1
|
Ergin B, Purali N. Cloning of a putative sodium/calcium exchanger gene in the crayfish. INVERTEBRATE NEUROSCIENCE 2018; 18:9. [PMID: 30019091 DOI: 10.1007/s10158-018-0213-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/10/2018] [Indexed: 11/28/2022]
Abstract
Crayfish is a common model animal for different experimental purposes. However, the lack of information about the genetic properties of the animal limits its use in comparison to other model animals. In the present study, a putative crayfish sodium/calcium exchanger gene has firstly been cloned in ganglia cDNA samples by conducting a series of PCR experiments, where a set of degenerate and specific primers and RACE method were used. The complete sequence is 2955 bp, and the ORF is 2718 bp in length. Molecular properties of the calculated peptide were similar to the sodium/calcium exchangers reported in the other species. Analysis of the qPCR data indicated that the putative gene has the highest expression level in the ganglia. However, an apparently elevated level of expression is observed in highly active tissues like heart, muscle and intestine, while the least expression level was observed in the stomach samples. It was proposed that the cloned gene may code the sodium/calcium exchanger protein in the crayfish.
Collapse
Affiliation(s)
- Bora Ergin
- Department of Biophysics, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Nuhan Purali
- Department of Biophysics, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
2
|
Minami A, Ishii A, Shimba S, Kano T, Fujioka E, Sai S, Oshio N, Ishibashi S, Takahashi T, Kurebayashi Y, Kanazawa H, Yuki N, Otsubo T, Ikeda K, Suzuki T. Down-regulation of glutamate release from hippocampal neurons by sialidase. J Biochem 2018; 163:273-280. [PMID: 29319803 DOI: 10.1093/jb/mvy003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 11/12/2022] Open
Abstract
Sialidase, which removes sialic acid residues in sialylglycoconjugates, is essential for hippocampal memory and synaptic plasticity. Enzyme activity of sialidase is rapidly increased in response to neural excitation. Because sialic acid bound to gangliosides such as the tetra-sialoganglioside GQ1b is crucial for calcium signalling and neurotransmitter release, neural activity-dependent removal of sialic acid may affect hippocampal neurotransmission. In the present study, we found that 2-deoxy-2, 3-didehydro-D-N-acetylneuraminic acid (DANA), a sialidase inhibitor, increased expression of ganglioside GQ1b/GT1a in hippocampal acute slices. Extracellular glutamate level in the rat hippocampus measured by using in vivo microdialysis was increased by the sialidase inhibitor 2, 3-dehydro-2-deoxy-N-glycolylneuraminic acid as well as DANA. Synaptic vesicle exocytosis and intracellular Ca2+ increase evoked by high-K+ were also enhanced by DANA in primary cultured hippocampal neurons. Expression of GQ1b/GT1a was rapidly decreased by depolarization with high-K+, suggesting that the increase in sialidase activity by neural excitation is sufficient for cleavage of sialic acid. Our findings indicate that sialidase down-regulates glutamate release from hippocampal neurons via Ca2+ signalling modulation. Neural activity-dependent desialylation by sialidase may be a negative-feedback factor against presynaptic activity.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Ami Ishii
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Sumika Shimba
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Takahiro Kano
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Eri Fujioka
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Saki Sai
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Nagisa Oshio
- Department of Biochemistry, School of Pharmaceutical Sciences
| | | | | | | | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Nobuhiro Yuki
- Department of Neurology, Mishima Hospital, 1713-8 Fujikawa, Niigata 940-2302, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Hiroshima 737-0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Hiroshima 737-0112, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences
| |
Collapse
|
3
|
Lee SY, Kim JH. Mechanisms underlying presynaptic Ca2+ transient and vesicular glutamate release at a CNS nerve terminal during in vitro ischaemia. J Physiol 2015; 593:2793-806. [PMID: 25833340 DOI: 10.1113/jp270060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/30/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Here we demonstrate presynaptic responses and mechanisms of increased vesicular glutamate release during in vitro ischaemia in the calyx of Held terminal, an experimentally accessible presynaptic terminal in the CNS. The ischaemia-induced increase in presynaptic Ca(2+) was mediated by both Ca(2+) influx and Ca(2+) -induced Ca(2+) release from intracellular stores. The reverse operation of the plasma membrane Na(+) /Ca(2+) exchanger (NCX) plays a key role in Ca(2+) influx for triggering Ca(2+) release from intracellular stores at presynaptic terminals during in vitro ischaemia. Ca(2+) uptake via NCX underlies the ischaemia-induced Ca(2+) rise and the consequent increase in vesicular glutamate release from presynaptic terminals in the early phase of brain ischaemia. ABSTRACT An early consequence of brain ischaemia is an increase in vesicular glutamate release from presynaptic terminals. However, the mechanisms of this increased glutamate release are not fully understood. Here we studied presynaptic responses and mechanisms of increased glutamate release during in vitro ischaemia, using pre- and postsynaptic whole-cell recordings and presynaptic Ca(2+) imaging at the calyx of Held synapse in rat brainstem slices. Consistent with results from other brain regions, in vitro ischaemia significantly increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) without affecting their amplitude, suggesting that ischaemia enhances vesicular glutamate release from presynaptic terminals. We found that ischaemia-induced vesicular glutamate release was dependent on a rise in basal Ca(2+) at presynaptic terminals, which resulted from extracellular Ca(2+) influx and Ca(2+) release from intracellular stores. During early ischaemia, increased Ca(2+) influx into presynaptic terminals was due to reverse operation of the plasma membrane Na(+) /Ca(2+) exchanger (NCX) rather than presynaptic depolarization or voltage-activated Ca(2+) currents. KB-R7943, an inhibitor of NCX, prevented the ischaemia-induced increases in presynaptic Ca(2+) and vesicular glutamate release. In addition, the removal of extracellular Na(+) completely inhibited the ischaemia-induced Ca(2+) rise. It therefore appears that a link between Na(+) accumulation and Ca(2+) uptake via NCX underlies the ischaemia-induced Ca(2+) rise and the consequent increase in vesicular glutamate release from presynaptic terminals in the early phase of brain ischaemia.
Collapse
Affiliation(s)
| | - Jun Hee Kim
- Department of Physiology.,Centre for Biomedical Neuroscience, University of Texas Health Science Centre, San Antonio, Texas, 78229, USA
| |
Collapse
|
4
|
Towards Understanding the Role of the Na+-Ca2+ Exchanger Isoform 3. Rev Physiol Biochem Pharmacol 2015; 168:31-57. [DOI: 10.1007/112_2015_23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Michel LYM, Verkaart S, Koopman WJH, Willems PHGM, Hoenderop JGJ, Bindels RJM. Function and regulation of the Na+-Ca2+ exchanger NCX3 splice variants in brain and skeletal muscle. J Biol Chem 2014; 289:11293-11303. [PMID: 24616101 DOI: 10.1074/jbc.m113.529388] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoform 3 of the Na(+)-Ca(2+) exchanger (NCX3) is crucial for maintaining intracellular calcium ([Ca(2+)]i) homeostasis in excitable tissues. In this sense NCX3 plays a key role in neuronal excitotoxicity and Ca(2+) extrusion during skeletal muscle relaxation. Alternative splicing generates two variants (NCX3-AC and NCX3-B). Here, we demonstrated that NCX3 variants display a tissue-specific distribution in mice, with NCX3-B as mostly expressed in brain and NCX-AC as predominant in skeletal muscle. Using Fura-2-based Ca(2+) imaging, we measured the capacity and regulation of the two variants during Ca(2+) extrusion and uptake in different conditions. Functional studies revealed that, although both variants are activated by intracellular sodium ([Na(+)]i), NCX3-AC has a higher [Na(+)]i sensitivity, as Ca(2+) influx is observed in the presence of extracellular Na(+). This effect could be partially mimicked for NCX3-B by mutating several glutamate residues in its cytoplasmic loop. In addition, NCX3-AC displayed a higher capacity of both Ca(2+) extrusion and uptake compared with NCX3-B, together with an increased sensitivity to intracellular Ca(2+). Strikingly, substitution of Glu(580) in NCX3-B with its NCX3-AC equivalent Lys(580) recapitulated the functional properties of NCX3-AC regarding Ca(2+) sensitivity, Lys(580) presumably acting through a structure stabilization of the Ca(2+) binding site. The higher Ca(2+) uptake capacity of NCX3-AC compared with NCX3-B is in line with the necessity to restore Ca(2+) levels in the sarcoplasmic reticulum during prolonged exercise. The latter result, consistent with the high expression in the slow-twitch muscle, suggests that this variant may contribute to the Ca(2+) handling beyond that of extruding Ca(2+).
Collapse
Affiliation(s)
- Lauriane Y M Michel
- From the Departments of Physiology and Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands; Centre for System Biology and Bioenergetics, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands
| | - Sjoerd Verkaart
- From the Departments of Physiology and Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands
| | - Werner J H Koopman
- Centre for System Biology and Bioenergetics, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands; Departments of Biochemistry, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands
| | - Peter H G M Willems
- Centre for System Biology and Bioenergetics, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands; Departments of Biochemistry, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- From the Departments of Physiology and Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands
| | - René J M Bindels
- From the Departments of Physiology and Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands; Centre for System Biology and Bioenergetics, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Roome CJ, Power EM, Empson RM. Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse. J Neurophysiol 2012; 109:1669-80. [PMID: 23255722 DOI: 10.1152/jn.00854.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The sodium/calcium exchanger (NCX) is a widespread transporter that exchanges sodium and calcium ions across excitable membranes. Normally, NCX mainly operates in its "forward" mode, harnessing the electrochemical gradient of sodium ions to expel calcium. During membrane depolarization or elevated internal sodium levels, NCX can instead switch the direction of net flux to expel sodium and allow calcium entry. Such "reverse"-mode NCX operation is frequently implicated during pathological or artificially extended periods of depolarization, not during normal activity. We have used fast calcium imaging, mathematical simulation, and whole cell electrophysiology to study the role of NCX at the parallel fiber-to-Purkinje neuron synapse in the mouse cerebellum. We show that nontraditional, reverse-mode NCX activity boosts the amplitude and duration of parallel fiber calcium transients during short bursts of high-frequency action potentials typical of their behavior in vivo. Simulations, supported by experimental manipulations, showed that accumulation of intracellular sodium drove NCX into reverse mode. This mechanism fueled additional calcium influx into the parallel fibers that promoted synaptic transmission to Purkinje neurons for up to 400 ms after the burst. Thus we provide the first functional demonstration of transient and fast NCX-mediated calcium entry at a major central synapse. This unexpected contribution from reverse-mode NCX appears critical for shaping presynaptic calcium dynamics and transiently boosting synaptic transmission, and is likely to optimize the accuracy of cerebellar information transfer.
Collapse
Affiliation(s)
- Chris J Roome
- Department of Physiology, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
7
|
Srinivas KV, Sikdar SK. Epileptiform activity induces distance-dependent alterations of the Ca2+extrusion mechanism in the apical dendrites of subicular pyramidal neurons. Eur J Neurosci 2008; 28:2195-212. [DOI: 10.1111/j.1460-9568.2008.06519.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Quinlan ME, Alberto CO, Hirasawa M. Short-term potentiation of mEPSCs requires N-, P/Q- and L-type Ca2+ channels and mitochondria in the supraoptic nucleus. J Physiol 2008; 586:3147-61. [PMID: 18467369 DOI: 10.1113/jphysiol.2007.148957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The glutamatergic synapses of the supraoptic nucleus display a unique activity-dependent plasticity characterized by a barrage of tetrodotoxin-resistant miniature EPSCs (mEPSCs) persisting for 5-20 min, causing postsynaptic excitation. We investigated how this short-term synaptic potentiation (STP) induced by a brief high-frequency stimulation (HFS) of afferents was initiated and maintained without lingering presynaptic firing, using in vitro patch-clamp recording on rat brain slices. We found that following the immediate rise in mEPSC frequency, STP decayed with two-exponential functions indicative of two discrete phases. STP depends entirely on extracellular Ca(2+) which enters the presynaptic terminals through voltage-gated Ca(2+) channels but also, to a much lesser degree, through a pathway independent of these channels or reverse mode of the plasma membrane Na(+)-Ca(2+) exchanger. Initiation of STP is largely mediated by any of the N-, P/Q- or L-type channels, and only a simultaneous application of specific blockers for all these channels attenuates STP. Furthermore, the second phase of STP is curtailed by the inhibition of mitochondrial Ca(2+) uptake or mitochondrial Na(+)-Ca(2+) exchanger. mEPSCs amplitude is also potentiated by HFS which requires extracellular Ca(2+). In conclusion, induction of mEPSC-STP is redundantly mediated by presynaptic N-, P/Q- and L-type Ca(2+) channels while the second phase depends on mitochondrial Ca(2+) sequestration and release. Since glutamate influences unique firing patterns that optimize hormone release by supraoptic magnocellular neurons, a prolonged barrage of spontaneous excitatory transmission may aid in the induction of respective firing activities.
Collapse
Affiliation(s)
- Michelle E Quinlan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St John's, NL A1B 3V6, Canada
| | | | | |
Collapse
|
9
|
Silverman-Gavrila LB, Smith AJ. Facilitating exchange: activity-dependent regulation of presynaptic Na+/Ca2+ exchange. J Physiol 2008; 586:2039-40. [PMID: 18308821 DOI: 10.1113/jphysiol.2008.151837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|