1
|
Ueta Y, Miyata M. Functional and structural synaptic remodeling mechanisms underlying somatotopic organization and reorganization in the thalamus. Neurosci Biobehav Rev 2023; 152:105332. [PMID: 37524138 DOI: 10.1016/j.neubiorev.2023.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
2
|
Furukawa T, Fukuda A. Maternal taurine as a modulator of Cl - homeostasis as well as of glycine/GABA A receptors for neocortical development. Front Cell Neurosci 2023; 17:1221441. [PMID: 37601283 PMCID: PMC10435090 DOI: 10.3389/fncel.2023.1221441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
During brain and spinal cord development, GABA and glycine, the inhibitory neurotransmitters, cause depolarization instead of hyperpolarization in adults. Since glycine and GABAA receptors (GABAARs) are chloride (Cl-) ion channel receptor, the conversion of GABA/glycine actions during development is influenced by changes in the transmembrane Cl- gradient, which is regulated by Cl- transporters, NKCC1 (absorption) and KCC2 (expulsion). In immature neurons, inhibitory neurotransmitters are released in a non-vesicular/non-synaptic manner, transitioning to vesicular/synaptic release as the neuron matures. In other word, in immature neurons, neurotransmitters generally act tonically. Thus, the glycine/GABA system is a developmentally multimodal system that is required for neurogenesis, differentiation, migration, and synaptogenesis. The endogenous agonists for these receptors are not fully understood, we address taurine. In this review, we will discuss about the properties and function of taurine during development of neocortex. Taurine cannot be synthesized by fetuses or neonates, and is transferred from maternal blood through the placenta or maternal milk ingestion. In developing neocortex, taurine level is higher than GABA level, and taurine tonically activates GABAARs to control radial migration as a stop signal. In the marginal zone (MZ) of the developing neocortex, endogenous taurine modulates the spread of excitatory synaptic transmission, activating glycine receptors (GlyRs) as an endogenous agonist. Thus, taurine affects information processing and crucial developmental processes such as axonal growth, cell migration, and lamination in the developing cerebral cortex. Additionally, we also refer to the possible mechanism of taurine-regulating Cl- homeostasis. External taurine is uptake by taurine transporter (TauT) and regulates NKCC1 and KCC2 mediated by intracellular signaling pathway, with-no-lysine kinase 1 (WNK1) and its subsequent kinases STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress response kinase-1 (OSR1). Through the regulation of NKCC1 and KCC2, mediated by the WNK-SPAK/OSR1 signaling pathway, taurine plays a role in maintaining Cl- homeostasis during normal brain development.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
3
|
Belelli D, Phillips GD, Atack JR, Lambert JJ. Relating neurosteroid modulation of inhibitory neurotransmission to behaviour. J Neuroendocrinol 2022; 34:e13045. [PMID: 34644812 DOI: 10.1111/jne.13045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Studies in the 1980s revealed endogenous metabolites of progesterone and deoxycorticosterone to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAA R). The discovery that such steroids are locally synthesised in the central nervous system (CNS) promoted the thesis that neural inhibition in the CNS may be "fine-tuned" by these neurosteroids to influence behaviour. In preclinical studies, these neurosteroids exhibited anxiolytic, anticonvulsant, analgesic and sedative properties and, at relatively high doses, induced a state of general anaesthesia, a profile consistent with their interaction with GABAA Rs. However, realising the therapeutic potential of either endogenous neurosteroids or synthetic "neuroactive" steroids has proven challenging. Recent approval by the Food and Drug Administration of the use of allopregnanolone (brexanolone) to treat postpartum depression has rekindled enthusiasm for exploring their potential as new medicines. Although neurosteroids are selective for GABAA Rs, they exhibit little or no selectivity across the many GABAA R subtypes. Nevertheless, a relatively minor population of receptors incorporating the δ-subunit (δ-GABAA Rs) appears to be an important contributor to their behavioural effects. Here, we consider how neurosteroids acting upon GABAA Rs influence neuronal signalling, as well as how such effects may acutely and persistently influence behaviour, and explore the case for developing selective PAMs of δ-GABAA R subtypes for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Delia Belelli
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Grant D Phillips
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Cardiff, UK
| | - Jeremy J Lambert
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
4
|
Jones A, Barker-Haliski M, Ilie AS, Herd MB, Baxendale S, Holdsworth CJ, Ashton JP, Placzek M, Jayasekera BAP, Cowie CJA, Lambert JJ, Trevelyan AJ, Steve White H, Marson AG, Cunliffe VT, Sills GJ, Morgan A. A multiorganism pipeline for antiseizure drug discovery: Identification of chlorothymol as a novel γ-aminobutyric acidergic anticonvulsant. Epilepsia 2020; 61:2106-2118. [PMID: 32797628 PMCID: PMC10756143 DOI: 10.1111/epi.16644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Current medicines are ineffective in approximately one-third of people with epilepsy. Therefore, new antiseizure drugs are urgently needed to address this problem of pharmacoresistance. However, traditional rodent seizure and epilepsy models are poorly suited to high-throughput compound screening. Furthermore, testing in a single species increases the chance that therapeutic compounds act on molecular targets that may not be conserved in humans. To address these issues, we developed a pipeline approach using four different organisms. METHODS We sequentially employed compound library screening in the zebrafish, Danio rerio, chemical genetics in the worm, Caenorhabditis elegans, electrophysiological analysis in mouse and human brain slices, and preclinical validation in mouse seizure models to identify novel antiseizure drugs and their molecular mechanism of action. RESULTS Initially, a library of 1690 compounds was screened in an acute pentylenetetrazol seizure model using D rerio. From this screen, the compound chlorothymol was identified as an effective anticonvulsant not only in fish, but also in worms. A subsequent genetic screen in C elegans revealed the molecular target of chlorothymol to be LGC-37, a worm γ-aminobutyric acid type A (GABAA ) receptor subunit. This GABAergic effect was confirmed using in vitro brain slice preparations from both mice and humans, as chlorothymol was shown to enhance tonic and phasic inhibition and this action was reversed by the GABAA receptor antagonist, bicuculline. Finally, chlorothymol exhibited in vivo anticonvulsant efficacy in several mouse seizure assays, including the 6-Hz 44-mA model of pharmacoresistant seizures. SIGNIFICANCE These findings establish a multiorganism approach that can identify compounds with evolutionarily conserved molecular targets and translational potential, and so may be useful in drug discovery for epilepsy and possibly other conditions.
Collapse
Affiliation(s)
- Alistair Jones
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | - Andrei S. Ilie
- Institute of Neuroscience, University of Newcastle, Newcastle, UK
| | - Murray B. Herd
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sarah Baxendale
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | | - John-Paul Ashton
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Marysia Placzek
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Bodiabaduge A. P. Jayasekera
- Institute of Neuroscience, University of Newcastle, Newcastle, UK
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle, UK
| | - Christopher J. A. Cowie
- Institute of Neuroscience, University of Newcastle, Newcastle, UK
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle, UK
| | - Jeremy J. Lambert
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | | - H. Steve White
- Department of Pharmacy, University of Washington, Seattle
| | - Anthony G. Marson
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | - Graeme J. Sills
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Alan Morgan
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Nagumo Y, Ueta Y, Nakayama H, Osaki H, Takeuchi Y, Uesaka N, Kano M, Miyata M. Tonic GABAergic Inhibition Is Essential for Nerve Injury-Induced Afferent Remodeling in the Somatosensory Thalamus and Ectopic Sensations. Cell Rep 2020; 31:107797. [DOI: 10.1016/j.celrep.2020.107797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
|
6
|
Davenport EC, Szulc BR, Drew J, Taylor J, Morgan T, Higgs NF, López-Doménech G, Kittler JT. Autism and Schizophrenia-Associated CYFIP1 Regulates the Balance of Synaptic Excitation and Inhibition. Cell Rep 2020; 26:2037-2051.e6. [PMID: 30784587 PMCID: PMC6381785 DOI: 10.1016/j.celrep.2019.01.092] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/26/2018] [Accepted: 01/24/2019] [Indexed: 12/28/2022] Open
Abstract
Altered excitatory/inhibitory (E/I) balance is implicated in neuropsychiatric and neurodevelopmental disorders, but the underlying genetic etiology remains poorly understood. Copy number variations in CYFIP1 are associated with autism, schizophrenia, and intellectual disability, but its role in regulating synaptic inhibition or E/I balance remains unclear. We show that CYFIP1, and the paralog CYFIP2, are enriched at inhibitory postsynaptic sites. While CYFIP1 or CYFIP2 upregulation increases excitatory synapse number and the frequency of miniature excitatory postsynaptic currents (mEPSCs), it has the opposite effect at inhibitory synapses, decreasing their size and the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). Contrary to CYFIP1 upregulation, its loss in vivo, upon conditional knockout in neocortical principal cells, increases expression of postsynaptic GABAA receptor β2/3-subunits and neuroligin 3, enhancing synaptic inhibition. Thus, CYFIP1 dosage can bi-directionally impact inhibitory synaptic structure and function, potentially leading to altered E/I balance and circuit dysfunction in CYFIP1-associated neurological disorders. CYFIP1 and CYFIP2 are enriched at inhibitory synapses. CYFIP1 upregulation differentially disrupts inhibitory and excitatory synapses. Conditional loss of CYFIP1 alters neuroligin 3 and GABAAR β-subunits expression. Loss of CYFIP1 increases inhibitory synaptic clusters and hence mIPSC amplitude.
Collapse
Affiliation(s)
- Elizabeth C Davenport
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Blanka R Szulc
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - James Drew
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - James Taylor
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Toby Morgan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nathalie F Higgs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Belelli D, Hogenkamp D, Gee KW, Lambert JJ. Realising the therapeutic potential of neuroactive steroid modulators of the GABA A receptor. Neurobiol Stress 2019; 12:100207. [PMID: 32435660 PMCID: PMC7231973 DOI: 10.1016/j.ynstr.2019.100207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023] Open
Abstract
In the 1980s particular endogenous metabolites of progesterone and of deoxycorticosterone were revealed to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAAR). These reports were followed by the discovery that such steroids may be synthesised not only in peripheral endocrine glands, but locally in the central nervous system (CNS), to potentially act as paracrine, or autocrine "neurosteroid" messengers, thereby fine tuning neuronal inhibition. These discoveries triggered enthusiasm to elucidate the physiological role of such neurosteroids and explore whether their levels may be perturbed in particular psychiatric and neurological disorders. In preclinical studies the GABAAR-active steroids were shown to exhibit anxiolytic, anticonvulsant, analgesic and sedative properties and at relatively high doses to induce a state of general anaesthesia. Collectively, these findings encouraged efforts to investigate the therapeutic potential of neurosteroids and related synthetic analogues. However, following over 30 years of investigation, realising their possible medical potential has proved challenging. The recent FDA approval for the natural neurosteroid allopregnanolone (brexanolone) to treat postpartum depression (PPD) should trigger renewed enthusiasm for neurosteroid research. Here we focus on the influence of neuroactive steroids on GABA-ergic signalling and on the challenges faced in developing such steroids as anaesthetics, sedatives, analgesics, anticonvulsants, antidepressants and as treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Delia Belelli
- Systems Medicine, Neuroscience, Mail Box 6, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
| | - Derk Hogenkamp
- Department of Pharmacology, 110C Med Surge1, Mail Code 4625, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Kelvin W Gee
- Department of Pharmacology, 110C Med Surge1, Mail Code 4625, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Jeremy J Lambert
- Systems Medicine, Neuroscience, Mail Box 6, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
| |
Collapse
|
8
|
Christian CA. Nucleus-specific modulation of phasic and tonic inhibition by endogenous neurosteroidogenesis in the murine thalamus. Synapse 2019; 74:e22144. [PMID: 31736138 DOI: 10.1002/syn.22144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 11/08/2022]
Abstract
Neurosteroids are potent allosteric modulators of GABAA receptors (GABAA Rs). Although the effects of exogenous neurosteroids on GABAA R function are well documented, less is known about effects of neurosteroids produced by local endogenous biosynthesis. The neurosteroidogenic enzymes 5α-reductase and 3α-hydroxysteroid dehydrogenase are expressed in two nuclei of somatosensory thalamus, the thalamic reticular nucleus (nRT) and ventrobasal nucleus (VB). Here, the effects of acute blockade of neurosteroidogenesis by the 5α-reductase inhibitor finasteride on phasic and tonic GABAA R-mediated currents were examined in nRT and VB of mice. In nRT, finasteride altered the decay and amplitude, but not the frequency, of phasic currents, with no effect on tonic inhibition. In VB neurons, by contrast, finasteride reduced both the size and frequency of phasic currents, and also reduced the degree of tonic inhibition. These studies thus provide novel evidence for endogenous modulation of GABAA R function by 5α-reduced neurosteroids in the mature thalamus.
Collapse
Affiliation(s)
- Catherine A Christian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
9
|
Bullmann T, Feneberg E, Kretzschmann TP, Ogunlade V, Holzer M, Arendt T. Hibernation Impairs Odor Discrimination - Implications for Alzheimer's Disease. Front Neuroanat 2019; 13:69. [PMID: 31379517 PMCID: PMC6646461 DOI: 10.3389/fnana.2019.00069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
Reversible formation of PHF-like phosphorylated tau, an early feature of Alzheimer's disease (AD) was previously shown to occur in torpor during hibernation in the Golden hamster (Syrian hamster, Mesocricetus auratus). Here, we tackled the question to what extent hibernating Golden hamsters can serve as a model for the early stage of AD. During early AD, anosmia, the loss of olfactory function, is a common and typical feature. We, thus, investigated tau phosphorylation, synaptic plasticity and behavioral physiology of the olfactory system during hibernation. Tau was phosphorylated on several AD-relevant epitopes, and distribution of PHF-like phosphorylated tau in the olfactory bulb was quite similar to what is seen in AD. Tau phosphorylation was not associated with a destabilization of microtubules and did not lead to fibril formation. Previously, we observed a transient spine reduction in pyramidal cells in the hippocampus, which is correlated with the distribution of phosphorylated tau. Here we show that granule cells in the olfactory bulb are devoid of phosphorylated tau and maintain their spines number during torpor. No reduction of synaptic proteins was observed. However, hibernation did impair the recall performance in a two-odor discrimination task. We conclude that hibernation is associated with a specific olfactory memory deficit, which might not be attributed to the formation of PHF-like phosphorylated tau within the olfactory bulb. We discuss a possible involvement of modulatory input provided by cholinergic neurons in the basal forebrain, which are affected by hibernation.
Collapse
Affiliation(s)
- Torsten Bullmann
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Emily Feneberg
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Tanja Petra Kretzschmann
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Vera Ogunlade
- Department of Neuropathology, University of Leipzig, Leipzig, Germany
| | - Max Holzer
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Barberis A. Postsynaptic plasticity of GABAergic synapses. Neuropharmacology 2019; 169:107643. [PMID: 31108109 DOI: 10.1016/j.neuropharm.2019.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
The flexibility of neuronal networks is believed to rely mainly on the plasticity of excitatory synapses. However, like their excitatory counterparts, inhibitory synapses also undergo several forms of synaptic plasticity. This review examines recent advances in the understanding of the molecular mechanisms leading to postsynaptic GABAergic plasticity. Specifically, modulation of GABAA receptor (GABAAR) number at postsynaptic sites plays a key role, with the interaction of GABAARs with the scaffold protein gephyrin and other postsynaptic scaffold/regulatory proteins having particular importance. Our understanding of these molecular interactions are progressing, based on recent insights into the processes of GABAAR lateral diffusion, gephyrin dynamics, and gephyrin nanoscale organization. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Andrea Barberis
- Plasticity of Inhibitory Networks, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy.
| |
Collapse
|
11
|
Antkowiak B, Rammes G. GABA(A) receptor-targeted drug development -New perspectives in perioperative anesthesia. Expert Opin Drug Discov 2019; 14:683-699. [DOI: 10.1080/17460441.2019.1599356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bernd Antkowiak
- Department of Anesthesiology and Intensive Care, Experimental Anesthesiology Section, Eberhard-Karls-University,
Tübingen, Germany
- Department of Anaesthesiology and Intensive Care, Experimental Anaesthesiology Section, Werner Reichardt Center for Integrative Neuroscience, Tübingen,
Germany
| | - Gerhard Rammes
- University Hospital rechts der Isar, Department of Anesthesiology, München,
Germany
| |
Collapse
|
12
|
Boccalaro IL, Cristiá-Lara L, Schwerdel C, Fritschy JM, Rubi L. Cell type-specific distribution of GABA A receptor subtypes in the mouse dorsal striatum. J Comp Neurol 2019; 527:2030-2046. [PMID: 30773633 DOI: 10.1002/cne.24665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/25/2019] [Accepted: 02/10/2019] [Indexed: 01/02/2023]
Abstract
The striatum is the main input nucleus of the basal ganglia, mediating motor and cognitive functions. Striatal projection neurons are GABAergic medium spiny neurons (MSN), expressing either the dopamine receptor type 1 (D1 -R MSN) and forming the direct, movement-promoting pathway, or dopamine receptor type 2 (D2 -R MSN), forming the indirect movement-suppressing pathway. Locally, activity and synchronization of MSN are modulated by several subtypes of GABAergic and cholinergic interneurons. Overall, GABAergic circuits in the striatum remain poorly characterized, and little is known about the intrastriatal connectivity of interneurons and the distribution of GABAA receptor (GABAA R) subtypes, distinguished by their subunit composition, in striatal synapses. Here, by using immunofluorescence in mouse tissue, we investigated the distribution of GABAA Rs containing the α1 , α2 , or α3 subunit in perisomatic synapses of striatal MSN and interneurons, as well as the innervation pattern of D1 R- and D2 R-MSN soma and axonal initial segment (AIS) by GABAergic and cholinergic interneurons. Our results show that perisomatic GABAergic synapses of D1 R- and D2 R-MSN contain the GABAA R α1 and/or α2 subunits, but not the α3 subunit; D2 R-MSN have significantly more α1 -GABAA Rs on their soma than D1 R-MSN. Further, interneurons have few perisomatic synapses containing α2 -GABAA Rs, whereas α3 -GABAA Rs (along with the α1 -GABAA Rs) are abundant in perisomatic synapses of CCK+ , NPY+ /SOM+ , and vAChT+ interneurons. Each MSN and interneuron population analyzed received a distinct pattern of GABAergic and cholinergic innervation, complementing this postsynaptic heterogeneity. In conclusion, intra-striatal GABAergic circuits are distinguished by cell-type specific innervation patterns, differential expression and postsynaptic targeting of GABAA R subtypes.
Collapse
Affiliation(s)
- Ida Luisa Boccalaro
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Cornelia Schwerdel
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Lena Rubi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Activity-dependent development of GABAergic synapses. Brain Res 2019; 1707:18-26. [DOI: 10.1016/j.brainres.2018.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
|
14
|
Weir CJ, Mitchell SJ, Lambert JJ. Role of GABAA receptor subtypes in the behavioural effects of intravenous general anaesthetics. Br J Anaesth 2019; 119:i167-i175. [PMID: 29161398 DOI: 10.1093/bja/aex369] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since the introduction of general anaesthetics into clinical practice, researchers have been mystified as to how these chemically disparate drugs act to produce their dramatic effects on central nervous system function and behaviour. Scientific advances, particularly during the last 25 years, have now begun to reveal the molecular mechanisms underpinning their behavioural effects. For certain i.v. general anaesthetics, such as etomidate and propofol, a persuasive case can now be made that the GABAA receptor, a major inhibitory receptor in the mammalian central nervous system, is an important target. Advances in molecular pharmacology and in genetic manipulation of rodent genes reveal that different subtypes of the GABAA receptor are responsible for mediating particular aspects of the anaesthetic behavioural repertoire. Such studies provide a better understanding of the neuronal circuitry involved in the various anaesthetic-induced behaviours and, in the future, may result in the development of novel therapeutics with a reduced propensity for side-effects.
Collapse
Affiliation(s)
- C J Weir
- Institute of Academic Anaesthesia
| | - S J Mitchell
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - J J Lambert
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
15
|
Imaizumi K, Yanagawa Y, Feng G, Lee CC. Functional Topography and Development of Inhibitory Reticulothalamic Barreloid Projections. Front Neuroanat 2018; 12:87. [PMID: 30429777 PMCID: PMC6220084 DOI: 10.3389/fnana.2018.00087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/08/2018] [Indexed: 01/07/2023] Open
Abstract
The thalamic reticular nucleus (TRN) is the main source of inhibition to the somatosensory thalamus (ventrobasal nucleus, VB) in mice. However, the functional topography and development of these projections with respect to the VB barreloids has been largely unexplored. In this respect, to assist in the study of these projections, we have utilized a vesicular gamma-aminobutryic acid (GABA) transporter (VGAT)-Venus transgenic mouse line to develop a brain slice preparation that enables the rapid identification of inhibitory neurons and projections. We demonstrate the utility of our in vitro brain slice preparation for physiologically mapping inhibitory reticulothalamic (RT) topography, using laser-scanning photostimulation via glutamate uncaging. Furthermore, we utilized this slice preparation to compare the development of excitatory and inhibitory projections to VB. We found that excitatory projections to the barreloids, created by ascending projections from the brain stem, develop by postnatal day 2-3 (P2-P3). By contrast, inhibitory projections to the barreloids lag ~5 days behind excitatory projections to the barreloids, developing by P7-P8. We probed this lag in inhibitory projection development through early postnatal whisker lesions. We found that in whisker-lesioned animals, the development of inhibitory projections to the barreloids closed by P4, in register with that of the excitatory projections to the barreloids. Our findings demonstrate both developmental and topographic organizational features of the RT projection to the VB barreloids, whose mechanisms can now be further examined utilizing the VGAT-Venus mouse slice preparation that we have characterized.
Collapse
Affiliation(s)
- Kazuo Imaizumi
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, United States
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
16
|
Mitchell SJ, Maguire EP, Cunningham L, Gunn BG, Linke M, Zechner U, Dixon CI, King SL, Stephens DN, Swinny JD, Belelli D, Lambert JJ. Early-life adversity selectively impairs α2-GABA A receptor expression in the mouse nucleus accumbens and influences the behavioral effects of cocaine. Neuropharmacology 2018; 141:98-112. [PMID: 30138693 PMCID: PMC6178871 DOI: 10.1016/j.neuropharm.2018.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 01/20/2023]
Abstract
Haplotypes of the Gabra2 gene encoding the α2-subunit of the GABAA receptor (GABAAR) are associated with drug abuse, suggesting that α2-GABAARs may play an important role in the circuitry underlying drug misuse. The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in individuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events influence the behavioral effects of cocaine and if, as suggested by the human studies, α2-GABAARs in the nucleus accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease of accumbal α2-subunit mRNA, resulting in a selective decrease in the number and size of the α2-subunit (but not the α1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic currents (mIPSCs), a profile similar to that of α2 "knock-out" (α2-/-) mice. Behaviourally, adult male ELA and α2-/- mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitisation upon repeated cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.
Collapse
Affiliation(s)
- Scott J Mitchell
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Edward P Maguire
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Linda Cunningham
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Matthias Linke
- Institute of Human Genetics, Mainz University, Medical Center, Mainz, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, Mainz University, Medical Center, Mainz, Germany
| | - Claire I Dixon
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - Sarah L King
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - David N Stephens
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - Jerome D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom.
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom.
| | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom.
| |
Collapse
|
17
|
Pardo GVE, Lucion AB, Calcagnotto ME. Postnatal development of inhibitory synaptic transmission in the anterior piriform cortex. Int J Dev Neurosci 2018; 71:1-9. [PMID: 30055229 DOI: 10.1016/j.ijdevneu.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/09/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
The morphological and functional development of inhibitory circuit in the anterior piriform cortex (aPC) during the first three postnatal weeks may be crucial for the development of odor preference learning in infant rodents. As first step toward testing this hypothesis, we examined the normal development of GABAergic synaptic transmission in the aPC of rat pups during the postnatal days (P) 5-8 and 14-17. Whole cell patch-clamp recordings of layer 2/3 (L2/3) aPC pyramidal cells revealed a significant increase in spontaneous (sIPSC) and miniature (mIPSC) inhibitory postsynaptic current frequencies and a decrease in mIPSC rise and decay-time constant at P14-P17. Moreover, as the development of neocortical inhibitory circuit can be driven by sensory experience, we recorded sIPSC and mIPSC onto L2/3 aPC pyramidal cells from unilateral naris-occluded animals. Early partial olfactory deprivation caused by naris occlusion do not affected the course of age-dependent increase IPSC frequency onto L2/3 aPC pyramidal cell. However, this age-dependent increase of sIPSC and mIPSC frequencies were lower on aPC pyramidal cells ipsilateral to the occlusion side. In addition, the age-dependent increase in sIPSC frequency and amplitude were more pronounced on aPC pyramidal cells contralateral to the occlusion. While mIPSC kinetics were not affected by age or olfactory deprivation, at P5-P8, the sIPSC decay-time constant on aPC pyramidal cells of both hemispheres of naris-occluded animals were significantly higher when compared to sham. These results demonstrated that the GABAergic synaptic transmission on the aPC changed during postnatal development by increasing inhibitory inputs on L2/3 pyramidal cells, with increment in frequency of both sIPSC and mIPSC and faster kinetics of mIPSC. Our data suggested that the maturation of GABAergic synaptic transmission was little affected by early partial olfactory deprivation. These results could contribute to unravel the mechanisms underlying the development of odor processing and olfactory preference learning.
Collapse
Affiliation(s)
- Grace Violeta Espinoza Pardo
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aldo Bolten Lucion
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Postnatal expression of thalamic GABAA receptor subunits in the stargazer mouse model of absence epilepsy. Neuroreport 2018; 28:1255-1260. [PMID: 29099440 DOI: 10.1097/wnr.0000000000000909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Absence seizures are known to originate from disruptions within the corticothalamocortical network; however, the precise underlying cellular and molecular mechanisms that induce hypersynchronicity and hyperexcitability are debated and likely to be complex and multifactorial. Recent studies implicate impaired thalamic GABAergic inhibition as a common feature in multiple animal models of absence epilepsy, including the well-established stargazer mouse model. Recently, we demonstrated region-specific increases in the whole tissue and synaptic levels of GABAA receptor (GABAAR) subunits α1 and β2, within the ventral posterior region of the thalamus in adult epileptic stargazer mice compared with nonepileptic control littermates. The objective of this study was to investigate whether such changes in GABAAR subunits α1 and β2 can be observed before the initiation of seizures, which occur around postnatal (PN) days 16-18 in stargazers. Semiquantitative western blotting was used to analyze the relative tissue level expression of GABAAR α1 and β2 subunits in the thalamus of juvenile stargazer mice compared with their nonepileptic control littermates at three different time points before the initiation of seizures. We show that there is a statistically significant increase in the expression of α1 and β2 subunits in the thalamus of stargazer mice, at the PN7-9 stage, compared with the control littermates, but not at PN10-12 and PN13-15 stages. These results suggest that an aberrant expression of GABAAR subunits α1 and β2 in the stargazers does not occur immediately before seizure onset and therefore is unlikely to directly contribute to the initiation of absence seizures.
Collapse
|
19
|
Berggaard N, Seifi M, van der Want JJL, Swinny JD. Spatiotemporal Distribution of GABA A Receptor Subunits Within Layer II of Mouse Medial Entorhinal Cortex: Implications for Grid Cell Excitability. Front Neuroanat 2018; 12:46. [PMID: 29915531 PMCID: PMC5994561 DOI: 10.3389/fnana.2018.00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
GABAergic parvalbumin-expressing (PV+) interneurons provide powerful inhibitory modulation of grid cells in layer II of the medial entorhinal cortex (MEC LII). However, the molecular machinery through which PV+ cells regulate grid cell activity is poorly defined. PV+ interneurons impart inhibitory modulation primarily via GABA-A receptors (GABAARs). GABAARs are pentameric ion channels assembled from a repertoire of 19 subunits. Multiple subunit combinations result in a variety of receptor subtypes mediating functionally diverse postsynaptic inhibitory currents. Whilst the broad expression patterns of GABAAR subunits within the EC have been reported, those expressed by individual MEC LII cell types, in particular grid cells candidates, stellate and pyramidal cells, are less well described. Stellate and pyramidal cells are distinguished by their selective expression of reelin (RE+) and calbindin (CB+) respectively. Thus, the overall aim of this study was to provide a high resolution analysis of the major (α and γ) GABAAR subunits expressed in proximity to somato-dendritic PV+ boutons, on RE+ and CB+ cells, using immunohistochemistry, confocal microscopy and quantitative RT-PCR (qPCR). Clusters immunoreactive for the α1 and γ2 subunits decorated the somatic membranes of both RE+ and CB+ cells and were predominantly located in apposition to clusters immunoreactive for PV and vesicular GABA transporter (VGAT), suggesting expression in GABAergic synapses innervated by PV interneurons. Although intense α2 subunit-immunopositive clusters were evident in hippocampal fields located in close proximity to the EC, no specific signal was detected in MEC LII RE+ and CB+ profiles. Immunoreactivity for the α3 subunit was detected in all RE+ somata. In contrast, only a sub-population of CB+ cells was α3 immunopositive. These included CB-α3 cells which were both PV+ and PV-. Furthermore, α3 subunit mRNA and immunofluorescence decreased significantly between P 15 and P 25, a period implicated in the functional maturation of grid cells. Finally, α5 subunit immunoreactivity was detectable only on CB+ cells, not on RE+ cells. The present data demonstrates that physiologically distinct GABAAR subtypes are selectively expressed by CB+ and RE+ cells. This suggests that PV+ interneurons could utilize distinct postsynaptic signaling mechanisms to regulate the excitability of these different, candidate grid cell sub-populations.
Collapse
Affiliation(s)
- Nina Berggaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mohsen Seifi
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Johannes J L van der Want
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
20
|
Belelli D, Brown AR, Mitchell SJ, Gunn BG, Herd MB, Phillips GD, Seifi M, Swinny JD, Lambert JJ. Endogenous neurosteroids influence synaptic GABA A receptors during postnatal development. J Neuroendocrinol 2018; 30. [PMID: 28905487 DOI: 10.1111/jne.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/12/2022]
Abstract
GABA plays a key role in both embryonic and neonatal brain development. For example, during early neonatal nervous system maturation, synaptic transmission, mediated by GABAA receptors (GABAA Rs), undergoes a temporally specific form of synaptic plasticity to accommodate the changing requirements of maturing neural networks. Specifically, the duration of miniature inhibitory postsynaptic currents (mIPSCs), resulting from vesicular GABA activating synaptic GABAA Rs, is reduced, permitting neurones to appropriately influence the window for postsynaptic excitation. Conventionally, programmed expression changes to the subtype of synaptic GABAA R are primarily implicated in this plasticity. However, it is now evident that, in developing thalamic and cortical principal- and inter-neurones, an endogenous neurosteroid tone (eg, allopregnanolone) enhances synaptic GABAA R function. Furthermore, a cessation of steroidogenesis, as a result of a lack of substrate, or a co-factor, appears to be primarily responsible for early neonatal changes to GABAergic synaptic transmission, followed by further refinement, which results from subsequent alterations of the GABAA R subtype. The timing of this cessation of neurosteroid influence is neurone-specific, occurring by postnatal day (P)10 in the thalamus but approximately 1 week later in the cortex. Neurosteroid levels are not static and change dynamically in a variety of physiological and pathophysiological scenarios. Given that GABA plays an important role in brain development, abnormal perturbations of neonatal GABAA R-active neurosteroids may have not only a considerable immediate, but also a longer-term impact upon neural network activity. Here, we review recent evidence indicating that changes in neurosteroidogenesis substantially influence neonatal GABAergic synaptic transmission. We discuss the physiological relevance of these findings and how the interference of neurosteroid-GABAA R interaction early in life may contribute to psychiatric conditions later in life.
Collapse
Affiliation(s)
- D Belelli
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - A R Brown
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - S J Mitchell
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - B G Gunn
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M B Herd
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - G D Phillips
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M Seifi
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J J Lambert
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| |
Collapse
|
21
|
Etherington LA, Mihalik B, Pálvölgyi A, Ling I, Pallagi K, Kertész S, Varga P, Gunn BG, Brown AR, Livesey MR, Monteiro O, Belelli D, Barkóczy J, Spedding M, Gacsályi I, Antoni FA, Lambert JJ. Selective inhibition of extra-synaptic α5-GABA A receptors by S44819, a new therapeutic agent. Neuropharmacology 2017; 125:353-364. [PMID: 28807671 DOI: 10.1016/j.neuropharm.2017.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 01/18/2023]
Abstract
In the mammalian central nervous system (CNS) GABAA receptors (GABAARs) mediate neuronal inhibition and are important therapeutic targets. GABAARs are composed of 5 subunits, drawn from 19 proteins, underpinning expression of 20-30 GABAAR subtypes. In the CNS these isoforms are heterogeneously expressed and exhibit distinct physiological and pharmacological properties. We report the discovery of S44819, a novel tricyclic oxazolo-2,3-benzodiazepine-derivative, that selectively inhibits α5-subunit-containing GABAARs (α5-GABAARs). Current α5-GABAAR inhibitors bind to the "benzodiazepine site". However, in HEK293 cells expressing recombinant α5-GABAARs, S44819 had no effect on 3H-flumazenil binding, but displaced the GABAAR agonist 3H-muscimol and competitively inhibited the GABA-induced responses. Importantly, we reveal that the α5-subunit selectivity is uniquely governed by amino acid residues within the α-subunit F-loop, a region associated with GABA binding. In mouse hippocampal CA1 neurons, S44819 enhanced long-term potentiation (LTP), blocked a tonic current mediated by extrasynaptic α5-GABAARs, but had no effect on synaptic GABAARs. In mouse thalamic neurons, S44819 had no effect on the tonic current mediated by δ-GABAARs, or on synaptic (α1β2γ2) GABAARs. In rats, S44819 enhanced object recognition memory and reversed scopolamine-induced impairment of working memory in the eight-arm radial maze. In conclusion, S44819 is a first in class compound that uniquely acts as a potent, competitive, selective antagonist of recombinant and native α5-GABAARs. Consequently, S44819 enhances hippocampal synaptic plasticity and exhibits pro-cognitive efficacy. Given this profile, S44819 may improve cognitive function in neurodegenerative disorders and facilitate post-stroke recovery.
Collapse
Affiliation(s)
- Lori-An Etherington
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, DD19SY, Scotland, UK
| | - Balázs Mihalik
- Biotalentum Kft, Gödöllő, Aulich Lajos u. 26, 2100, Hungary
| | | | - István Ling
- Egis Pharmaceuticals PLC, H1106, Budapest, Pf.100, Hungary
| | | | | | - Péter Varga
- Egis Pharmaceuticals PLC, H1106, Budapest, Pf.100, Hungary
| | - Ben G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, DD19SY, Scotland, UK
| | - Adam R Brown
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, DD19SY, Scotland, UK
| | - Matthew R Livesey
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, DD19SY, Scotland, UK
| | - Olivia Monteiro
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, DD19SY, Scotland, UK
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, DD19SY, Scotland, UK
| | | | - Michael Spedding
- Institut de Recherches Servier, Croissy-sur-Seine, 78290, France
| | | | | | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, DD19SY, Scotland, UK.
| |
Collapse
|
22
|
Leresche N, Lambert RC. GABA receptors and T-type Ca 2+ channels crosstalk in thalamic networks. Neuropharmacology 2017; 136:37-45. [PMID: 28601398 DOI: 10.1016/j.neuropharm.2017.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Although the thalamus presents a rather limited repertoire of GABAergic cell types compare to other CNS area, this structure is a privileged system to study how GABA impacts neuronal network excitability. Indeed both glutamatergic thalamocortical (TC) and GABAergic nucleus reticularis thalami (NRT) neurons present a high expression of T-type voltage-dependent Ca2+ channels whose activation that shapes the output of the thalamus critically depends upon a preceding hyperpolarisation. Because of this strict dependence, a tight functional link between GABA mediated hyperpolarization and T-currents characterizes the thalamic network excitability. In this review we summarize a number of studies showing that the relationships between the various thalamic GABAA/B receptors and T-channels are complex and bidirectional. We discuss how this dynamic interaction sets the global intrathalamic network activity and its long-term plasticity and highlight how the functional relationship between GABA release and T-channel-dependent excitability is finely tuned by the T-channel activation itself. Finally, we illustrate how an impaired balance between T-channels and GABA receptors can lead to pathologically abnormal cellular and network behaviours. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Nathalie Leresche
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Régis C Lambert
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| |
Collapse
|
23
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|
24
|
London SE. Influences of non-canonical neurosteroid signaling on developing neural circuits. Curr Opin Neurobiol 2016; 40:103-110. [PMID: 27429051 DOI: 10.1016/j.conb.2016.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/21/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Developing neural circuits are especially susceptible to environmental perturbation. Endocrine signaling systems such as steroids provide a mechanism to encode physiological changes and integrate function across various biological systems including the brain. 'Neurosteroids' are synthesized and act within the brain across development. There is a long history of steroids sculpting developing neural circuits; more recently, evidence has demonstrated how neurosteroids influence the early potential for neural circuits to organize and transmit precise information via non-canonical receptor types.
Collapse
Affiliation(s)
- Sarah E London
- University of Chicago, Psychology, 940 E 57th Street, 125C BPSB, Chicago, IL 60637, United States.
| |
Collapse
|
25
|
Brown AR, Mitchell SJ, Peden DR, Herd MB, Seifi M, Swinny JD, Belelli D, Lambert JJ. During postnatal development endogenous neurosteroids influence GABA-ergic neurotransmission of mouse cortical neurons. Neuropharmacology 2015; 103:163-73. [PMID: 26626485 PMCID: PMC4764649 DOI: 10.1016/j.neuropharm.2015.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/11/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022]
Abstract
As neuronal development progresses, GABAergic synaptic transmission undergoes a defined program of reconfiguration. For example, GABAA receptor (GABAAR)-mediated synaptic currents, (miniature inhibitory postsynaptic currents; mIPSCs), which initially exhibit a relatively slow decay phase, become progressively reduced in duration, thereby supporting the temporal resolution required for mature network activity. Here we report that during postnatal development of cortical layer 2/3 pyramidal neurons, GABAAR-mediated phasic inhibition is influenced by a resident neurosteroid tone, which wanes in the second postnatal week, resulting in the brief phasic events characteristic of mature neuronal signalling. Treatment of cortical slices with the immediate precursor of 5α-pregnan-3α-ol-20-one (5α3α), the GABAAR-inactive 5α-dihydroprogesterone, (5α-DHP), greatly prolonged the mIPSCs of P20 pyramidal neurons, demonstrating these more mature neurons retain the capacity to synthesize GABAAR-active neurosteroids, but now lack the endogenous steroid substrate. Previously, such developmental plasticity of phasic inhibition was ascribed to the expression of synaptic GABAARs incorporating the α1 subunit. However, the duration of mIPSCs recorded from L2/3 cortical neurons derived from α1 subunit deleted mice, were similarly under the developmental influence of a neurosteroid tone. In addition to principal cells, synaptic GABAARs of L2/3 interneurons were modulated by native neurosteroids in a development-dependent manner. In summary, local neurosteroids influence synaptic transmission during a crucial period of cortical neurodevelopment, findings which may be of importance for establishing normal network connectivity. Upon postnatal maturation GABAA receptor synaptic inhibition is reduced in duration. Reduced synthesis of local neurosteroids contributes to this cortical plasticity. The study reveals a potent mechanism to locally regulate cortical neuron activity.
Collapse
Affiliation(s)
- Adam R Brown
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Scott J Mitchell
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Dianne R Peden
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Murray B Herd
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Mohsen Seifi
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee, UK.
| |
Collapse
|
26
|
Pangratz-Fuehrer S, Sieghart W, Rudolph U, Parada I, Huguenard JR. Early postnatal switch in GABAA receptor α-subunits in the reticular thalamic nucleus. J Neurophysiol 2015; 115:1183-95. [PMID: 26631150 DOI: 10.1152/jn.00905.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 01/25/2023] Open
Abstract
The GABAergic neurons of the thalamic reticular nucleus (nRt) provide the primary source of inhibition within the thalamus. Using physiology, pharmacology, and immunohistochemistry in mice, we characterized postsynaptic developmental changes in these inhibitory projection neurons. First, at postnatal days 3-5 (P3-5), inhibitory postsynaptic currents (IPSCs) decayed very slowly, followed by a biphasic developmental progression, becoming faster at P6-8 and then slower again at P9-11 before stabilizing in a mature form around P12. Second, the pharmacological profile of GABA(A) receptor (GABA(A)R)-mediated IPSCs differed between neonatal and mature nRt neurons, and this was accompanied by reciprocal changes in α3 (late) and α5 (early) subunit expression in nRt. Zolpidem, selective for α1- and α3-containing GABA(A)Rs, augmented only mature IPSCs, whereas clonazepam enhanced IPSCs at all stages. This effect was blocked by the α5-specific inverse agonist L-655,708, but only in immature neurons. In α3(H126R) mice, in which α3-subunits were mutated to become benzodiazepine insensitive, IPSCs were enhanced compared with those in wild-type animals in early development. Third, tonic GABA(A)R activation in nRt is age dependent and more prominent in immature neurons, which correlates with early expression of α5-containing GABA(A)Rs. Thus neonatal nRt neurons show relatively high expression of α5-subunits, which contributes to both slow synaptic and tonic extrasynaptic inhibition. The postnatal switch in GABA(A)R subunits from α5 to α3 could facilitate spontaneous network activity in nRt that occurs at this developmental time point and which is proposed to play a role in early circuit development.
Collapse
Affiliation(s)
- Susanne Pangratz-Fuehrer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Werner Sieghart
- Brain Research Institute Vienna, University of Vienna, Vienna, Austria; and
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Mailman Research Center, Harvard Medical School, Belmont, Massachusetts
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California;
| |
Collapse
|
27
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Age- and sex-related characteristics of tonic GABA currents in the rat substantia nigra pars reticulata. Neurochem Res 2015; 40:747-57. [PMID: 25645446 DOI: 10.1007/s11064-015-1523-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age- and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved.
Collapse
|
29
|
Fritschy JM. Significance of GABAA Receptor Heterogeneity. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:13-39. [DOI: 10.1016/bs.apha.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Brown AR, Herd MB, Belelli D, Lambert JJ. Developmentally regulated neurosteroid synthesis enhances GABAergic neurotransmission in mouse thalamocortical neurones. J Physiol 2014; 593:267-84. [PMID: 25556800 DOI: 10.1113/jphysiol.2014.280263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS During neuronal development synaptic events mediated by GABAA receptors are progressively reduced in their duration, allowing for rapid and precise network function. Here we focused on ventrobasal thalamocortical neurones, which contribute to behaviourally relevant oscillations between thalamus and cortex. We demonstrate that the developmental decrease in the duration of inhibitory phasic events results predominantly from a precisely timed loss of locally produced neurosteroids, which act as positive allosteric modulators of the GABAA receptor. The mature thalamus retains the ability to synthesise neurosteroids, thus preserving the capacity to enhance both phasic and tonic inhibition, mediated by synaptic and extrasynaptic GABAA receptors, respectively, in physiological and pathophysiological scenarios associated with perturbed neurosteroid levels. Our data establish a potent, endogenous mechanism to locally regulate the GABAA receptor function and thereby influence thalamocortical activity. During brain development the duration of miniature inhibitory postsynaptic currents (mIPSCs) mediated by GABAA receptors (GABAA Rs) progressively reduces, to accommodate the temporal demands required for precise network activity. Conventionally, this synaptic plasticity results from GABAA R subunit reorganisation. In particular, in certain developing neurones synaptic α2-GABAA Rs are replaced by α1-GABAA Rs. However, in thalamocortical neurones of the mouse ventrobasal (VB) thalamus, the major alteration to mIPSC kinetics occurs on postnatal (P) day 10, some days prior to the GABAA R isoform change. Here, whole-cell voltage-clamp recordings from VB neurones of mouse thalamic slices revealed that early in postnatal development (P7-P8), the mIPSC duration is prolonged by local neurosteroids acting in a paracrine or autocrine manner to enhance GABAA R function. However, by P10, this neurosteroid 'tone' rapidly dissipates, thereby producing brief mIPSCs. This plasticity results from a lack of steroid substrate as pre-treatment of mature thalamic slices (P20-24) with the GABAA R-inactive precursor 5α-dihydroprogesterone (5α-DHP) resulted in markedly prolonged mIPSCs and a greatly enhanced tonic conductance, mediated by synaptic and extrasynaptic GABAA Rs, respectively. In summary, endogenous neurosteroids profoundly influence GABAergic neurotransmission in developing VB neurones and govern a transition from slow to fast phasic synaptic events. Furthermore, the retained capacity for steroidogenesis in the mature thalamus raises the prospect that certain physiological or pathophysiological conditions may trigger neurosteroid neosynthesis, thereby providing a local mechanism for fine-tuning neuronal excitability.
Collapse
Affiliation(s)
- Adam R Brown
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Dundee University, Dundee, DD1 9SY, UK
| | | | | | | |
Collapse
|
31
|
Zhou C, Ding L, Deel ME, Ferrick EA, Emeson RB, Gallagher MJ. Altered intrathalamic GABAA neurotransmission in a mouse model of a human genetic absence epilepsy syndrome. Neurobiol Dis 2014; 73:407-17. [PMID: 25447232 DOI: 10.1016/j.nbd.2014.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/07/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
We previously demonstrated that heterozygous deletion of Gabra1, the mouse homolog of the human absence epilepsy gene that encodes the GABAA receptor (GABAAR) α1 subunit, causes absence seizures. We showed that cortex partially compensates for this deletion by increasing the cell surface expression of residual α1 subunit and by increasing α3 subunit expression. Absence seizures also involve two thalamic nuclei: the ventrobasal (VB) nucleus, which expresses only the α1 and α4 subtypes of GABAAR α subunits, and the reticular (nRT) nucleus, which expresses only the α3 subunit subtype. Here, we found that, unlike cortex, VB exhibited significantly reduced total and synaptic α1 subunit expression. In addition, heterozygous α1 subunit deletion substantially reduced miniature inhibitory postsynaptic current (mIPSC) peak amplitudes and frequency in VB. However, there was no change in the expression of the extrasynaptic α4 or δ subunits in VB and, unlike other models of absence epilepsy, no change in tonic GABAAR currents. Although heterozygous α1 subunit knockout increased α3 subunit expression in medial thalamic nuclei, it did not alter α3 subunit expression in nRT. However, it did enlarge the presynaptic vesicular inhibitory amino acid transporter puncta and lengthen the time constant of mIPSC decay in nRT. We conclude that increased tonic GABAA currents are not necessary for absence seizures. In addition, heterozygous loss of α1 subunit disinhibits VB by substantially reducing phasic GABAergic currents and surprisingly, it also increases nRT inhibition by prolonging phasic currents. The increased inhibition in nRT likely represents a partial compensation that helps reduce absence seizures.
Collapse
Affiliation(s)
- Chengwen Zhou
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Li Ding
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - M Elizabeth Deel
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Elizabeth A Ferrick
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, USA
| | - Ronald B Emeson
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, USA; Department of Pharmacology, Vanderbilt University School of Medicine, USA; Department of Psychiatry, Vanderbilt University School of Medicine, USA
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA.
| |
Collapse
|
32
|
Molecular and functional diversity of GABA-A receptors in the enteric nervous system of the mouse colon. J Neurosci 2014; 34:10361-78. [PMID: 25080596 DOI: 10.1523/jneurosci.0441-14.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enteric nervous system (ENS) provides the intrinsic neural control of the gastrointestinal tract (GIT) and regulates virtually all GI functions. Altered neuronal activity within the ENS underlies various GI disorders with stress being a key contributing factor. Thus, elucidating the expression and function of the neurotransmitter systems, which determine neuronal excitability within the ENS, such as the GABA-GABAA receptor (GABAAR) system, could reveal novel therapeutic targets for such GI disorders. Molecular and functionally diverse GABAARs modulate rapid GABAergic-mediated regulation of neuronal excitability throughout the nervous system. However, the cellular and subcellular GABAAR subunit expression patterns within neurochemically defined cellular circuits of the mouse ENS, together with the functional contribution of GABAAR subtypes to GI contractility remains to be determined. Immunohistochemical analyses revealed that immunoreactivity for the GABAAR gamma (γ) 2 and alphas (α) 1, 2, 3 subunits was located on somatodendritic surfaces of neurochemically distinct myenteric plexus neurons, while being on axonal compartments of submucosal plexus neurons. In contrast, immunoreactivity for the α4-5 subunits was only detected in myenteric plexus neurons. Furthermore, α-γ2 subunit immunoreactivity was located on non-neuronal interstitial cells of Cajal. In organ bath studies, GABAAR subtype-specific ligands had contrasting effects on the force and frequency of spontaneous colonic longitudinal smooth muscle contractions. Finally, enhancement of γ2-GABAAR function with alprazolam reversed the stress-induced increase in the force of spontaneous colonic contractions. The study demonstrates the molecular and functional diversity of the GABAAR system within the mouse colon providing a framework for developing GABAAR-based therapeutics in GI disorders.
Collapse
|
33
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
34
|
Herd MB, Lambert JJ, Belelli D. The general anaesthetic etomidate inhibits the excitability of mouse thalamocortical relay neurons by modulating multiple modes of GABAA receptor-mediated inhibition. Eur J Neurosci 2014; 40:2487-501. [PMID: 24773078 PMCID: PMC4215602 DOI: 10.1111/ejn.12601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/12/2014] [Accepted: 03/26/2014] [Indexed: 12/12/2022]
Abstract
Modulation of thalamocortical (TC) relay neuron function has been implicated in the sedative and hypnotic effects of general anaesthetics. Inhibition of TC neurons is mediated predominantly by a combination of phasic and tonic inhibition, together with a recently described ‘spillover’ mode of inhibition, generated by the dynamic recruitment of extrasynaptic γ-aminobutyric acid (GABA)A receptors (GABAARs). Previous studies demonstrated that the intravenous anaesthetic etomidate enhances tonic and phasic inhibition in TC relay neurons, but it is not known how etomidate may influence spillover inhibition. Moreover, it is unclear how etomidate influences the excitability of TC neurons. Thus, to investigate the relative contribution of synaptic (α1β2γ2) and extrasynaptic (α4β2δ) GABAARs to the thalamic effects of etomidate, we performed whole-cell recordings from mouse TC neurons lacking synaptic (α10/0) or extrasynaptic (δ0/0) GABAARs. Etomidate (3 μm) significantly inhibited action-potential discharge in a manner that was dependent on facilitation of both synaptic and extrasynaptic GABAARs, although enhanced tonic inhibition was dominant in this respect. Additionally, phasic inhibition evoked by stimulation of the nucleus reticularis exhibited a spillover component mediated by δ-GABAARs, which was significantly prolonged in the presence of etomidate. Thus, etomidate greatly enhanced the transient suppression of TC spike trains by evoked inhibitory postsynaptic potentials. Collectively, these results suggest that the deactivation of thalamus observed during etomidate-induced anaesthesia involves potentiation of tonic and phasic inhibition, and implicate amplification of spillover inhibition as a novel mechanism to regulate the gating of sensory information through the thalamus during anaesthetic states.
Collapse
Affiliation(s)
- Murray B Herd
- Division of Neuroscience, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | | | | |
Collapse
|
35
|
Furukawa T, Yamada J, Akita T, Matsushima Y, Yanagawa Y, Fukuda A. Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex. Front Cell Neurosci 2014; 8:88. [PMID: 24734001 PMCID: PMC3975117 DOI: 10.3389/fncel.2014.00088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/10/2014] [Indexed: 11/15/2022] Open
Abstract
γ-Aminobutyric acid (GABA) depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR) contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67GFP/GFP) to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose–response properties of labeled cells to GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67GFP/GFP mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidino)ethanesulfonic acid (GES), and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid, as examined through high-performance liquid chromatography. GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the developing neocortex.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - Junko Yamada
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan ; Department of Neurophysiology, Hirosaki University Graduate School of Medicine Hirosaki, Aomori, Japan
| | - Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - Yoshitaka Matsushima
- Department of Chemistry, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine Maebashi, Gunma, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| |
Collapse
|
36
|
Fritschy JM, Panzanelli P. GABAAreceptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 2014; 39:1845-65. [DOI: 10.1111/ejn.12534] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH; Zurich Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini; University of Turin; Turin Italy
| |
Collapse
|
37
|
Edgerton JR, Jaeger D. Optogenetic activation of nigral inhibitory inputs to motor thalamus in the mouse reveals classic inhibition with little potential for rebound activation. Front Cell Neurosci 2014; 8:36. [PMID: 24574972 PMCID: PMC3920182 DOI: 10.3389/fncel.2014.00036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/23/2014] [Indexed: 11/13/2022] Open
Abstract
The inhibitory output from the internal pallidum and substantia nigra to the thalamus forms an important link in the transmission of basal ganglia processing to cortex. Two hypotheses consider either inhibition of thalamic activity or thalamic excitation via post-inhibitory rebound burst firing as the functional mode of this link. We used optogenetics to characterize the synaptic properties of nigral input to motor thalamus in adult mouse brain slices, and to determine in what conditions the nigral inhibition of motor thalamus is transmitted via inhibition or rebound firing. Our results are more consistent with graded inhibition of spiking for conditions expected in normal awake animals, because inhibitory potentials from nigral input were generally not sufficient to elicit rebound spikes when the thalamic neurons were actively firing. However, with bursty or fast trains of nigral input low-threshold rebound spike bursts could be triggered for low levels of excitation. This may form the basis of pathological burst generation and transmission in parkinsonian conditions.
Collapse
Affiliation(s)
| | - Dieter Jaeger
- Department of Biology, Emory University Atlanta, GA, USA
| |
Collapse
|
38
|
Bright DP, Smart TG. Methods for recording and measuring tonic GABAA receptor-mediated inhibition. Front Neural Circuits 2013; 7:193. [PMID: 24367296 PMCID: PMC3852068 DOI: 10.3389/fncir.2013.00193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/18/2013] [Indexed: 01/12/2023] Open
Abstract
Tonic inhibitory conductances mediated by GABAA receptors have now been identified and characterized in many different brain regions. Most experimental studies of tonic GABAergic inhibition have been carried out using acute brain slice preparations but tonic currents have been recorded under a variety of different conditions. This diversity of recording conditions is likely to impact upon many of the factors responsible for controlling tonic inhibition and can make comparison between different studies difficult. In this review, we will firstly consider how various experimental conditions, including age of animal, recording temperature and solution composition, are likely to influence tonic GABAA conductances. We will then consider some technical considerations related to how the tonic conductance is measured and subsequently analyzed, including how the use of current noise may provide a complementary and reliable method for quantifying changes in tonic current.
Collapse
Affiliation(s)
- Damian P Bright
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| |
Collapse
|
39
|
Extrasynaptic GABA(A) receptors couple presynaptic activity to postsynaptic inhibition in the somatosensory thalamus. J Neurosci 2013; 33:14850-68. [PMID: 24027285 DOI: 10.1523/jneurosci.1174-13.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Thalamocortical circuits govern cognitive, sensorimotor, and sleep-related network processes, and generate pathological activities during absence epilepsy. Inhibitory control of thalamocortical (TC) relay neurons is partially mediated by GABA released from neurons of the thalamic reticular nucleus (nRT), acting predominantly via synaptic α1β2γ2 GABA(A) receptors (GABA(A)Rs). Importantly, TC neurons also express extrasynaptic α4β2δ GABA(A)Rs, although how they cooperate with synaptic GABA(A)Rs to influence relay cell inhibition, particularly during physiologically relevant nRT output, is unknown. To address this question, we performed paired whole-cell recordings from synaptically coupled nRT and TC neurons of the ventrobasal (VB) complex in brain slices derived from wild-type and extrasynaptic GABA(A)R-lacking, α4 "knock-out" (α4(0/0)) mice. We demonstrate that the duration of VB phasic inhibition generated in response to nRT burst firing is greatly reduced in α4(0/0) pairs, suggesting that action potential-dependent phasic inhibition is prolonged by recruitment of extrasynaptic GABA(A)Rs. Furthermore, the influence of nRT tonic firing frequency on VB holding current is also greatly reduced in α4(0/0) pairs, implying that the α4-GABA(A)R-mediated tonic conductance of relay neurons is dynamically influenced, in an activity-dependent manner, by nRT tonic firing intensity. Collectively, our data reveal that extrasynaptic GABA(A)Rs of the somatosensory thalamus do not merely provide static tonic inhibition but can also be dynamically engaged to couple presynaptic activity to postsynaptic excitability. Moreover, these processes are highly sensitive to the δ-selective allosteric modulator, DS2 and manipulation of GABA transport systems, revealing novel opportunities for therapeutic intervention in thalamocortical network disorders.
Collapse
|
40
|
Jin X, Zhong W, Jiang C. Time-dependent modulation of GABA(A)-ergic synaptic transmission by allopregnanolone in locus coeruleus neurons of Mecp2-null mice. Am J Physiol Cell Physiol 2013; 305:C1151-60. [PMID: 24067915 DOI: 10.1152/ajpcell.00195.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder with symptoms starting 6-18 mo after birth, while what underlies the delayed onset is unclear. Allopregnanolone (Allop) is a metabolite of progesterone and a potent modulator of GABAA-ergic currents whose defects are seen in RTT. Allop changes its concentration during the perinatal period, which may affect central neurons via the GABAA-ergic synaptic transmission, contributing to the onset of the disease. To determine whether Mecp2 disruption affects Allop modulation, we performed studies in brain slices obtained from wild-type (WT) and Mecp2(-/Y) mice. Allop dose dependently suppressed locus coeruleus (LC) neuronal excitability in WT mice, while Mecp2-null neurons showed significant defects. Using optogenetic approaches, channelrhodopsin was specifically expressed in GABA-ergic neurons in which optical stimulation evoked action potentials. In LC neurons of WT mice, Allop exposure increased the amplitude of GABAA-ergic inhibitory postsynaptic currents (IPSCs) evoked by optical stimulation and prolonged the IPSC decay time. Consistently, Allop augmented both frequency and amplitude of GABAA-ergic spontaneous IPSCs (sIPSCs) and extended the decay time of sIPSCs. The Allop-induced potentiation of sIPSCs was deficient in Mecp2(-/Y) mice. Surprisingly, the impairment occurred at 3 wk postnatal age, while no significant difference in Allop modulation was observed in 1-2 wk between WT and Mecp2(-/Y) mice. These results indicate that the modulation of GABAA-ergic synaptic transmission by Allop is impaired in LC neurons of Mecp2-null mice at a time when RTT-like symptoms manifest, suggesting a potential mechanism for the delayed onset of the disease.
Collapse
Affiliation(s)
- Xin Jin
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | | |
Collapse
|
41
|
Bright DP, Smart TG. Protein kinase C regulates tonic GABA(A) receptor-mediated inhibition in the hippocampus and thalamus. Eur J Neurosci 2013; 38:3408-23. [PMID: 24102973 PMCID: PMC4165308 DOI: 10.1111/ejn.12352] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/24/2013] [Accepted: 08/08/2013] [Indexed: 12/14/2022]
Abstract
Tonic inhibition mediated by extrasynaptic GABAA receptors (GABAARs) is an important regulator of neuronal excitability. Phosphorylation by protein kinase C (PKC) provides a key mode of regulation for synaptic GABAARs underlying phasic inhibition; however, less attention has been focused on the plasticity of tonic inhibition and whether this can also be modulated by receptor phosphorylation. To address this issue, we used whole-cell patch clamp recording in acute murine brain slices at both room and physiological temperatures to examine the effects of PKC-mediated phosphorylation on tonic inhibition. Recordings from dentate gyrus granule cells in the hippocampus and dorsal lateral geniculate relay neurons in the thalamus demonstrated that PKC activation caused downregulation of tonic GABAAR-mediated inhibition. Conversely, inhibition of PKC resulted in an increase in tonic GABAAR activity. These findings were corroborated by experiments on human embryonic kidney 293 cells expressing recombinant α4β2δ GABAARs, which represent a key extrasynaptic GABAAR isoform in the hippocampus and thalamus. Using bath application of low GABA concentrations to mimic activation by ambient neurotransmitter, we demonstrated a similar inhibition of receptor function following PKC activation at physiological temperature. Live cell imaging revealed that this was correlated with a loss of cell surface GABAARs. The inhibitory effects of PKC activation on α4β2δ GABAAR activity appeared to be mediated by direct phosphorylation at a previously identified site on the β2 subunit, serine 410. These results indicate that PKC-mediated phosphorylation can be an important physiological regulator of tonic GABAAR-mediated inhibition.
Collapse
Affiliation(s)
- Damian P Bright
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
42
|
Kratovac S, Corbin JG. Developmental changes in expression of inhibitory neuronal proteins in the Fragile X Syndrome mouse basolateral amygdala. Brain Res 2013; 1537:69-78. [PMID: 24008143 DOI: 10.1016/j.brainres.2013.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/11/2022]
Abstract
In humans, Fragile X Syndrome (FXS) is characterized by enhanced fear, hyperactivity, social anxiety, and, in a subset of individuals, autism. Many of the emotional and social deficits point to defects in the amygdala. We have previously shown defects in inhibitory neuron drive onto excitatory projection neurons in the basolateral amygdala (BLA) of juvenile Fmr1(-/y) knockout (KO) mice. Using pharmacological approaches, we have also previously revealed dynamic functional deficits in α1, α2, and α3 subunit-containing GABAA receptors (GABAARs α1, α2, and α3) during early postnatal development. In this study, we sought to determine whether these defects in GABAAR function are accompanied by changes in protein expression of GABAARs α1, α2, and α3 and the post-synaptic GABAAR-clustering protein gephyrin. Interestingly, we found that while the expression of these proteins did not significantly differ between wildtype (WT) and KO mice at each time point, the timing of developmental expression of GABAAR α1, α2, and gephyrin was altered. Collectively, these data reveal novel defects in inhibitory synapse protein expression during critical periods of early postnatal development that could contribute to observed inhibitory neurotransmission deficits in the KO mouse BLA.
Collapse
Affiliation(s)
- Sebila Kratovac
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Ave., Washington DC 20010, USA; Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
43
|
Jensen ML, Wafford KA, Brown AR, Belelli D, Lambert JJ, Mirza NR. A study of subunit selectivity, mechanism and site of action of the delta selective compound 2 (DS2) at human recombinant and rodent native GABA(A) receptors. Br J Pharmacol 2013; 168:1118-32. [PMID: 23061935 DOI: 10.1111/bph.12001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/18/2012] [Accepted: 08/23/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Most GABA(A) receptor subtypes comprise 2α, 2β and 1γ subunit, although for some isoforms, a δ replaces a γ-subunit. Extrasynaptic δ-GABA(A) receptors are important therapeutic targets, but there are few suitable pharmacological tools. We profiled DS2, the purported positive allosteric modulator (PAM) of δ-GABA(A) receptors to better understand subtype selectivity, mechanism/site of action and activity at native δ-GABA(A) receptors. EXPERIMENTAL APPROACH Subunit specificity of DS2 was determined using electrophysiological recordings of Xenopus laevis oocytes expressing human recombinant GABA(A) receptor isoforms. Effects of DS2 on GABA concentration-response curves were assessed to define mechanisms of action. Radioligand binding and electrophysiology utilising mutant receptors and pharmacology were used to define site of action. Using brain-slice electrophysiology, we assessed the influence of DS2 on thalamic inhibition in wild-type and δ(0/0) mice. KEY RESULTS Actions of DS2 were primarily determined by the δ-subunit but were additionally influenced by the α, but not the β, subunit (α4/6βxδ > α1βxδ >> γ2-GABA(A) receptors > α4β3). For δ-GABA(A) receptors, DS2 enhanced maximum responses to GABA, with minimal influence on GABA potency. (iii) DS2 did not act via the orthosteric, or known modulatory sites on GABA(A) receptors. (iv) DS2 enhanced tonic currents of thalamocortical neurones from wild-type but not δ(0/0) mice. CONCLUSIONS AND IMPLICATIONS DS2 is the first PAM selective for α4/6βxδ receptors, providing a novel tool to investigate extrasynaptic δ-GABA(A) receptors. The effects of DS2 are mediated by an unknown site leading to GABA(A) receptor isoform selectivity.
Collapse
|
44
|
Cellot G, Cherubini E. Functional role of ambient GABA in refining neuronal circuits early in postnatal development. Front Neural Circuits 2013; 7:136. [PMID: 23964205 PMCID: PMC3741556 DOI: 10.3389/fncir.2013.00136] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/29/2013] [Indexed: 12/31/2022] Open
Abstract
Early in development, γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the mature brain, depolarizes and excites targeted neurons by an outwardly directed flux of chloride, resulting from the peculiar balance between the cation-chloride importer NKCC1 and the extruder KCC2. The low expression of KCC2 at birth leads to accumulation of chloride inside the cell and to the equilibrium potential for chloride positive respect to the resting membrane potential. GABA exerts its action via synaptic and extrasynaptic GABAA receptors mediating phasic and tonic inhibition, respectively. Here, recent data on the contribution of "ambient" GABA to the refinement of neuronal circuits in the immature brain have been reviewed. In particular, we focus on the hippocampus, where, prior to the formation of conventional synapses, GABA released from growth cones and astrocytes in a calcium- and SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor)-independent way, diffuses away to activate in a paracrine fashion extrasynaptic receptors localized on distal neurons. The transient increase in intracellular calcium following the depolarizing action of GABA leads to inhibition of DNA synthesis and cell proliferation. Tonic GABA exerts also a chemotropic action on cell migration. Later on, when synapses are formed, GABA spilled out from neighboring synapses, acting mainly on extrasynaptic α5, β2, β3, and γ containing GABAA receptor subunits, provides the membrane depolarization necessary for principal cells to reach the window where intrinsic bursts are generated. These are instrumental in triggering calcium transients associated with network-driven giant depolarizing potentials which act as coincident detector signals to enhance synaptic efficacy at emerging GABAergic and glutamatergic synapses.
Collapse
Affiliation(s)
- Giada Cellot
- Department of Neuroscience Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | | |
Collapse
|
45
|
Zhou C, Huang Z, Ding L, Deel ME, Arain FM, Murray CR, Patel RS, Flanagan CD, Gallagher MJ. Altered cortical GABAA receptor composition, physiology, and endocytosis in a mouse model of a human genetic absence epilepsy syndrome. J Biol Chem 2013; 288:21458-21472. [PMID: 23744069 DOI: 10.1074/jbc.m112.444372] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients with generalized epilepsy exhibit cerebral cortical disinhibition. Likewise, mutations in the inhibitory ligand-gated ion channels, GABAA receptors (GABAARs), cause generalized epilepsy syndromes in humans. Recently, we demonstrated that heterozygous knock-out (Hetα1KO) of the human epilepsy gene, the GABAAR α1 subunit, produced absence epilepsy in mice. Here, we determined the effects of Hetα1KO on the expression and physiology of GABAARs in the mouse cortex. We found that Hetα1KO caused modest reductions in the total and surface expression of the β2 subunit but did not alter β1 or β3 subunit expression, results consistent with a small reduction of GABAARs. Cortices partially compensated for Hetα1KO by increasing the fraction of residual α1 subunit on the cell surface and by increasing total and surface expression of α3, but not α2, subunits. Co-immunoprecipitation experiments revealed that Hetα1KO increased the fraction of α1 subunits, and decreased the fraction of α3 subunits, that associated in hybrid α1α3βγ receptors. Patch clamp electrophysiology studies showed that Hetα1KO layer VI cortical neurons exhibited reduced inhibitory postsynaptic current peak amplitudes, prolonged current rise and decay times, and altered responses to benzodiazepine agonists. Finally, application of inhibitors of dynamin-mediated endocytosis revealed that Hetα1KO reduced base-line GABAAR endocytosis, an effect that probably contributes to the observed changes in GABAAR expression. These findings demonstrate that Hetα1KO exerts two principle disinhibitory effects on cortical GABAAR-mediated inhibitory neurotransmission: 1) a modest reduction of GABAAR number and 2) a partial compensation with GABAAR isoforms that possess physiological properties different from those of the otherwise predominant α1βγ GABAARs.
Collapse
Affiliation(s)
- Chengwen Zhou
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Zhiling Huang
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Li Ding
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - M Elizabeth Deel
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Fazal M Arain
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Clark R Murray
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Ronak S Patel
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Martin J Gallagher
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232.
| |
Collapse
|
46
|
Christian CA, Herbert AG, Holt RL, Peng K, Sherwood KD, Pangratz-Fuehrer S, Rudolph U, Huguenard JR. Endogenous positive allosteric modulation of GABA(A) receptors by diazepam binding inhibitor. Neuron 2013; 78:1063-74. [PMID: 23727119 DOI: 10.1016/j.neuron.2013.04.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 11/30/2022]
Abstract
Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together, these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking ("endozepine") roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a therapy for epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Catherine A Christian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Venkataraman Y, Bartlett EL. Postnatal development of synaptic properties of the GABAergic projection from the inferior colliculus to the auditory thalamus. J Neurophysiol 2013; 109:2866-82. [PMID: 23536710 DOI: 10.1152/jn.00021.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of auditory temporal processing is important for processing complex sounds as well as for acquiring reading and language skills. Neuronal properties and sound processing change dramatically in auditory cortex neurons after the onset of hearing. However, the development of the auditory thalamus or medial geniculate body (MGB) has not been well studied over this critical time window. Since synaptic inhibition has been shown to be crucial for auditory temporal processing, this study examined the development of a feedforward, GABAergic connection to the MGB from the inferior colliculus (IC), which is also the source of sensory glutamatergic inputs to the MGB. IC-MGB inhibition was studied using whole cell patch-clamp recordings from rat brain slices in current-clamp and voltage-clamp modes at three age groups: a prehearing group [postnatal day (P)7-P9], an immediate posthearing group (P15-P17), and a juvenile group (P22-P32) whose neuronal properties are largely mature. Membrane properties matured substantially across the ages studied. GABAA and GABAB inhibitory postsynaptic potentials were present at all ages and were similar in amplitude. Inhibitory postsynaptic potentials became faster to single shocks, showed less depression to train stimuli at 5 and 10 Hz, and were overall more efficacious in controlling excitability with age. Overall, IC-MGB inhibition becomes faster and more precise during a time period of rapid changes across the auditory system due to the codevelopment of membrane properties and synaptic properties.
Collapse
Affiliation(s)
- Yamini Venkataraman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
48
|
Jo YH, Boué-Grabot E. Interplay between ionotropic receptors modulates inhibitory synaptic strength. Commun Integr Biol 2012; 4:706-9. [PMID: 22446533 DOI: 10.4161/cib.17291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The essence of neuronal function is to generate outputs in response to synaptic potentials. Synaptic integration at a synapse determines neuronal outputs in the CNS. In a recent study, we describe that excitatory and inhibitory transmitter-gated channels physically crosstalk each other at the cellular and molecular level. Increased membrane expression of ATP P2X4 receptors by using an interference peptide competing with the intracellular endocytosis motif enhances neuronal excitability, which is further enhanced by reciprocal interaction between post-synaptic ATP- and GABA-gated channels. Molecular interaction is supported by experiments of co-immunoprecipitation and mutagenesis of P2X4 subunit. Two amino acids in the intracellular carboxyl tail of P2X4 subunit appears to be responsible for this crosstalk. Our recent study provides molecular and electrophysiological evidence for physical interaction between excitatory and inhibitory receptors that appears to be crucial in determining synaptic strength at central synapses.
Collapse
|
49
|
Fritschy JM, Panzanelli P, Tyagarajan SK. Molecular and functional heterogeneity of GABAergic synapses. Cell Mol Life Sci 2012; 69:2485-99. [PMID: 22314501 PMCID: PMC11115047 DOI: 10.1007/s00018-012-0926-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 01/07/2023]
Abstract
Knowledge of the functional organization of the GABAergic system, the main inhibitory neurotransmitter system, in the CNS has increased remarkably in recent years. In particular, substantial progress has been made in elucidating the molecular mechanisms underlying the formation and plasticity of GABAergic synapses. Evidence available ascribes a key role to the cytoplasmic protein gephyrin to form a postsynaptic scaffold anchoring GABA(A) receptors along with other transmembrane proteins and signaling molecules in the postsynaptic density. However, the mechanisms of gephyrin scaffolding remain elusive, notably because gephyrin can auto-aggregate spontaneously and lacks PDZ protein interaction domains found in a majority of scaffolding proteins. In addition, the structural diversity of GABA(A) receptors, which are pentameric channels encoded by a large family of subunits, has been largely overlooked in these studies. Finally, the role of the dystrophin-glycoprotein complex, present in a subset of GABAergic synapses in cortical structures, remains ill-defined. In this review, we discuss recent results derived mainly from the analysis of mutant mice lacking a specific GABA(A) receptor subtype or a core protein of the GABAergic postsynaptic density (neuroligin-2, collybistin), highlighting the molecular diversity of GABAergic synapses and its relevance for brain plasticity and function. In addition, we discuss the contribution of the dystrophin-glycoprotein complex to the molecular and functional heterogeneity of GABAergic synapses.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland.
| | | | | |
Collapse
|
50
|
Rae MG, Hilton J, Sharkey J. Putative TRP channel antagonists, SKF 96365, flufenamic acid and 2-APB, are non-competitive antagonists at recombinant human α1β2γ2 GABA(A) receptors. Neurochem Int 2012; 60:543-54. [PMID: 22369768 DOI: 10.1016/j.neuint.2012.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/09/2012] [Accepted: 02/11/2012] [Indexed: 11/30/2022]
Abstract
Although transient receptor potential (TRP) channel biology research has expanded rapidly in recent years, the field is hampered by the widely held, but relatively poorly investigated, belief that most of the pharmacological tools used to investigate TRP channel function may not be particularly selective for their intended targets. The objective of this study was therefore to determine if this was indeed the case by systematically evaluating the effects of three routinely used putative TRP channel antagonists, SKF 96365, flufenamic acid (FF) and 2-aminoethoxydiphenyl borate (2-APB) against one of the most widely expressed CNS receptor subtypes CNS, the human α1β2γ2 GABA(A) receptor. Using whole cell patch-clamp recording to record responses to rapidly applied GABA in the absence and presence of the three putative antagonists in turn we found that SKF 96365 (1-100 μM) and FF (1-100 μM) significantly inhibited GABA responses of recombinant human α1β2γ2 GABA(A) receptor stably expressed in HEK293 cells with IC(50) values of 13.4 ± 5.1 and 1.9 ± 1.4 μM, respectively, suppressing the maximal response to GABA at all concentrations used in a manner consistent with a non-competitive mode of action. SKF 96365 and FF also both significantly reduced desensitisation and prolonged the deactivation kinetics of the receptors to GABA (1mM; P<0.05). 2-APB (10-1000 μM) also inhibited responses to GABA at all concentrations used with an IC(50) value of 16.7 ± 5.4 μM (n=3-5) but had no significant effect on the activation, desensitisation or deactivation kinetics of the GABA responses. Taken together this investigation revealed that these widely utilised TRP channel antagonists display significant 'off-target' effects at concentrations that are routinely used for the study of TRP channel function in numerous biological systems and as such, data which is obtained utilising these compounds should be interpreted with caution.
Collapse
Affiliation(s)
- M G Rae
- Department of Physiology, University College Cork, Ireland.
| | | | | |
Collapse
|