs are plentiful (∼47/terminal) and exist independent of stimulation. Unlike MEs, which exhibit Brownian motion, AEs exhibit directed motion (average, 83 nm/sec) on microtubules within and among terminal boutons. AEs populate the axon as well, where movement is predominantly retrograde. They share biochemical and immunohistochemical markers (e.g., lysosomal-associated membrane protein [LAMP-1]) with lysosomes. Fusion/association of MEs with AEs suggests a sorting/degradation pathway in nerve terminals wherein the role of AEs is similar to that of lysosomes. Based on our data, we propose that MEs serve as sorting endosomes. Thus their contents, which include plasma membrane proteins, vesicle proteins, and extracellular levels of Ca(2+) , can be targeted either toward the reformation and budding of synaptic vesicles, toward secretion via exocytosis, or toward a degradation process that utilizes AEs either for lysis within the terminal or for transport toward the cell body.
Collapse
Affiliation(s)
- Richard S Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
11
|
Abstract
Compensatory endocytosis of exocytosed membrane and recycling of synaptic vesicle components is essential for sustained synaptic transmission at nerve terminals. At the ribbon-type synapse of retinal bipolar cells, manipulations expected to inhibit the interactions of the clathrin adaptor protein complex (AP2) affect only the slow phase of endocytosis (τ = 10-15 s), leading to the conclusion that fast endocytosis (τ = 1-2 s) occurs by a mechanism that differs from the classical pathway of clathrin-coated vesicle retrieval from the plasma membrane. Here we investigate the role of endophilin in endocytosis at this ribbon synapse. Endophilin A1 is a synaptically enriched N-BAR domain-containing protein, suggested to function in clathrin-mediated endocytosis. Internal dialysis of the synaptic terminal with dominant-negative endophilin A1 lacking its linker and Src homology 3 (SH3) domain inhibited the fast mode of endocytosis, while slow endocytosis continued. Dialysis of a peptide that binds endophilin SH3 domain also decreased fast retrieval. Electron microscopy indicated that fast endocytosis occurred by retrieval of small vesicles in most instances. These results indicate that endophilin is involved in fast retrieval of synaptic vesicles occurring by a mechanism that can be distinguished from the classical pathway involving clathrin-AP2 interactions.
Collapse
|
12
|
Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming. Nat Neurosci 2011; 14:1135-41. [PMID: 21785435 PMCID: PMC3171202 DOI: 10.1038/nn.2870] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 05/25/2011] [Indexed: 11/08/2022]
Abstract
In vision, balance and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli while also transmitting graded information covering a wide range of stimulus intensity and must be able to sustain this signaling for long time periods. To meet these demands, specialized machinery for transmitter release, the synaptic ribbon, has evolved at the synaptic outputs of these neurons. We found that acute disruption of synaptic ribbons by photodamage to the ribbon markedly reduced both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate both slow and fast signaling at sensory synapses and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones.
Collapse
|
13
|
Schnee ME, Santos-Sacchi J, Castellano-Muñoz M, Kong JH, Ricci AJ. Calcium-dependent synaptic vesicle trafficking underlies indefatigable release at the hair cell afferent fiber synapse. Neuron 2011; 70:326-38. [PMID: 21521617 DOI: 10.1016/j.neuron.2011.01.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
Sensory hair cell ribbon synapses respond to graded stimulation in a linear, indefatigable manner, requiring that vesicle trafficking to synapses be rapid and nonrate-limiting. Real-time monitoring of vesicle fusion identified two release components. The first was saturable with both release rate and magnitude varying linearly with Ca(2+), however the magnitude was too small to account for sustained afferent firing rates. A second superlinear release component required recruitment, in a Ca(2+)-dependent manner, of vesicles not in the immediate vicinity of the synapse. The superlinear component had a constant rate with its onset varying with Ca(2+) load. High-speed Ca(2+) imaging revealed a nonlinear increase in internal Ca(2+) correlating with the superlinear capacitance change, implicating release of stored Ca(2+) in driving vesicle recruitment. These data, supported by a mass action model, suggest sustained release at hair cell afferent fiber synapse is dictated by Ca(2+)-dependent vesicle recruitment from a reserve pool.
Collapse
Affiliation(s)
- Michael E Schnee
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE To investigate changes in cytokine levels in tears of type 2 diabetics with or without retinopathy. METHODS Tears were collected from 15 type 2 diabetics without retinopathy (DNR), 15 patients with retinopathy (DR), and 15 age and gender matched non-diabetic controls. Tear concentrations of 27 cytokines were measured by multiplex bead immunoassay. Cytokine differences between groups, ratios of type-1 T helper (Th1)/type-2 T helper (Th2) cytokines and anti-angiogenic/pro-angiogenic cytokines were analyzed statistically. RESULTS The most abundant cytokine detected in tears was interferon-induced protein-10 (IP-10). In comparison with controls, IP-10 and monocyte chemoattracant protein-1 (MCP-1) levels were significantly elevated in DR (p=0.016 and 0.036, respectively) and DNR groups (p=0.021 and 0.026, respectively). Interleukin-1 (IL-1) receptor antagonist (IL-1ra) levels were significantly increased in DNR (p=0.016). Th1/Th2 cytokines interferon-gamma (IFN-γ)/IL-5 and IL-2/IL-5 ratios were significantly increased in DR compared to controls (p=0.037 and 0.031, respectively). Anti-angiogenic/angiogenic cytokines IFN-γ/MCP-1 and IL-4/MCP-1 ratios in DR and DNR were significantly decreased compared to controls (p<0.05). IL-4/IL-8 and IL-12p70/IL-8 ratios were also significantly decreased in DR compared to controls (p=0.02 and 0.045, respectively). No significant correlation was demonstrated between tear cytokine concentrations and glycosylated hemoglobin (HbA1c) or fasting plasma glucose (FPG). CONCLUSIONS Diabetic tears exhibited elevated levels of IP-10 and MCP-1. The Th1/Th2 cytokine balance may shift to a predominantly Th1 state in DR patients. Pro-angiogenic cytokines are more highly represented than anti-angiogenic cytokines in the tears of diabetic patients.
Collapse
|
15
|
Matthews G, Fuchs P. The diverse roles of ribbon synapses in sensory neurotransmission. Nat Rev Neurosci 2010; 11:812-22. [PMID: 21045860 DOI: 10.1038/nrn2924] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sensory synapses of the visual and auditory systems must faithfully encode a wide dynamic range of graded signals, and must be capable of sustained transmitter release over long periods of time. Functionally and morphologically, these sensory synapses are unique: their active zones are specialized in several ways for sustained, rapid vesicle exocytosis, but their most striking feature is an organelle called the synaptic ribbon, which is a proteinaceous structure that extends into the cytoplasm at the active zone and tethers a large pool of releasable vesicles. But precisely how does the ribbon function to support tonic release at these synapses? Recent genetic and biophysical advances have begun to open the 'black box' of the synaptic ribbon with some surprising findings and promise to resolve its function in vision and hearing.
Collapse
Affiliation(s)
- Gary Matthews
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794-5230, USA.
| | | |
Collapse
|
16
|
Kusnoor SV, Parris J, Muly EC, Morgan JI, Deutch AY. Extracerebellar role for Cerebellin1: modulation of dendritic spine density and synapses in striatal medium spiny neurons. J Comp Neurol 2010; 518:2525-37. [PMID: 20503425 DOI: 10.1002/cne.22350] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebellin1 (Cbln1) is a secreted glycoprotein that was originally isolated from the cerebellum and subsequently found to regulate synaptic development and stability. Cbln1 has a heterogeneous distribution in brain, but the only site in which it has been shown to have central effects is the cerebellar cortex, where loss of Cbln1 causes a reduction in granule cell-Purkinje cell synapses. Neurons of the thalamic parafascicular nucleus (PF), which provide glutamatergic projections to the striatum, also express high levels of Cbln1. We first examined Cbln1 in thalamostriatal neurons and then determined if cbln1 knockout mice exhibit structural deficits in striatal neurons. Virtually all PF neurons express Cbln1-immunoreactivity (-ir). In contrast, only rare Cbln1-ir neurons are present in the central medial complex, the other thalamic region that projects heavily to the dorsal striatum. In the striatum Cbln1-ir processes are apposed to medium spiny neuron (MSN) dendrites; ultrastructural studies revealed that Cbln1-ir axon terminals form axodendritic synapses with MSNs. Tract-tracing studies found that all PF cells retrogradely labeled from the striatum express Cbln1-ir. We then examined the dendritic structure of Golgi-impregnated MSNs in adult cbln1 knockout mice. MSN dendritic spine density was markedly increased in cbln1(-/-) mice relative to wildtype littermates, but total dendritic length was unchanged. Ultrastructural examination revealed an increase in the density of MSN axospinous synapses in cbln1(-/-) mice, with no change in postsynaptic density length. Thus, Cbln1 determines the dendritic structure of striatal MSNs, with effects distinct from those seen in the cerebellum.
Collapse
Affiliation(s)
- S V Kusnoor
- Program in Neuroscience and Departments of Psychiatry and Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37212
| | | | | | | | | |
Collapse
|
17
|
Akbergenova Y, Bykhovskaia M. Synapsin regulates vesicle organization and activity-dependent recycling at Drosophila motor boutons. Neuroscience 2010; 170:441-52. [PMID: 20638447 DOI: 10.1016/j.neuroscience.2010.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 11/28/2022]
Abstract
Synapsin is a phosphoprotein reversibly associated with synaptic vesicles. We investigated synapsin function in mediating synaptic activity during intense stimulation at Drosophila motor boutons. Electron microscopy analysis of synapsin(-) boutons demonstrated that synapsin maintains vesicle clustering over the periphery of the bouton. Cyclosporin A pretreatment disrupted peripheral vesicle clustering, presumably due to increasing synapsin phosphorylated state. Labeling recycling vesicles with a fluorescent dye FM1-43 followed by photoconversion of the dye into electron dense product demonstrated that synapsin deficiency does not affect mixing of the reserve and recycling vesicle pools but selectively reduces the size of the reserve pool. Intense stimulation produced a significant increase in vesicle abundance and vesicle redistribution toward the central core of synapsin (+) boutons, while in synapsin (-) boutons the area occupied by vesicles did not change and the increase in vesicle numbers was not as prominent. However, intense stimulation produced an increase in basal release at synapsin(-) but not in synapsin(+) boutons, suggesting that synapsin may direct vesicles to the reserve pool. Finally, synapsin deficiency inhibited an increase in quantal size and formation of endosome-like cisternae, which was activated either by intense electrical stimulation or by high K(+) application. Taken together, these results elucidate a novel synapsin function, specifically, promoting vesicle reuptake and reserve pool formation upon intense stimulation.
Collapse
Affiliation(s)
- Y Akbergenova
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | | |
Collapse
|
18
|
Abstract
Ribbon synapses in the retina and inner ear maintain tonic neurotransmitter release at high rates to transduce a broad bandwidth of stimulus intensities. In ribbon synapses, synaptic vesicles can be released by a slow, sustained mode and by fast, synchronous mechanisms. The high release rates require structural and functional specializations. The synaptic ribbon is the key structural specialization of ribbon synapses. Synaptic ribbons are large, electron-dense structures that immobilize numerous synaptic vesicles next to presynaptic release sites. A main component of synaptic ribbons is the protein RIBEYE that has the capability to build the scaffold of the synaptic ribbon via multiple RIBEYE-RIBEYE interactions. A modular assembly model of synaptic ribbons has been proposed in which synaptic ribbons are formed from individual RIBEYE subunits. The scaffold of the synaptic ribbon provides a docking site for RIBEYE-associated proteins that could execute specific synaptic ribbon functions. Multiple functions have been assigned to synaptic ribbons including roles in exocytosis, endocytosis, and synaptic membrane trafficking. Recent studies demonstrated the importance of synaptic ribbons for fast, synchronous release and emphasized the need of a tight and efficient coupling between presynaptic Ca(2+) signaling and exocytosis. The present review summarizes recent advances on structure and function of synaptic ribbons.
Collapse
Affiliation(s)
- Frank Schmitz
- Department of Neuroanatomy, Saarland University, Medical School, Homburg/Saar, Germany.
| |
Collapse
|
19
|
He L, Xue L, Xu J, McNeil BD, Bai L, Melicoff E, Adachi R, Wu LG. Compound vesicle fusion increases quantal size and potentiates synaptic transmission. Nature 2009; 459:93-7. [PMID: 19279571 PMCID: PMC2768540 DOI: 10.1038/nature07860] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 05/07/2009] [Accepted: 02/03/2009] [Indexed: 11/10/2022]
Abstract
Exocytosis at synapses generally refers to fusion between vesicles and the plasma membrane1. Although compound fusion between vesicles2,3 was proposed at ribbon-type synapses4,5, whether it exists, how it is mediated, and what role it plays at conventional synapses remain unclear. Here we addressed this issue at a nerve terminal containing conventional active zones. High potassium application and high frequency firing induced giant capacitance up-steps reflecting exocytosis of vesicles larger than regular ones, followed by giant down-steps reflecting bulk endocytosis. They also induced giant vesicle-like structures, as observed with electron microscopy, and giant miniature EPSCs (mEPSCs) reflecting more transmitter release. Calcium and its sensor for vesicle fusion, synaptotagmin, were required for these giant events. After high frequency firing, calcium/synaptotagmin-dependent mEPSC size increase was paralleled by calcium/synaptotagmin-dependent post-tetanic potentiation (PTP). These results suggest that calcium/synaptotagmin mediates compound fusion between vesicles, that exocytosis of compound vesicles increases quantal size which enhances synaptic strength and thus contributes to the generation of PTP, and that exocytosed compound vesicles may be retrieved via bulk endocytosis. We suggest to include a new vesicle cycling route, compound exocytosis followed by bulk endocytosis, into models of synapses, where currently only vesicle fusion with the plasma membrane is considered (Fig. S1)1.
Collapse
Affiliation(s)
- Liming He
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zanazzi G, Matthews G. The molecular architecture of ribbon presynaptic terminals. Mol Neurobiol 2009; 39:130-48. [PMID: 19253034 PMCID: PMC2701268 DOI: 10.1007/s12035-009-8058-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/04/2009] [Indexed: 12/24/2022]
Abstract
The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy.
Collapse
Affiliation(s)
- George Zanazzi
- Department of Neurobiology & Behavior, State Universtiy of New York, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
21
|
Coggins M, Zenisek D. Evidence that exocytosis is driven by calcium entry through multiple calcium channels in goldfish retinal bipolar cells. J Neurophysiol 2009; 101:2601-19. [PMID: 19244355 DOI: 10.1152/jn.90881.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ribbon-containing neurons represent a subset of neural cells that undergo graded membrane depolarizations rather than Na(+)-channel evoked action potentials. Bipolar cells of the retina are one type of ribbon-containing neuron and extensive research has demonstrated kinetically distinct pools of vesicles that are released and replenished in a calcium-dependent manner. In this study, we look at the properties of the fastest pool of releasable vesicles in these cells, often referred to as the immediately releasable pool (IRP), to investigate the relationships between vesicle release and calcium channels in these terminals. Using whole cell capacitance measurements, we monitored exocytosis in response to different magnitude and duration depolarizations, with emphasis on physiologically relevant step depolarizations. We find that release rate of the IRP increases superlinearly with membrane potential and that the IRP is sensitive to elevated EGTA concentrations in a membrane-potential-dependent manner across the physiological range of membrane potentials. Our results are best explained by a model in which multiple Ca(2+) channels act in concert to drive exocytosis of a single synaptic vesicle. Pooling calcium entering through many calcium channels may be important for reducing stochastic noise in neurotransmitter release associated with the opening of individual calcium channels.
Collapse
Affiliation(s)
- Michael Coggins
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
22
|
Calì C, Marchaland J, Spagnuolo P, Gremion J, Bezzi P. Regulated exocytosis from astrocytes physiological and pathological related aspects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:261-93. [PMID: 19607976 DOI: 10.1016/s0074-7742(09)85020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Astrocytes have traditionally been considered ancillary, satellite cells of the nervous system. However, it is a very recent acquisition that glial cells generate signaling loops which are integral to the brain circuitry and participate, interactively with neuronal networks, in the processing of information. Such a conceptual breakthrough makes this field of investigation one of the hottest in neuroscience, as it calls for a revision of past theories of brain function as well as for new strategies of experimental exploration of brain function. Glial cells are electrically not excitable, and it was only the use of optical recording techniques together with calcium sensitive dyes, that allowed the chemical excitability of glial cells to become apparent. Studies using these new techniques have shown for the first time that glial cells are activated by surrounding synaptic activity and translate neuronal signals into their own calcium code. Intracellular calcium concentration([Ca2+]i) elevations in glial cells have then shown to underlie spatial transfer of information in the glial network, accompanied by release of chemical transmitters (gliotransmitters) such as glutamate and back-signaling to neurons. As a consequence, optical imaging techniques applied to cell cultures or intact tissue have become a state-of-the-art technology for studying glial cell signaling. The molecular mechanisms leading to release of "gliotransmitters," especially glutamate, from glia are under debate. Accumulating evidence clearly indicates that astrocytes secrete numerous transmitters by Ca(2+)-dependent exocytosis. This review will discuss the mechanisms underlying the release of chemical transmitters from astrocytes with a particular emphasis to the regulated exocytosis processes.
Collapse
Affiliation(s)
- Corrado Calì
- Department of Cellular Biology and Morphology (DBCM), Faculty of Medicine, University of Lausanne, rue du Bugnon 9, 1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Akbergenova Y, Bykhovskaia M. Enhancement of the endosomal endocytic pathway increases quantal size. Mol Cell Neurosci 2008; 40:199-206. [PMID: 19026748 DOI: 10.1016/j.mcn.2008.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/24/2008] [Accepted: 10/15/2008] [Indexed: 11/25/2022] Open
Abstract
We combined recordings of spontaneous quantal events with electron microscopy analysis of synaptic ultrastructure to demonstrate that the size of a neurosecretory quantum increases following an activation of the endosomal endocytic pathway. We reversibly activated the endosomal endocytic pathway in Drosophila motor boutons by application of high K+ solution. This treatment produced the formation of numerous cisternae, vacuoles and enlarged vesicles. Spontaneous quantal events recorded immediately after the cessation of high K+ application were significantly enlarged, and this increase in quantal size was reversed after a 10 minute resting period. Actin depolymerization produced by latrunculin B pretreatment inhibited both the formation of endosome-like structures and the increase in quantal size. Loading the preparations with the dye FM1-43 followed by photoconversion of the dye combined with electron microscopy analysis revealed that the observed cisternae are likely to be the product of both bulk membrane retrieval and vesicle fusion.
Collapse
Affiliation(s)
- Yulia Akbergenova
- Lehigh University, Dept. of Biological Sciences, 111 Research Dr., Bethlehem, PA 18015, USA
| | | |
Collapse
|
24
|
Smith SM, Renden R, von Gersdorff H. Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci 2008; 31:559-68. [PMID: 18817990 DOI: 10.1016/j.tins.2008.08.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Several modes of synaptic vesicle release, retrieval and recycling have been identified. In a well-established mode of exocytosis, termed 'full-collapse fusion', vesicles empty their neurotransmitter content fully into the synaptic cleft by flattening out and becoming part of the presynaptic membrane. The fused vesicle membrane is then reinternalized via a slow and clathrin-dependent mode of compensatory endocytosis that takes several seconds. A more fleeting mode of vesicle fusion, termed 'kiss-and-run' exocytosis or 'flicker-fusion', indicates that during synaptic transmission some vesicles are only briefly connected to the presynaptic membrane by a transient fusion pore. Finally, a mode that retrieves a large amount of membrane, equivalent to that of several fused vesicles, termed 'bulk endocytosis', has been found after prolonged exocytosis. We are of the opinion that both fast and slow modes of endocytosis co-exist at central nervous system nerve terminals and that one mode can predominate depending on stimulus strength, temperature and synaptic maturation.
Collapse
Affiliation(s)
- Stephen M Smith
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
25
|
Abstract
The ribbon synapse can release a stream of transmitter quanta at very high rates. Although the ribbon tethers numerous vesicles near the presynaptic membrane, most of the tethered vesicles are held at a considerable distance from the plasma membrane. Therefore, it remains unclear how their contents are released. We evoked prolonged bouts of exocytosis from a retinal bipolar cell, fixed within seconds, and then studied the ribbons by electron microscopy. Vesicle density on ribbons was reduced by approximately 50% compared with cells where exocytosis was blocked with intracellular ATP-gammaS. Large, irregularly shaped vesicles appeared on the ribbon in cells fixed during repetitive stimulation of exocytosis, and in some cases the large vesicles could be traced in adjacent sections to cisternae open to the medium. The large cisternal structures were attached to the ribbon by filaments similar to those that tether synaptic vesicles to the ribbon, and they occupied the base of the ribbon near the plasma membrane, where normal synaptic vesicles are found in resting cells. We suggest that the cisternae attached to ribbons represent synaptic vesicles that fused by compound exocytosis during strong repetitive stimulation and, thus, that vesicles tethered to the ribbon can empty their contents by fusing to other vesicles docked at the presynaptic membrane. Such compound fusion could explain the extremely high release rates and the multivesicular release reported for auditory and visual ribbon synapses.
Collapse
|
26
|
Abstract
Ribbon synapses release neurotransmitter continuously at high rates, and the ribbons tether a large pool of synaptic vesicles. To determine whether the tethered vesicles are actually released, we tracked vesicles labeled with styryl dye in mouse retinal bipolar cell terminals whose ribbons had been labeled with a fluorescent peptide. We photobleached vesicles in regions with ribbons and without them and then followed recovery of fluorescence as bleached regions were repopulated by labeled vesicles. In the resting terminal, fluorescence recovered by approximately 50% in non-ribbon regions but by only approximately 20% at ribbons. Thus, at rest, vesicles associated with ribbons cannot exchange freely with cytoplasmic vesicles. Depolarization stimulated vesicle turnover at ribbons as bleached, immobile vesicles were released by exocytosis and were then replaced by fluorescent vesicles from the cytoplasm, producing an additional increase in fluorescence specifically at the ribbon location. We conclude that vesicles immobilized at synaptic ribbons participate in the readily releasable pool that is tapped rapidly during depolarization.
Collapse
|
27
|
Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals. Proc Natl Acad Sci U S A 2008; 105:4922-7. [PMID: 18339810 DOI: 10.1073/pnas.0709067105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicles release neurotransmitter by following a process of vesicle docking and exocytosis. Although these steps are well established, it has been difficult to observe and measure these rates directly in living synapses. Here, by combining the direct imaging of single synaptic vesicles and synaptic ribbons, I measure the properties of vesicle docking and evoked and spontaneous release from ribbon and extraribbon locations in a ribbon-type synaptic terminal, the goldfish retinal bipolar cell. In the absence of a stimulus, captured vesicles near ribbons associate tightly and only rarely undock or undergo spontaneous exocytosis. By contrast, vesicle capture at outlier sites is less stable and spontaneous exocytosis occurs at a higher rate. In response to a stimulus, exocytic events cluster near ribbons, but show no evidence of clustering away from ribbon sites. Together, the results here indicate that, although vesicles can associate and fuse both near and away from synaptic sites, vesicles at synaptic ribbons associate more stably and fusion is more tightly linked to stimuli.
Collapse
|
28
|
Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. Proc Natl Acad Sci U S A 2008; 105:2175-80. [PMID: 18250322 DOI: 10.1073/pnas.0712171105] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice lacking expression of dynamin 1, a GTPase implicated in the fission reaction of synaptic vesicle endocytosis, fail to thrive and exhibit severe activity-dependent endocytic defects at their synapses. Here, we have used electron tomography to investigate the massive increase in clathrin-coated pit abundance that is selectively observed at a subset of synapses in dynamin 1 KO primary neuron cultures under conditions of spontaneous network activity. This increase, leading to branched tubular plasma membrane invaginations capped by clathrin-coated buds, occurs selectively at inhibitory synapses. A similar massive increase of clathrin-coated profiles (in this case, of clathrin-coated vesicles) is observed at inhibitory synapses of neurons that lack expression of synaptojanin 1, a phosphoinositide phosphatase involved in clathrin-coated vesicle uncoating. Thus, although excitatory synapses are largely spared under these conditions, inhibitory synapses are uniquely sensitive to perturbation of endocytic proteins, probably as a result of their higher levels of tonic activity leading to a buildup of clathrin-coated intermediates in these synapses. In contrast, the predominant endocytic structures observed at the majority of dynamin 1 KO synapses after acute stimulation are endosome-like intermediates that originate by a dynamin 1-independent form of endocytosis. These findings reveal a striking heterogeneity in the mode of synaptic vesicle recycling in different synapses and functional states.
Collapse
|