1
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh ZJ, Rotteveel J, Perera ND, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogenous electric fields. Nat Commun 2024; 15:1687. [PMID: 38402188 PMCID: PMC10894208 DOI: 10.1038/s41467-024-45898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zachary J Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jonna Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh Z, Rotteveel J, Perera N, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogeneous electric fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535073. [PMID: 37034780 PMCID: PMC10081336 DOI: 10.1101/2023.03.31.535073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- M. Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - H. Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z. Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - S. Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z.J. Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - N.D. Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - I. Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - A. Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, Bikson M. Animal models of transcranial direct current stimulation: Methods and mechanisms. Clin Neurophysiol 2016; 127:3425-3454. [PMID: 27693941 PMCID: PMC5083183 DOI: 10.1016/j.clinph.2016.08.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022]
Abstract
The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary. One tDCS theory regarding "functional targeting" suggests the specificity of tDCS effects are possible by modulating ongoing function (plasticity). Use of animal models of disease are summarized including pain, movement disorders, stroke, and epilepsy.
Collapse
Affiliation(s)
- Mark P Jackson
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Asif Rahman
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Belen Lafon
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Gregory Kronberg
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Doris Ling
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA.
| |
Collapse
|
4
|
Migliore R, De Simone G, Leinekugel X, Migliore M. The possible consequences for cognitive functions of external electric fields at power line frequency on hippocampal CA1 pyramidal neurons. Eur J Neurosci 2016; 45:1024-1031. [PMID: 27374169 DOI: 10.1111/ejn.13325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023]
Abstract
The possible effects on cognitive processes of external electric fields, such as those generated by power line pillars and household appliances are of increasing public concern. They are difficult to study experimentally, and the relatively scarce and contradictory evidence make it difficult to clearly assess these effects. In this study, we investigate how, why and to what extent external perturbations of the intrinsic neuronal activity, such as those that can be caused by generation, transmission and use of electrical energy can affect neuronal activity during cognitive processes. For this purpose, we used a morphologically and biophysically realistic three-dimensional model of CA1 pyramidal neurons. The simulation findings suggest that an electric field oscillating at power lines frequency, and environmentally measured strength, can significantly alter both the average firing rate and temporal spike distribution properties of a hippocampal CA1 pyramidal neuron. This effect strongly depends on the specific and instantaneous relative spatial location of the neuron with respect to the field, and on the synaptic input properties. The model makes experimentally testable predictions on the possible functional consequences for normal hippocampal functions such as object recognition and spatial navigation. The results suggest that, although EF effects on cognitive processes may be difficult to occur in everyday life, their functional consequences deserve some consideration, especially when they constitute a systematic presence in living environments.
Collapse
Affiliation(s)
- Rosanna Migliore
- Institute of Biophysics, National Research Council, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Giada De Simone
- Institute of Biophysics, National Research Council, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Xavier Leinekugel
- Neurocentre Magendie, Physiopathology of neuronal plasticity, U1215, INSERM, Bordeaux, France.,Neurocentre Magendie, Physiopathology of Neuronal Plasticity, U1215, University of Bordeaux, Bordeaux, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, via Ugo La Malfa 153, 90146, Palermo, Italy
| |
Collapse
|
5
|
Rahman A, Lafon B, Bikson M. Multilevel computational models for predicting the cellular effects of noninvasive brain stimulation. PROGRESS IN BRAIN RESEARCH 2015; 222:25-40. [PMID: 26541375 DOI: 10.1016/bs.pbr.2015.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since 2000, there has been rapid acceleration in the use of tDCS in both clinical and cognitive neuroscience research, encouraged by the simplicity of the technique (two electrodes and a battery powered stimulator) and the perception that tDCS protocols can be simply designed by placing the anode over the cortex to "excite," and the cathode over cortex to "inhibit." A specific and predictive understanding of tDCS needs experimental data to be placed into a quantitative framework. Biologically constrained computational models provide a useful framework within which to interpret results from empirical studies and generate novel, testable hypotheses. Although not without caveats, computational models provide a tool for exploring cognitive and brain processes, are amenable to quantitative analysis, and can inspire novel empirical work that might be difficult to intuit simply by examining experimental results. We approach modeling the effects of tDCS on neurons from multiple levels: modeling the electric field distribution, modeling single-compartment effects, and finally with multicompartment neuron models.
Collapse
Affiliation(s)
- Asif Rahman
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | - Belen Lafon
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA.
| |
Collapse
|
6
|
Cavarretta F, Carnevale NT, Tegolo D, Migliore M. Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions. Front Cell Neurosci 2014; 8:310. [PMID: 25346660 PMCID: PMC4191432 DOI: 10.3389/fncel.2014.00310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/16/2014] [Indexed: 01/06/2023] Open
Abstract
The possible cognitive effects of low frequency external electric fields (EFs), such as those generated by power lines, are poorly understood. Their functional consequences for mechanisms at the single neuron level are very difficult to study and identify experimentally, especially in vivo. The major open problem is that experimental investigations on humans have given inconsistent or contradictory results, making it difficult to estimate the possible effects of external low frequency electric fields on cognitive functions. Here we investigate this issue with realistic models of hippocampal CA1 pyramidal neurons. Our findings suggest how and why EFs, with environmentally observed frequencies and intensities far lower than what is required for direct neural activation, can perturb dendritic signal processing and somatic firing of neurons that are crucially involved in cognitive tasks such as learning and memory. These results show that individual neuronal morphology, ion channel dendritic distribution, and alignment with the electric field are major determinants of overall effects, and provide a physiologically plausible explanation of why experimental findings can appear to be small and difficult to reproduce, yet deserve serious consideration.
Collapse
Affiliation(s)
- Francesco Cavarretta
- Institute of Biophysics, National Research Council Palermo, Italy ; Department of Mathematics and Informatics, University of Palermo Palermo, Italy
| | - Nicholas T Carnevale
- Department of Neurobiology, Yale University School of Medicine New Haven, CT, USA
| | - Domenico Tegolo
- Department of Mathematics and Informatics, University of Palermo Palermo, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council Palermo, Italy
| |
Collapse
|
7
|
Weiss SA, McKhann G, Goodman R, Emerson RG, Trevelyan A, Bikson M, Schevon CA. Field effects and ictal synchronization: insights from in homine observations. Front Hum Neurosci 2013; 7:828. [PMID: 24367311 PMCID: PMC3851829 DOI: 10.3389/fnhum.2013.00828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/17/2013] [Indexed: 11/13/2022] Open
Abstract
It has been well established in animal models that electrical fields generated during inter-ictal and ictal discharges are strong enough in intensity to influence action potential firing threshold and synchronization. We discuss recently published data from microelectrode array recordings of human neocortical seizures and speculate about the possible role of field effects in neuronal synchronization. We have identified two distinct seizure territories that cannot be easily distinguished by traditional EEG analysis. The ictal core exhibits synchronized neuronal burst firing, while the surrounding ictal penumbra exhibits asynchronous and relatively sparse neuronal activity. In the ictal core large amplitude rhythmic ictal discharges produce large electric fields that correspond with highly synchronous neuronal firing. In the penumbra rhythmic ictal discharges are smaller in amplitude, but large enough to influence spike timing, yet neuronal synchrony is not observed. These in homine observations are in accord with decades of animal studies supporting a role of field effects in neuronal synchronization during seizures, yet also highlight how field effects may be negated in the presence of strong synaptic inhibition in the penumbra.
Collapse
Affiliation(s)
- Shennan A Weiss
- Department of Neurology, Schevon Lab, Columbia University New York, NY, USA
| | - Guy McKhann
- Department of Neurosurgery, Columbia University New York, NY, USA
| | - Robert Goodman
- Department of Neurosurgery, Columbia University New York, NY, USA
| | - Ronald G Emerson
- Department of Neurology, Schevon Lab, Columbia University New York, NY, USA
| | | | - Marom Bikson
- Biomedical Engineering, The City College of The City University of New York New York, NY, USA
| | | |
Collapse
|
8
|
Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev 2013; 37:1702-12. [DOI: 10.1016/j.neubiorev.2013.06.014] [Citation(s) in RCA: 364] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 12/17/2022]
|
9
|
Bikson M, Reato D, Rahman A. Cellular and Network Effects of Transcranial Direct Current Stimulation. TRANSCRANIAL BRAIN STIMULATION 2012. [DOI: 10.1201/b14174-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Rosa MA, Lisanby SH. Somatic treatments for mood disorders. Neuropsychopharmacology 2012; 37:102-16. [PMID: 21976043 PMCID: PMC3238088 DOI: 10.1038/npp.2011.225] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 12/22/2022]
Abstract
Somatic treatments for mood disorders represent a class of interventions available either as a stand-alone option, or in combination with psychopharmacology and/or psychotherapy. Here, we review the currently available techniques, including those already in clinical use and those still under research. Techniques are grouped into the following categories: (1) seizure therapies, including electroconvulsive therapy and magnetic seizure therapy, (2) noninvasive techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and cranial electric stimulation, (3) surgical approaches, including vagus nerve stimulation, epidural electrical stimulation, and deep brain stimulation, and (4) technologies on the horizon. Additionally, we discuss novel approaches to the optimization of each treatment, and new techniques that are under active investigation.
Collapse
Affiliation(s)
- Moacyr A Rosa
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
11
|
Abstract
Low intensity electric fields have been suggested to affect the ongoing neuronal activity in vitro and in human studies. However, the physiological mechanism of how weak electrical fields affect and interact with intact brain activity is not well understood. We performed in vivo extracellular and intracellular recordings from the neocortex and hippocampus of anesthetized rats and extracellular recordings in behaving rats. Electric fields were generated by sinusoid patterns at slow frequency (0.8, 1.25 or 1.7 Hz) via electrodes placed on the surface of the skull or the dura. Transcranial electric stimulation (TES) reliably entrained neurons in widespread cortical areas, including the hippocampus. The percentage of TES phase-locked neurons increased with stimulus intensity and depended on the behavioral state of the animal. TES-induced voltage gradient, as low as 1 mV/mm at the recording sites, was sufficient to phase-bias neuronal spiking. Intracellular recordings showed that both spiking and subthreshold activity were under the combined influence of TES forced fields and network activity. We suggest that TES in chronic preparations may be used for experimental and therapeutic control of brain activity.
Collapse
|