1
|
Le Dréan ME, Le Berre-Scoul C, Paillé V, Caillaud M, Oullier T, Gonzales J, Hulin P, Neunlist M, Talon S, Boudin H. The regulation of enteric neuron connectivity by semaphorin 5A is affected by the autism-associated S956G missense mutation. iScience 2024; 27:109638. [PMID: 38650986 PMCID: PMC11033180 DOI: 10.1016/j.isci.2024.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The neural network of the enteric nervous system (ENS) underlies gastrointestinal functions. However, the molecular mechanisms involved in enteric neuronal connectivity are poorly characterized. Here, we studied the role of semaphorin 5A (Sema5A), previously characterized in the central nervous system, on ENS neuronal connectivity. Sema5A is linked to autism spectrum disorder (ASD), a neurodevelopmental disorder frequently associated with gastrointestinal comorbidities, and potentially associated with ENS impairments. This study investigated in rat enteric neuron cultures and gut explants the role of Sema5A on enteric neuron connectivity and the impact of ASD-associated mutations on Sema5A activity. Our findings demonstrated that Sema5A promoted axonal complexity and reduced functional connectivity in enteric neurons. Strikingly, the ASD-associated mutation S956G in Sema5A strongly affected these activities. This study identifies a critical role of Sema5A in the ENS as a regulator of neuronal connectivity that might be compromised in ASD.
Collapse
Affiliation(s)
- Morgane E. Le Dréan
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Catherine Le Berre-Scoul
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Vincent Paillé
- Nantes Université, INRAE, UMR 1280, PhAN, IMAD, 44000 Nantes, France
| | - Martial Caillaud
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Thibauld Oullier
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Jacques Gonzales
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Philippe Hulin
- Plateforme MicroPICell Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes, France
| | - Michel Neunlist
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Sophie Talon
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hélène Boudin
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
2
|
Galinelli NC, Bamford NJ, de Laat MA, Sillence MN, Harris PA, Bailey SR. Evidence for dopamine production and distribution of dopamine D2 receptors in the equine gastrointestinal mucosa and pancreas. PLoS One 2024; 19:e0298660. [PMID: 38412155 PMCID: PMC10898723 DOI: 10.1371/journal.pone.0298660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Insulin dysregulation in horses is characterised by hyperinsulinaemia and/or tissue insulin resistance and is associated with increased risk of laminitis. There is growing evidence in other species that dopamine attenuates insulin release from the pancreas; however, this has yet to be examined in horses. The present study aimed to identify whether there are cells capable of producing or responding to dopamine within the equine gastrointestinal mucosa and pancreas. Tissue samples were collected from the stomach, small and large intestines, and pancreas of six mature horses following euthanasia. Samples of stomach contents and faeces were also collected. Immunohistochemistry was performed to identify tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine production, and dopamine D2 receptors in tissue sections. Additional immunostaining for glucagon, insulin and chromogranin A was performed to identify α cells, β cells and enteroendocrine cells, respectively. Gastric parietal cells expressed both TH and D2 receptors, indicating that they are capable of both producing and responding to dopamine. Dopamine was quantified in stomach contents and faeces by high-performance liquid chromatography with electrochemical detection, with similar concentrations found at both sites. Dopamine D2 receptors were expressed in duodenal epithelial cells but not more distally. A subset of enteroendocrine cells, located sporadically along the gastrointestinal tract, were found to be immunopositive for the D2 receptor. In pancreatic islets, TH was present in α cells, while D2 receptors were strongly expressed in β cells and variably expressed in α cells. These findings are consistent with studies of other species; however, dynamic studies are required to further elucidate the role of dopamine in the modulation of insulin and glucagon secretion in horses. This descriptive study provides preliminary evidence for a potential role of dopamine to act as a paracrine messenger in the gastrointestinal mucosa and endocrine pancreas of horses.
Collapse
Affiliation(s)
- Nicolas C. Galinelli
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J. Bamford
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody A. de Laat
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Martin N. Sillence
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patricia A. Harris
- Equine Studies Group, Waltham Petcare Science Institute, Melton Mowbray, United Kingdom
| | - Simon R. Bailey
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Caillaud M, Le Dréan ME, De-Guilhem-de-Lataillade A, Le Berre-Scoul C, Montnach J, Nedellec S, Loussouarn G, Paillé V, Neunlist M, Boudin H. A functional network of highly pure enteric neurons in a dish. Front Neurosci 2023; 16:1062253. [PMID: 36685225 PMCID: PMC9853279 DOI: 10.3389/fnins.2022.1062253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023] Open
Abstract
The enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking. In this study, we developed a novel model of highly pure rat embryonic enteric neurons with dense and functional synaptic networks. The methodology is simple and relatively fast. We characterized enteric neurons using immunohistochemical, morphological, and electrophysiological approaches. In particular, we demonstrated the applicability of this culture model to multi-electrode array technology as a new approach for monitoring enteric neuronal network activity. This in vitro model of highly pure enteric neurons represents a valuable new tool for better understanding the mechanisms involved in the establishment and maintenance of enteric neuron synaptic connectivity and functional networks.
Collapse
Affiliation(s)
- Martial Caillaud
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France,*Correspondence: Martial Caillaud,
| | - Morgane E. Le Dréan
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | | | - Catherine Le Berre-Scoul
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Jérôme Montnach
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Steven Nedellec
- Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes, France
| | - Gildas Loussouarn
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Vincent Paillé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hélène Boudin
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
4
|
de Guilhem de Lataillade A, Caillaud M, Oullier T, Naveilhan P, Pellegrini C, Tolosa E, Neunlist M, Rolli-Derkinderen M, Gelpi E, Derkinderen P. LRRK2 expression in normal and pathologic human gut and in rodent enteric neural cell lines. J Neurochem 2023; 164:193-209. [PMID: 36219522 DOI: 10.1111/jnc.15704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 02/04/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) gene, which is the gene most commonly associated with Parkinson's disease (PD), is also a susceptibility gene for Crohn's disease, thereby suggesting that LRRK2 may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. LRRK2 protein has been studied intensely in both CNS neurons and in immune cells, but there are only few studies on LRRK2 in the enteric nervous system (ENS). LRRK2 is present in ENS ganglia and the existing studies on LRRK2 expression in colonic biopsies from PD subjects have yielded conflicting results. Herein, we propose to extend these findings by studying in more details LRRK2 expression in the ENS. LRRK2 expression was evaluated in full thickness segments of colon of 16 Lewy body, 12 non-Lewy body disorders cases, and 3 non-neurodegenerative controls and in various enteric neural cell lines. We showed that, in addition to enteric neurons, LRRK2 is constitutively expressed in enteric glial cells in both fetal and adult tissues. LRRK2 immunofluorescence intensity in the myenteric ganglia was not different between Lewy body and non-Lewy body disorders. Additionally, we identified the cAMP pathway as a key signaling pathway involved in the regulation of LRRK2 expression and phosphorylation in the enteric glial cells. Our study is the first detailed characterization of LRRK2 in the ENS and the first to show that enteric glial cells express LRRK2. Our findings provide a basis to unravel the functions of LRRK2 in the ENS and to further investigate the pathological changes in enteric synucleinopathies.
Collapse
Affiliation(s)
| | - Martial Caillaud
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Thibauld Oullier
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eduardo Tolosa
- Parkinson disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Michel Neunlist
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobank-Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Pascal Derkinderen
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| |
Collapse
|
5
|
Adhesion of Gastric Cancer Cells to the Enteric Nervous System: Comparison between the Intestinal Type and Diffuse Type of Gastric Cancer. Cancers (Basel) 2022; 14:cancers14143296. [PMID: 35884357 PMCID: PMC9313246 DOI: 10.3390/cancers14143296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. The enteric nervous system (ENS) has been suggested to be involved in cancer development and spread. Objective: To analyze the GC cell adhesion to the ENS in a model of co-culture of gastric ENS with GC cells. Methods: Primary culture of gastric ENS (pcgENS), derived from a rat embryo stomach, was developed. The adhesion of GC cells to pcgENS was studied using a co-culture model. The role of N-Cadherin, a cell-adhesion protein, was evaluated. Results: Compared to intestinal-type GC cells, the diffuse-type GC cancer cells showed higher adhesion to pcgENS (55.9% ± 1.075 vs. 38.9% ± 0.6611, respectively, p < 0.001). The number of diffuse-type GC cells adherent to pcgENS was significantly lower in neuron-free pcgENS compared to neuron-containing pcgENS (p = 0.0261 and 0.0329 for AGS and MKN45, respectively). Confocal microscopy showed that GC cells adhere preferentially to the neurons of the pcgENS. N-Cadherin blockage resulted in significantly decreased adhesion of the GC cells to the pcgENS (p < 0.01). Conclusion: These results suggest a potential role of enteric neurons in the dissemination of GC cells, especially of the diffuse-type, partly through N-Cadherin.
Collapse
|
6
|
Lassozé S, de Guilhem de Lataillade A, Oullier T, Neunslist M, Leclair-Visonneau L, Derkinderen P, Paillusson S. Comparison of commercially available antibodies for the detection of phosphorylated alpha-synuclein in primary culture of ENS. Neurogastroenterol Motil 2022; 34:e14354. [PMID: 35279896 DOI: 10.1111/nmo.14354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND It is now well established that phosphorylated alpha-synuclein histopathology, the pathologic hallmark of Parkinson's disease (PD) is not limited to the brain but also extends to the enteric nervous system (ENS). This observation led to the hypothesis that the ENS could play a pivotal role in the development of PD. Research on the enteric synucleinopathy has, however, been hampered by difficulties in detecting phosphorylated alpha-synuclein in the ENS by Western blotting, even when the transferred membrane is fixed with an optimized protocol. This suggests that the available antibodies used in previous studies lacked of sensitivity for the detection of phosphorylated alpha-synuclein at Ser129 in enteric neurons. Here, we evaluated three recent commercially available phospho-alpha-synuclein antibodies and compared them to two antibodies used in previous research. METHODS The specificity and sensitivity of the 5 antibodies were evaluated by Western blot performed with recombinant alpha-synuclein and with protein lysates from rat primary cultures of ENS. In primary culture of ENS, additional experiments were performed with the most specific antibody in order to modulate alpha-synuclein phosphorylation and to validate its utilization in immunofluorescence experiments. RESULTS The rabbit monoclonal antibody D1R1R uniquely and robustly detected endogenous phosphorylated alpha-synuclein at Ser129 in rat primary culture of ENS without any non-specific bands, allowing for a reliable analysis of phosphorylated alpha-synuclein regulation by pharmacologic means. CONCLUSIONS AND INFERENCES Using D1R1R antibody together with the optimized protocol for membrane fixation may help deciphering the signaling pathways involved in enteric alpha-synuclein post-translational regulation in PD.
Collapse
Affiliation(s)
- Simon Lassozé
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Adrien de Guilhem de Lataillade
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Thibauld Oullier
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Michel Neunslist
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Laurène Leclair-Visonneau
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Pascal Derkinderen
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Sébastien Paillusson
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
7
|
Teramoto H, Hirashima N, Tanaka M. A Simple Method for Purified Primary Culture of Enteric Glial Cells from Mouse Small Intestine. Biol Pharm Bull 2022; 45:547-551. [DOI: 10.1248/bpb.b22-00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hikaru Teramoto
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Naohide Hirashima
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Masahiko Tanaka
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
8
|
Guo R, Shi AM, Deng L, Li L, Wang LC, Oteng AB, Wei MP, Zhao ZH, Hooiveld G, Zhang C, Wang Q. Flavonoid-Like Components of Peanut Stem and Leaf Extract Promote Sleep by Decreasing Neuronal Excitability. Mol Nutr Food Res 2021; 66:e2100210. [PMID: 34747100 DOI: 10.1002/mnfr.202100210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 10/10/2021] [Indexed: 12/16/2022]
Abstract
SCOPE Peanut stem and leaf (PSL), a traditional Chinese medicine, is widely used as a dietary supplement to improve sleep quality; however, the underlying mechanism is unclear. Here, the study aims to determine whether active compounds in PSL extract exert their effects by mediating neuronal excitability. METHODS AND RESULTS Aqueous PSL extract (500 mg kg-1 BW) increases the duration of total sleep (TS), slow wave sleep (SWS) and rapid eye movement sleep (REMS) in BALB/c mice after 7 and 14 continuous days of intragastric administration. Two PSL extract components with flavonoid-like structures: 4',7-di-O-methylnaringenin (DMN, 61 µg kg-1 BW) and 2'-O-methylisoliquiritigenin (MIL, 12 µg kg-1 BW), show similar effects on sleep in BALB/c mice. Moreover, incubation with DMN (50 µM) and MIL (50 µM) acutely reduces voltage-gated sodium and potassium currents and suppresses the firing of evoked action potential in mouse cortical neurons, indicating the inhibition on neuronal excitability. Meanwhile, RNA-seq analysis predicts the potential regulation of voltage-gated channels, which is according with the molecular docking simulation that both MIL and DMN can bind to voltage gated sodium channels 1.2 (Nav 1.2). CONCLUSIONS DMN and MIL are the active ingredients of PSL that improve sleep quality, suggesting that PSL promotes sleep by regulating the excitability of neurons.
Collapse
Affiliation(s)
- Rui Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Ai-Min Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Lei Deng
- Nutrition, Metabolism and Genomics Group, Human Nutrition and Health Division, Wageningen University and Research, Wageningen, WE 6708, The Netherlands
| | - Lei Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Anhui, 230031, China
| | - Lie-Chen Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Anhui, 230031, China
| | | | - Meng-Ping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zhi-Hao Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Guido Hooiveld
- Nutrition, Metabolism and Genomics Group, Human Nutrition and Health Division, Wageningen University and Research, Wageningen, WE 6708, The Netherlands
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| |
Collapse
|
9
|
Bodin R, Paillé V, Oullier T, Durand T, Aubert P, Le Berre-Scoul C, Hulin P, Neunlist M, Cissé M. The ephrin receptor EphB2 regulates the connectivity and activity of enteric neurons. J Biol Chem 2021; 297:101300. [PMID: 34648765 PMCID: PMC8569587 DOI: 10.1016/j.jbc.2021.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Highly organized circuits of enteric neurons are required for the regulation of gastrointestinal functions, such as peristaltism or migrating motor complex. However, the factors and molecular mechanisms that regulate the connectivity of enteric neurons and their assembly into functional neuronal networks are largely unknown. A better understanding of the mechanisms by which neurotrophic factors regulate this enteric neuron circuitry is paramount to understanding enteric nervous system (ENS) physiology. EphB2, a receptor tyrosine kinase, is essential for neuronal connectivity and plasticity in the brain, but so far its presence and function in the ENS remain largely unexplored. Here we report that EphB2 is expressed preferentially by enteric neurons relative to glial cells throughout the gut in rats. We show that in primary enteric neurons, activation of EphB2 by its natural ligand ephrinB2 engages ERK signaling pathways. Long-term activation with ephrinB2 decreases EphB2 expression and reduces molecular and functional connectivity in enteric neurons without affecting neuronal density, ganglionic fiber bundles, or overall neuronal morphology. This is highlighted by a loss of neuronal plasticity markers such as synapsin I, PSD95, and synaptophysin, and a decrease of spontaneous miniature synaptic currents. Together, these data identify a critical role for EphB2 in the ENS and reveal a unique EphB2-mediated molecular program of synapse regulation in enteric neurons.
Collapse
Affiliation(s)
- Raphael Bodin
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Vincent Paillé
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Thibauld Oullier
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Tony Durand
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Philippe Aubert
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | | | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Moustapha Cissé
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.
| |
Collapse
|
10
|
Fecal Supernatant from Adult with Autism Spectrum Disorder Alters Digestive Functions, Intestinal Epithelial Barrier, and Enteric Nervous System. Microorganisms 2021; 9:microorganisms9081723. [PMID: 34442802 PMCID: PMC8399841 DOI: 10.3390/microorganisms9081723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders defined by impaired social interactions and communication with repetitive behaviors, activities, or interests. Gastrointestinal (GI) disturbances and gut microbiota dysbiosis are frequently associated with ASD in childhood. However, it is not known whether microbiota dysbiosis in ASD patients also occurs in adulthood. Further, the consequences of altered gut microbiota on digestive functions and the enteric nervous system (ENS) remain unexplored. Therefore, we studied, in mice, the ability offecal supernatant (FS) from adult ASD patients to induce GI dysfunctions and ENS remodeling. First, the analyses of the fecal microbiota composition in adult ASD patients indicated a reduced α-diversity and increased abundance of three bacterial 16S rRNA gene amplicon sequence variants compared to healthy controls (HC). The transfer of FS from ASD patients (FS-ASD) to mice decreased colonic barrier permeability by 29% and 58% compared to FS-HC for paracellular and transcellular permeability, respectively. These effects are associated with the reduced expression of the tight junction proteins JAM-A, ZO-2, cingulin, and proinflammatory cytokines TNFα and IL1β. In addition, the expression of glial and neuronal molecules was reduced by FS-ASD as compared to FS-HC in particular for those involved in neuronal connectivity (βIII-tubulin and synapsin decreased by 31% and 67%, respectively). Our data suggest that changes in microbiota composition in ASD may contribute to GI alterations, and in part, via ENS remodeling.
Collapse
|
11
|
Woods C, Kapur RP, Bischoff A, Lovell M, Arnold M, Peña A, Flockton A, Sharkey KA, Belkind-Gerson J. Neurons populating the rectal extrinsic nerves in humans express neuronal and Schwann cell markers. Neurogastroenterol Motil 2021; 33:e14074. [PMID: 33382200 DOI: 10.1111/nmo.14074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND In mice, Schwann cell (SC) progenitors give rise to autonomic ganglion cells and migrate into the gut to become enteric neurons. It is unknown whether SC progenitors have a similar fate in humans. In search of evidence for human SC-derived neurogenesis in the gastrointestinal (GI) tract, we studied the rectums from cadaveric controls and children with anorectal malformations (ARM). METHODS We analyzed distal rectal tissue taken at autopsy from 10 children with normal GI tracts and resected rectal specimens in 48 cases of ARM. Of these specimens, 6 had neurons within the extrinsic rectal innervation. These were further investigated with immunohistochemistry for neuronal and SC/glial markers. KEY RESULTS Perirectal tissue from control and ARM contained GLUT1-positive extrinsic nerves, many containing neurons. SC/glial markers (SOX10, CDH19, and PLP1) were expressed by glia in the enteric nervous system and perirectal nerves, while MPZ predominated only in glia of perirectal nerves, in both control and ARM. Neurons in perirectal nerves were 61% larger in ARM samples and co-expressed SOX10 (81%), PLP1 (73%), and CDH19 (56%). In ARM, cytoplasmic SOX10 was co-expressed with neuronal antigens in ~57% of submucosal and myenteric neurons, vs. ~3% in control. Furthermore, intrinsic gut neurons in ARM specimens co-expressed PLP1 (18%) and CDH19 (18%); however, neuronal co-expression of PLP1 and CDH19 was rarely (<2%) observed in controls. CONCLUSIONS & INFERENCES Dual expression of glial and neuronal markers in rectal and perirectal neurons support a model of Schwann cell-derived neurogenesis in the innervation of the human GI tract.
Collapse
Affiliation(s)
- Crystal Woods
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Raj P Kapur
- Department of Pathology, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Andrea Bischoff
- Department of Pediatric Surgery, International Center for Colorectal and Urogenital Care, Children's Hospital Colorado, Aurora, CO, USA
| | - Mark Lovell
- Department of Pathology, Children's Hospital Colorado, Aurora, CO, USA
| | - Michael Arnold
- Department of Pathology, Children's Hospital Colorado, Aurora, CO, USA
| | - Alberto Peña
- Department of Pediatric Surgery, International Center for Colorectal and Urogenital Care, Children's Hospital Colorado, Aurora, CO, USA
| | - Amanda Flockton
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Keith A Sharkey
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaime Belkind-Gerson
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado, Aurora, CO, USA.,Neurogastroenterology and Motility Program, Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
12
|
Kneusels J, Kaehler M, Cascorbi I, Wedel T, Neunlist M, Lucius R, Cossais F. Limited Impact of 6-Mercaptopurine on Inflammation-Induced Chemokines Expression Profile in Primary Cultures of Enteric Nervous System. Neurochem Res 2021; 46:1781-1793. [PMID: 33864170 PMCID: PMC8187225 DOI: 10.1007/s11064-021-03324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
Increasing evidences indicate that the enteric nervous system (ENS) and enteric glial cells (EGC) play important regulatory roles in intestinal inflammation. Mercaptopurine (6-MP) is a cytostatic compound clinically used for the treatment of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease. However, potential impacts of 6-MP on ENS response to inflammation have not been evaluated yet. In this study, we aimed to gain deeper insights into the profile of inflammatory mediators expressed by the ENS and on the potential anti-inflammatory impact of 6-MP in this context. Genome-wide expression analyses were performed on ENS primary cultures exposed to lipopolysaccharide (LPS) and 6-MP alone or in combination. Differential expression of main hits was validated by quantitative real-time PCR (qPCR) using a cell line for EGC. ENS cells expressed a broad spectrum of cytokines and chemokines of the C-X-C motif ligand (CXCL) family under inflammatory stress. Induction of Cxcl5 and Cxcl10 by inflammatory stimuli was confirmed in EGC. Inflammation-induced protein secretion of TNF-α and Cxcl5 was partly inhibited by 6-MP in ENS primary cultures but not in EGC. Further work is required to identify the cellular mechanisms involved in this regulation. These findings extend our knowledge of the anti-inflammatory properties of 6-MP related to the ENS and in particular of the EGC-response to inflammatory stimuli.
Collapse
Affiliation(s)
- Jan Kneusels
- Institute of Anatomy, Kiel University, Kiel, Germany.
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | |
Collapse
|
13
|
Derkinderen P, Rolli-Derkinderen M, Chapelet G, Neunlist M, Noble W. Tau in the gut, does it really matter? J Neurochem 2021; 158:94-104. [PMID: 33569813 DOI: 10.1111/jnc.15320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The enteric nervous system plays a critical role in the regulation of gastrointestinal tract functions and is often referred to as the 'second brain' because it shares many features with the central nervous system. These similarities include among others a large panel of neurotransmitters, a large population of glial cells and a susceptibility to neurodegeneration. This close homology between the central and enteric nervous systems suggests that a disease process affecting the central nervous system could also involve its enteric counterpart. This was already documented in Parkinson's disease, the most common synucleinopathy, in which alpha-synuclein deposits are reported in the enteric nervous system in the vast majority of patients. Tau is another key protein involved in neurodegenerative disorders of the brain. Whether changes in tau also occur in the enteric nervous system during gut or brain disorders has just begun to be explored. The scope of the present article is therefore to review existing studies on the expression and phosphorylation pattern of tau in the enteric nervous system under physiological and pathological conditions and to discuss the possible occurrence of 'enteric tauopathies'.
Collapse
Affiliation(s)
- Pascal Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Guillaume Chapelet
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Clinical Gerontology Department, CHU Nantes, Nantes, France
| | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| |
Collapse
|
14
|
Minkley M, MacLeod P, Anderson CK, Nashmi R, Walter PB. Loss of tyrosine hydroxylase, motor deficits and elevated iron in a mouse model of phospholipase A2G6-associated neurodegeneration (PLAN). Brain Res 2020; 1748:147066. [PMID: 32818532 DOI: 10.1016/j.brainres.2020.147066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 10/23/2022]
Abstract
Phospholipase A2G6-associated neurodegeneration (PLAN) is a rare early-onset monogenic neurodegenerative movement disorder which targets the basal ganglia and other regions in the central and peripheral nervous system; presenting as a series of heterogenous subtypes in patients. We describe here a B6.C3-Pla2g6m1J/CxRwb mouse model of PLAN which presents with early-onset neurodegeneration at 90 days which is analogous of the disease progression that is observed in PLAN patients. Homozygous mice had a progressively worsening motor deficit, which presented as tremors starting at 65 days and progressed to severe motor dysfunction and increased falls on the wire hang test at 90 days. This motor deficit positively correlated with a reduction in tyrosine hydroxylase (TH) protein expression in dopaminergic neurons of the substantia nigra (SN) without any neuronal loss. Fluorescence imaging of Thy1-YFP revealed spheroid formation in the SN. The spheroids in homozygous mice strongly mirrors those observed in patients and were demonstrated to correlate strongly with the motor deficits as measured by the wire hang test. The appearance of spheroids preceded TH loss and increased spheroid numbers negatively correlated with TH expression. Perls/DAB staining revealed the presence of iron accumulation within the SN of mice. This mouse model captures many of the major hallmarks of PLAN including severe-early onset neurodegeneration, a motor deficit that correlates directly to TH levels, spheroid formation and iron accumulation within the basal ganglia. Thus, this mouse line is a useful tool for further research efforts to improve understanding of how these disease mechanisms give rise to the disease presentations seen in PLAN patients as well as to test novel therapies.
Collapse
Affiliation(s)
- Michael Minkley
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada
| | - Patrick MacLeod
- Division of Medical Genetics, Vancouver Island Health Authority, Victoria, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Raad Nashmi
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada.
| | - Patrick B Walter
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada; Hematology/Oncology, UCSF Benioff Children's Hospital, Oakland, USA.
| |
Collapse
|
15
|
Lefèvre C, Bessard A, Aubert P, Joussain C, Giuliano F, Behr-Roussel D, Perrouin-Verbe MA, Perrouin-Verbe B, Brochard C, Neunlist M. Enteric Nervous System Remodeling in a Rat Model of Spinal Cord Injury: A Pilot Study. Neurotrauma Rep 2020; 1:125-136. [PMID: 34223537 PMCID: PMC8240894 DOI: 10.1089/neur.2020.0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The physiopathology of digestive disorders in patients with spinal cord injury (SCI) remains largely unknown, particularly the involvement of the enteric nervous system (ENS). We aimed in a rat model of chronic thoracic SCI to characterize (1) changes in the neurochemical coding of enteric neurons and their putative consequences upon neuromuscular response, and (2) the inflammatory response of the colon. Ex vivo motility of proximal and distal colon segments of SCI and control (CT) rats were studied in an organ chamber in response to electrical field stimulation (EFS) and bethanechol. Immunohistochemical analysis of proximal and distal segments was performed using antibodies again Hu, neuronal nitric oxide synthase, (nNOS), and choline acetyltransferase. Colonic content of acetylcholine and acetylcholinesterase was measured; messenger RNA (mRNA) expression of inflammatory cytokines was measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR) approaches. Compared with the CT rats, the contractile response to bethanechol was significantly decreased in the proximal colon of SCI rats but not in the distal colon. The proportion of nNOS immunoreactive (IR) neurons was significantly reduced in the proximal but not distal colon of SCI rats. No change in proportion of choline acetyltransferase (ChAT)-IR was reported; the tissue concentration of acetylcholine was significantly decreased in the proximal colon of SCI rats. The expression of tumor necrosis factor alpha (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) was significantly reduced in the proximal and distal colon of SCI rats. This study demonstrates that functional motor and enteric neuroplastic changes affect preferentially the proximal colon compared with the distal colon. The underlying mechanisms and factors responsible for these changes remain to be discovered.
Collapse
Affiliation(s)
- Chloë Lefèvre
- UMR Inserm 1235, Research Unit, The Enteric Nervous System in Gut and Brain Diseases (TENS), University of Nantes, Nantes, France.,Neurological Physical and Rehabilitation Medicine Department, University Hospital of Nantes, Nantes, France
| | - Anne Bessard
- UMR Inserm 1235, Research Unit, The Enteric Nervous System in Gut and Brain Diseases (TENS), University of Nantes, Nantes, France
| | - Philippe Aubert
- UMR Inserm 1235, Research Unit, The Enteric Nervous System in Gut and Brain Diseases (TENS), University of Nantes, Nantes, France
| | - Charles Joussain
- UMR Inserm 1179, Research Unit, Neuromuscular Disability, Physiopathology, Biotherapy, and Applied Pharmacology (END-ICAP), University of Versailles-St-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - François Giuliano
- UMR Inserm 1179, Research Unit, Neuromuscular Disability, Physiopathology, Biotherapy, and Applied Pharmacology (END-ICAP), University of Versailles-St-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Delphine Behr-Roussel
- Pelvipharm, University of Versailles-St-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Marie-Aimée Perrouin-Verbe
- UMR Inserm 1235, Research Unit, The Enteric Nervous System in Gut and Brain Diseases (TENS), University of Nantes, Nantes, France.,Urology Unit, University Hospital of Nantes, Nantes, France
| | - Brigitte Perrouin-Verbe
- UMR Inserm 1235, Research Unit, The Enteric Nervous System in Gut and Brain Diseases (TENS), University of Nantes, Nantes, France.,Neurological Physical and Rehabilitation Medicine Department, University Hospital of Nantes, Nantes, France
| | - Charlène Brochard
- UMR Inserm 1235, Research Unit, The Enteric Nervous System in Gut and Brain Diseases (TENS), University of Nantes, Nantes, France.,Digestive Physiology Unit, University Hospital of Rennes, Rennes, France
| | - Michel Neunlist
- UMR Inserm 1235, Research Unit, The Enteric Nervous System in Gut and Brain Diseases (TENS), University of Nantes, Nantes, France
| |
Collapse
|
16
|
Pabois J, Durand T, Le Berre C, Gonzales J, Neunlist M, Bourreille A, Naveilhan P, Neveu I. T cells show preferential adhesion to enteric neural cells in culture and are close to neural cells in the myenteric ganglia of Crohn's patients. J Neuroimmunol 2020; 349:577422. [PMID: 33068972 DOI: 10.1016/j.jneuroim.2020.577422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Plexitis in the proximal margin of intestinal resections are associated with post-operative recurrence of Crohn's disease. To understand their formation, in vitro analyzes were performed. T cells adhered preferentially to neuron and glial cells in mixed primary cultures of enteric nervous system and T cell activation increased their adhesion capacity. Higher number of T lymphocytes in close proximity to enteric glial cells was also observed in the myenteric ganglia of Crohn's patients as compared to control. These data show that close proximity between lymphocytes and enteric neural cells exists and may contribute to the formation of plexitis.
Collapse
Affiliation(s)
- Julie Pabois
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Tony Durand
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Catherine Le Berre
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Jacques Gonzales
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Michel Neunlist
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Arnaud Bourreille
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Philippe Naveilhan
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.
| | - Isabelle Neveu
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
17
|
Wee NKY, Lorenz MR, Bekirov Y, Jacquin MF, Scheller EL. Shared Autonomic Pathways Connect Bone Marrow and Peripheral Adipose Tissues Across the Central Neuraxis. Front Endocrinol (Lausanne) 2019; 10:668. [PMID: 31611846 PMCID: PMC6776593 DOI: 10.3389/fendo.2019.00668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Bone marrow adipose tissue (BMAT) is increased in both obesity and anorexia. This is unique relative to white adipose tissue (WAT), which is generally more attuned to metabolic demand. It suggests that there may be regulatory pathways that are common to both BMAT and WAT and also those that are specific to BMAT alone. The central nervous system (CNS) is a key mediator of adipose tissue function through sympathetic adrenergic neurons. Thus, we hypothesized that central autonomic pathways may be involved in BMAT regulation. To test this, we first quantified the innervation of BMAT by tyrosine hydroxylase (TH) positive nerves within the metaphysis and diaphysis of the tibia of B6 and C3H mice. We found that many of the TH+ axons were concentrated around central blood vessels in the bone marrow. However, there were also areas of free nerve endings which terminated in regions of BMAT adipocytes. Overall, the proportion of nerve-associated BMAT adipocytes increased from proximal to distal along the length of the tibia (from ~3-5 to ~14-24%), regardless of mouse strain. To identify the central pathways involved in BMAT innervation and compare to peripheral WAT, we then performed retrograde viral tract tracing with an attenuated pseudorabies virus (PRV) to infect efferent nerves from the tibial metaphysis (inclusive of BMAT) and inguinal WAT (iWAT) of C3H mice. PRV positive neurons were identified consistently from both injection sites in the intermediolateral horn of the spinal cord, reticular formation, rostroventral medulla, solitary tract, periaqueductal gray, locus coeruleus, subcoeruleus, Barrington's nucleus, and hypothalamus. We also observed dual-PRV infected neurons within the majority of these regions. Similar tracings were observed in pons, midbrain, and hypothalamic regions from B6 femur and tibia, demonstrating that these results persist across mouse strains and between skeletal sites. Altogether, this is the first quantitative report of BMAT autonomic innervation and reveals common central neuroanatomic pathways, including putative "command" neurons, involved in coordinating multiple aspects of sympathetic output and facilitation of parallel processing between bone marrow/BMAT and peripheral adipose tissue.
Collapse
Affiliation(s)
- Natalie K. Y. Wee
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, United States
| | - Madelyn R. Lorenz
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Yusuf Bekirov
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mark F. Jacquin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Erica L. Scheller
| |
Collapse
|
18
|
Kermarrec L, Durand T, Gonzales J, Pabois J, Hulin P, Neunlist M, Neveu I, Naveilhan P. Rat enteric glial cells express novel isoforms of Interleukine-7 regulated during inflammation. Neurogastroenterol Motil 2019; 31:e13467. [PMID: 30240048 DOI: 10.1111/nmo.13467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/26/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroimmune interactions are essential to maintain gut homeostasis and prevent intestinal disorders but so far, the impact of enteric glial cells (EGC) on immune cells remains a relatively unexplored area of research. As a dysregulation of critical cytokines such as interleukine-7 (IL-7) was suggested to exacerbate gut chronic inflammation, we investigated whether EGC could be a source of IL-7 in the gastrointestinal tract. METHODS Expression of IL-7 in the rat enteric nervous system was analyzed by immunochemistry and Q-PCR. IL-7 variants were cloned and specific antibodies against rat IL-7 isoforms were raised to characterize their expression in the submucosal plexus. IL-7 isoforms were produced in vitro to analyze their impact on T-cell survival. KEY RESULTS Neurons and glial cells of the rat enteric nervous system expressed IL-7 at both mRNA and protein levels. Novel rat IL-7 isoforms with distinct C-terminal parts were detected. Three of these isoforms were found in EGC or in both enteric neurons and EGC. Exposure of EGC to pro-inflammatory cytokines (IL-1β and/or TNFα) induced an upregulation of all IL-7 isoforms. Interestingly, time-course and intensity of the upregulation varied according to the presence or absence of exon 5a in IL-7 variants. Functional analysis on T lymphocytes revealed that only canonical IL-7 protects T cells from cell death. CONCLUSIONS AND INFERENCES IL-7 and its variants are expressed by neurons and glial cells in the enteric nervous system. Their distinct expression and upregulation in inflammatory conditions suggest a role in gut homeostasis which could be critical in case of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laetitia Kermarrec
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Tony Durand
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Jacques Gonzales
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Julie Pabois
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | | | - Michel Neunlist
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Isabelle Neveu
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Philippe Naveilhan
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| |
Collapse
|
19
|
Cao SX, Zhang Y, Hu XY, Hong B, Sun P, He HY, Geng HY, Bao AM, Duan SM, Yang JM, Gao TM, Lian H, Li XM. ErbB4 deletion in noradrenergic neurons in the locus coeruleus induces mania-like behavior via elevated catecholamines. eLife 2018; 7:39907. [PMID: 30179154 PMCID: PMC6185106 DOI: 10.7554/elife.39907] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/02/2018] [Indexed: 11/13/2022] Open
Abstract
Dysfunction of the noradrenergic (NE) neurons is implicated in the pathogenesis of bipolar disorder (BPD). ErbB4 is highly expressed in NE neurons, and its genetic variation has been linked to BPD; however, how ErbB4 regulates NE neuronal function and contributes to BPD pathogenesis is unclear. Here we find that conditional deletion of ErbB4 in locus coeruleus (LC) NE neurons increases neuronal spontaneous firing through NMDA receptor hyperfunction, and elevates catecholamines in the cerebrospinal fluid (CSF). Furthermore, Erbb4-deficient mice present mania-like behaviors, including hyperactivity, reduced anxiety and depression, and increased sucrose preference. These behaviors are completely rescued by the anti-manic drug lithium or antagonists of catecholaminergic receptors. Our study demonstrates the critical role of ErbB4 signaling in regulating LC-NE neuronal function, reinforcing the view that dysfunction of the NE system may contribute to the pathogenesis of mania-associated disorder. Bipolar disorder is a mental illness that affects roughly 1 in 100 people worldwide. It features periods of depression interspersed with episodes of mania – a state of delusion, heightened excitation and increased activity. Evidence suggests that changes in a brain region called the locus coeruleus contribute to bipolar disorder. Cells within this area produce a chemical called norepinephrine, whose levels increase during mania and decrease during depression. But it is unclear exactly how norepinephrine-producing cells, also known as noradrenergic cells, contribute to bipolar disorder. The answer may lie in a protein called ErbB4, which is found within the outer membrane of many noradrenergic neurons. ErbB4 is active in both the developing and adult brain, and certain people with bipolar disorder have mutations in the gene that codes for the protein. Might changes in ErbB4 disrupt the activity of noradrenergic neurons? And could these changes increase the risk of bipolar disorder? To find out, Cao, Zhang et al. deleted the gene for ErbB4 from noradrenergic neurons in the locus coeruleus of mice. The mutant mice showed mania-like behaviors: compared to normal animals, they were hyperactive, less anxious, and consumed more of a sugary solution. Treating the mice with lithium, a medication used in bipolar disorder, reversed these changes and made the rodents behave more like non-mutant animals. Further experiments revealed that noradrenergic neurons in the mutant mice showed increased spontaneous activity. These animals also had more of the chemicals noradrenaline and dopamine in the fluid circulating around their brains and spinal cords. The results thus suggest that losing ErbB4 enhances the spontaneous firing of noradrenergic neurons in the locus coeruleus. This increases release of noradrenaline and dopamine, which in turn leads to mania-like behaviors. Future research should examine whether drugs that target ErbB4 could treat mania and improve the lives of people with bipolar disorder and related conditions.
Collapse
Affiliation(s)
- Shu-Xia Cao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing-Yue Hu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Hong
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Sun
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Yang He
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Yan Geng
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Min Bao
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-Min Duan
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Ming Yang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong Lian
- Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ming Li
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Aubert P, Oleynikova E, Rizvi H, Ndjim M, Le Berre-Scoul C, Grohard PA, Chevalier J, Segain JP, Le Drean G, Neunlist M, Boudin H. Maternal protein restriction induces gastrointestinal dysfunction and enteric nervous system remodeling in rat offspring. FASEB J 2018; 33:770-781. [DOI: 10.1096/fj.201800079r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Philippe Aubert
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Elena Oleynikova
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Hina Rizvi
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Marième Ndjim
- Institute National de la Recherche Agronomique (INRA) Unité Mixte de Recherche 1280Physiologie des Adaptations Nutritionnelles (PhAN)Institut des Maladies de l'Appareil Digestif Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Catherine Le Berre-Scoul
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Pierre Antoine Grohard
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Julien Chevalier
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Jean-Pierre Segain
- Institute National de la Recherche Agronomique (INRA) Unité Mixte de Recherche 1280Physiologie des Adaptations Nutritionnelles (PhAN)Institut des Maladies de l'Appareil Digestif Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Gwenola Le Drean
- Institute National de la Recherche Agronomique (INRA) Unité Mixte de Recherche 1280Physiologie des Adaptations Nutritionnelles (PhAN)Institut des Maladies de l'Appareil Digestif Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Michel Neunlist
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Helene Boudin
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| |
Collapse
|
21
|
Lionnet A, Wade MA, Corbillé AG, Prigent A, Paillusson S, Tasselli M, Gonzales J, Durieu E, Rolli-Derkinderen M, Coron E, Duchalais E, Neunlist M, Perkinton MS, Hanger DP, Noble W, Derkinderen P. Characterisation of tau in the human and rodent enteric nervous system under physiological conditions and in tauopathy. Acta Neuropathol Commun 2018; 6:65. [PMID: 30037345 PMCID: PMC6055332 DOI: 10.1186/s40478-018-0568-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022] Open
Abstract
Tau is normally a highly soluble phosphoprotein found predominantly in neurons. Six different isoforms of tau are expressed in the adult human CNS. Under pathological conditions, phosphorylated tau aggregates are a defining feature of neurodegenerative disorders called tauopathies. Recent findings have suggested a potential role of the gut-brain axis in CNS homeostasis, and therefore we set out to examine the isoform profile and phosphorylation state of tau in the enteric nervous system (ENS) under physiological conditions and in tauopathies. Surgical specimens of human colon from controls, Parkinson's disease (PD) and progressive supranuclear palsy (PSP) patients were analyzed by Western Blot and immunohistochemistry using a panel of anti-tau antibodies. We found that adult human ENS primarily expresses two tau isoforms, localized in the cell bodies and neuronal processes. We did not observe any difference in the enteric tau isoform profile and phosphorylation state between PSP, PD and control subjects. The htau mouse model of tauopathy also expressed two main isoforms of human tau in the ENS, and there were no apparent differences in ENS tau localization or phosphorylation between wild-type and htau mice. Tau in both human and mouse ENS was found to be phosphorylated but poorly susceptible to dephosphorylation with lambda phosphatase. To investigate ENS tau phosphorylation further, primary cultures from rat enteric neurons, which express four isoforms of tau, were pharmacologically manipulated to show that ENS tau phosphorylation state can be regulated, at least in vitro. Our study is the first to characterize tau in the rodent and human ENS. As a whole, our findings provide a basis to unravel the functions of tau in the ENS and to further investigate the possibility of pathological changes in enteric neuropathies and tauopathies.
Collapse
|
22
|
Lilli NL, Quénéhervé L, Haddara S, Brochard C, Aubert P, Rolli-Derkinderen M, Durand T, Naveilhan P, Hardouin JB, De Giorgio R, Barbara G, Bruley des Varannes S, Coron E, Neunlist M. Glioplasticity in irritable bowel syndrome. Neurogastroenterol Motil 2018; 30:e13232. [PMID: 29027719 DOI: 10.1111/nmo.13232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Growing evidence indicates a wide array of cellular remodeling in the mucosal microenvironment during irritable bowel syndrome (IBS), which possibly contributes to pathophysiology and symptom generation. Here, we investigated whether enteric glial cells (EGC) may be altered, and which factors/mechanisms lead to these changes. METHODS Colonic mucosal biopsies of IBS patients (13 IBS-Constipation [IBS-C]; 10 IBS-Diarrhea [IBS-D]; 11 IBS-Mixed [IBS-M]) and 24 healthy controls (HC) were analyzed. Expression of S100β and GFAP was measured. Cultured rat EGC were incubated with supernatants from mucosal biopsies, then proliferation and Ca2+ response to ATP were analyzed using flow cytometry and Ca2+ imaging. Histamine and histamine 1-receptor (H1R) involvement in the effects of supernatant upon EGC was analyzed. KEY RESULTS Compared to HC, the mucosal area immunoreactive for S100β was significantly reduced in biopsies of IBS patients, independently of the IBS subtype. IBS-C supernatants reduced EGC proliferation and IBS-D and IBS-M supernatants reduced Ca2+ response to ATP in EGC. EGC expressed H1R and the effects of supernatant upon Ca2+ response to ATP in EGC were blocked by pyrilamine and reproduced by histamine via H1R. IBS supernatants reduced mRNA expression of connexin-43. The S100β-stained area was negatively correlated with the frequency and intensity of pain and bloating. CONCLUSION AND INFERENCES Changes in EGC occur in IBS, involving mucosal soluble factors. Histamine, via activation of H1R-dependent pathways, partly mediates altered Ca2+ response to ATP in EGC. These changes may contribute to the pathophysiology and the perception of pain and bloating in patients with IBS.
Collapse
Affiliation(s)
- N L Lilli
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - L Quénéhervé
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - S Haddara
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - C Brochard
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France
| | - P Aubert
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - M Rolli-Derkinderen
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - T Durand
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - P Naveilhan
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - J-B Hardouin
- Université de Nantes, INSERM, SPHERE, Université Bretagne Loire, Nantes, France
| | - R De Giorgio
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - G Barbara
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - S Bruley des Varannes
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - E Coron
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - M Neunlist
- Université de Nantes, INSERM, IMAD, The enteric nervous system in gut and brain disorders, Université Bretagne Loire, Nantes, France
| |
Collapse
|
23
|
Soufflet F, Biraud M, Rolli-Derkinderen M, Lardeux B, Trang C, Coron E, Bruley des Varannes S, Bourreille A, Neunlist M. Modulation of VIPergic phenotype of enteric neurons by colonic biopsy supernatants from patients with inflammatory bowel diseases: Involvement of IL-6 in Crohn's disease. Neurogastroenterol Motil 2018; 30. [PMID: 28857361 DOI: 10.1111/nmo.13198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neuroplastic changes in the enteric nervous system (ENS) observed during IBD might participate in physiopathological processes. Vasoactive intestinal polypeptide has been shown to be involved in intestinal inflammation and barrier functions. We aimed to investigate the modulation of VIP expression in colonic biopsies of IBD patient, the ability of soluble factors from biopsies to reproduce in vitro these modulations and identify soluble factors responsible. METHODS VIP and cytokines mRNA expressions were assessed in colonic biopsies of healthy subjects (HS) and IBD patients from inflamed (I) and non-inflamed areas (NI). Supernatants (SUP) of biopsies were applied to primary culture of ENS and VIP and cytokines mRNA expressions were assessed. The role of cytokines in SUP induced changes in VIP expression was evaluated. KEY RESULTS VIP mRNA expression was lower in biopsies of patients with Crohn's disease (CD) than Ulcerative Colitis (UC) but unchanged as compared to HS. VIP mRNA and protein expression were lower in primary culture of ENS incubated with SUP-CD than with SUP-UC. Furthermore, in CD but not UC, SUP-I reduced VIP expression in the ENS as compared to SUP-NI. Next, IL-6 but not IL-5, IL-10, IL-17, IFN-γ or TNF-α reduced VIP expression in the ENS. Finally, in CD, SUP-I incubated with anti-IL-6 antibody increased VIP expression as compared to SUP-I alone. CONCLUSIONS & INFERENCES Mucosal soluble factors from IBD induce VIP neuroplastic changes in the ENS. IL-6 was identified as a putative soluble factor responsible in part for changes in VIP expression in CD.
Collapse
Affiliation(s)
- F Soufflet
- INSERM, UMR1235, Nantes, France.,Université Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - M Biraud
- INSERM, UMR1235, Nantes, France.,Université Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - M Rolli-Derkinderen
- INSERM, UMR1235, Nantes, France.,Université Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - B Lardeux
- INSERM, UMR1235, Nantes, France.,Université Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - C Trang
- INSERM, UMR1235, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France.,CIC Inserm 1413, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - E Coron
- INSERM, UMR1235, Nantes, France.,Université Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France.,CIC Inserm 1413, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - S Bruley des Varannes
- INSERM, UMR1235, Nantes, France.,Université Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France.,CIC Inserm 1413, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - A Bourreille
- INSERM, UMR1235, Nantes, France.,Université Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France.,CIC Inserm 1413, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - M Neunlist
- INSERM, UMR1235, Nantes, France.,Université Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| |
Collapse
|
24
|
Duchalais E, Guilluy C, Nedellec S, Touvron M, Bessard A, Touchefeu Y, Bossard C, Boudin H, Louarn G, Neunlist M, Van Landeghem L. Colorectal Cancer Cells Adhere to and Migrate Along the Neurons of the Enteric Nervous System. Cell Mol Gastroenterol Hepatol 2017; 5:31-49. [PMID: 29188232 PMCID: PMC5696385 DOI: 10.1016/j.jcmgh.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS In several types of cancers, tumor cells invade adjacent tissues by migrating along the resident nerves of the tumor microenvironment. This process, called perineural invasion, typically occurs along extrinsic nerves, with Schwann cells providing physical guidance for the tumor cells. However, in the colorectal cancer microenvironment, the most abundant nervous structures belong to the nonmyelinated intrinsic enteric nervous system (ENS). In this study, we investigated whether colon cancer cells interact with the ENS. METHODS Tumor epithelial cells (TECs) from human primary colon adenocarcinomas and cell lines were cocultured with primary cultures of ENS and cultures of human ENS plexus explants. By combining confocal and atomic force microscopy, as well as video microscopy, we assessed tumor cell adhesion and migration on the ENS. We identified the adhesion proteins involved using a proteomics approach based on biotin/streptavidin interaction, and their implication was confirmed further using selective blocking antibodies. RESULTS TEC adhered preferentially and with stronger adhesion forces to enteric nervous structures than to mesenchymal cells. TEC adhesion to ENS involved direct interactions with enteric neurons. Enteric neuron removal from ENS cultures led to a significant decrease in tumor cell adhesion. TECs migrated significantly longer and further when adherent on ENS compared with on mesenchymal cells, and their trajectory faithfully followed ENS structures. Blocking N-cadherin and L1CAM decreased TEC migration along ENS structures. CONCLUSIONS Our data show that the enteric neuronal network guides tumor cell migration, partly via L1CAM and N-cadherin. These results open a new avenue of research on the underlying mechanisms and consequences of perineural invasion in colorectal cancer.
Collapse
Key Words
- AFM, atomic force microscope
- Adhesion
- Colorectal Cancer
- DMEM, Dulbecco's modified Eagle medium
- ENS, enteric nervous system
- Enteric Neurons
- GFP, green fluorescent protein
- MCS, multiple cloning site
- Migration
- PBS, phosphate-buffered saline
- TEC, tumor epithelial cell
- Tuj, tubulin III
- pcENS, primary culture enteric nervous system
- α-SMA, α–smooth muscle actin
Collapse
Affiliation(s)
- Emilie Duchalais
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
- Clinique de Chirurgie Digestive et Endocrinienne, Centre Hospitalier Universitaire de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Correspondence Address correspondence to: Emilie Duchalais, MD, Inserm U1235, 1 Rue Gaston Veil, 44000 Nantes, France. fax: +33 2 40 41 11 10.Inserm U12351 Rue Gaston VeilNantes44000France
| | | | - Steven Nedellec
- Université de Nantes, Nantes, France
- Micropicell, Nantes, France
| | - Melissa Touvron
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Anne Bessard
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Yann Touchefeu
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Céline Bossard
- Université de Nantes, Nantes, France
- Service d’Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire de Nantes, France
| | - Hélène Boudin
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Guy Louarn
- Université de Nantes, Nantes, France
- Institut des Matériaux Jean Rouxel, Centre National de la Recherche Scientifique, Nantes, France
| | - Michel Neunlist
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Laurianne Van Landeghem
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
25
|
Cossais F, Clawin-Rädecker I, Lorenzen PC, Klempt M. Short communication: Tryptic β-casein hydrolysate modulates enteric nervous system development in primary culture. J Dairy Sci 2017; 100:3396-3403. [PMID: 28259395 DOI: 10.3168/jds.2016-11440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/05/2017] [Indexed: 01/18/2023]
Abstract
The intestinal tract of the newborn is particularly sensitive to gastrointestinal disorders, such as infantile diarrhea or necrotizing colitis. Perinatal development of the gut also encompasses the maturation of the enteric nervous system (ENS), a main regulator of intestinal motility and barrier functions. It was recently shown that ENS maturation can be enhanced by nutritional factors to improve intestinal maturation. Bioactivity of milk proteins is often latent, requiring the release of bioactive peptides from inactive native proteins. Several casein-derived hydrolysates presenting immunomodulatory properties have been described recently. Furthermore, accumulating data indicate that milk-derived hydrolysate can enhance gut maturation and enrichment of milk formula with such hydrolysates has recently been proposed. However, the capability of milk-derived bioactive hydrolysate to target ENS maturation has not been analyzed so far. We, therefore, investigated the potential of a recently described tryptic β-casein hydrolysate to modulate ENS growth parameters in an in vitro model of rat primary culture of ENS. Rat primary cultures of ENS were incubated with a bioactive tryptic β-casein hydrolysate and compared with untreated controls or to cultures treated with native β-casein or a Prolyve β-casein hydrolysate (Lyven, Colombelles, France). Differentiation of enteric neurons and enteric glial cells, and establishment of enteric neural network were analyzed using immunohistochemistry and quantitative PCR. Effect of tryptic β-casein hydrolysate on bone morphogenetic proteins (BMP)/Smad pathway, an essential regulator of ENS development, was further assessed using quantitative PCR and immunochemistry. Tryptic β-casein hydrolysate stimulated neurite outgrowth and simultaneously modulated the formation of enteric ganglia-like structures, whereas native β-casein or Prolyve β-casein hydrolysate did not. Additionally, treatment with tryptic bioactive β-casein hydrolysate increased the expression of the glial marker glial fibrillary acidic protein and induced profound modifications of enteric glial cells morphology. Finally, expression of BMP2 and BMP4 and activation of Smad1/5 was altered after treatment with tryptic bioactive β-casein hydrolysate. Our data suggests that this milk-derived bioactive hydrolysate modulates ENS maturation through the regulation of BMP/Smad-signaling pathway. This study supports the need for further investigation on the influence of milk-derived bioactive peptides on ENS and intestinal maturation in vivo.
Collapse
Affiliation(s)
- F Cossais
- Department of Safety and Quality of Milk and Fish Products, Max-Rubner-Institut, 24103 Kiel, Germany.
| | - I Clawin-Rädecker
- Department of Safety and Quality of Milk and Fish Products, Max-Rubner-Institut, 24103 Kiel, Germany
| | - P C Lorenzen
- Department of Safety and Quality of Milk and Fish Products, Max-Rubner-Institut, 24103 Kiel, Germany
| | - M Klempt
- Department of Safety and Quality of Milk and Fish Products, Max-Rubner-Institut, 24103 Kiel, Germany
| |
Collapse
|
26
|
Le Berre‐Scoul C, Chevalier J, Oleynikova E, Cossais F, Talon S, Neunlist M, Boudin H. A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development. J Physiol 2017; 595:583-598. [PMID: 27436013 PMCID: PMC5233665 DOI: 10.1113/jp271989] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/07/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Unlike astrocytes in the brain, the potential role of enteric glial cells (EGCs) in the formation of the enteric neuronal circuit is currently unknown. To examine the role of EGCs in the formation of the neuronal network, we developed a novel neuron-enriched culture model from embryonic rat intestine grown in indirect coculture with EGCs. We found that EGCs shape axonal complexity and synapse density in enteric neurons, through purinergic- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor regulating neuronal network maturation. ABSTRACT In the nervous system, the formation of neuronal circuitry results from a complex and coordinated action of intrinsic and extrinsic factors. In the CNS, extrinsic mediators derived from astrocytes have been shown to play a key role in neuronal maturation, including dendritic shaping, axon guidance and synaptogenesis. In the enteric nervous system (ENS), the potential role of enteric glial cells (EGCs) in the maturation of developing enteric neuronal circuit is currently unknown. A major obstacle in addressing this question is the difficulty in obtaining a valuable experimental model in which enteric neurons could be isolated and maintained without EGCs. We adapted a cell culture method previously developed for CNS neurons to establish a neuron-enriched primary culture from embryonic rat intestine which was cultured in indirect coculture with EGCs. We demonstrated that enteric neurons grown in such conditions showed several structural, phenotypic and functional hallmarks of proper development and maturation. However, when neurons were grown without EGCs, the complexity of the axonal arbour and the density of synapses were markedly reduced, suggesting that glial-derived factors contribute strongly to the formation of the neuronal circuitry. We found that these effects played by EGCs were mediated in part through purinergic P2Y1 receptor- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor required for neuronal network maturation.
Collapse
|
27
|
Corbillé AG, Neunlist M, Derkinderen P. Cross-linking for the analysis of α-synuclein in the enteric nervous system. J Neurochem 2016; 139:839-847. [PMID: 27637918 DOI: 10.1111/jnc.13845] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/16/2022]
Abstract
Since the observation that aggregated α-synuclein, the pathological hallmark of Parkinson's disease (PD), is found in the gut in almost all patients, it has been suggested that the enteric nervous system (ENS) could be a starting point for α-synuclein pathology. α-synuclein has long been thought to occur as a monomer in living cells, but recent studies reported that it instead exists as a tetramer in non-neuronal cells and in neurons. Given the possible key role of the ENS in PD pathophysiology, we undertook the current research to characterize the native state of α-synuclein in rat primary culture of ENS and in adult human healthy ENS. Using amine-reactive cross-linking, we showed that, by contrast to cell lines and brain neurons, α-synuclein exists primarily as a monomer in intact enteric neurons, suggesting that the native state of α-synuclein is different between the ENS and the brain. Our results provide new insights into the widely discussed concepts of α-synuclein aggregation and misfolding in PD and raise issue about the possible transmission of α-synuclein from the ENS to the brain.
Collapse
Affiliation(s)
- Anne-Gaëlle Corbillé
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Michel Neunlist
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France
| | - Pascal Derkinderen
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| |
Collapse
|
28
|
Preterre C, Corbillé AG, Balloy G, Letournel F, Neunlist M, Derkinderen P. Optimizing Western Blots for the Detection of Endogenous α-Synuclein in the Enteric Nervous System. JOURNAL OF PARKINSONS DISEASE 2016; 5:765-72. [PMID: 26599299 DOI: 10.3233/jpd-150670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Alpha-synuclein containing inclusions in neurons, the characteristic pathological lesions of Parkinson's disease (PD), are not limited to the central nervous system, but also affect the enteric nervous system (ENS). This suggests that the ENS offer some potential as a surrogate of central nervous system pathology and that it may represent an original source of biomarkers for PD. However, the usefulness of α-synuclein detection in gastrointestinal biopsies as a biomarker for PD is still unclear, as the different immunohistochemical methods employed to date have led to conflicting results. OBJECTIVE Our aim is to propose an optimized immunoblotting method for the detection of endogenous α-synuclein in the healthy ENS that may be used to supplement the immunohistochemical analysis. METHODS Primary culture of rat ENS and homogenates of human small intestine were analyzed by Western Blot using seven different α-synuclein and phospho-α-synuclein antibodies along with two methods that increase α-synuclein retention on blot membranes, namely incubation of the membranes with paraformaldehyde (PFA) or treatment of samples with the crosslinker dithiobis[succinimidylpropionate] (DSP). RESULTS A moderate improvement in the detection of endogenous enteric α-synuclein was observed following membrane fixation with PFA for only two of the seven antibodies we tested. Immunodetection of total and phosphorylated α-synuclein in the ENS was markedly improved when samples were treated with DSP, regardless of the antibody used. CONCLUSIONS Our results demonstrate that the detection of α-synuclein in the gut by Western Blot can be optimized by using methods for enhanced membrane retention of the protein along with the appropriate antibody. Such an optimized protocol opens the way to the development of novel biomarkers for PD that will enable a quantification of α-synuclein in gastrointestinal biopsies.
Collapse
Affiliation(s)
- Cécile Preterre
- Inserm, U913, Nantes, F-44093, France.,Nantes University, Nantes, F-44093, France.,CHU Nantes, Department of Neurology, Nantes, F-44093, France
| | - Anne-Gaëlle Corbillé
- Inserm, U913, Nantes, F-44093, France.,Nantes University, Nantes, F-44093, France.,CHU Nantes, Department of Neurology, Nantes, F-44093, France
| | - Gaëlle Balloy
- Inserm, U913, Nantes, F-44093, France.,Nantes University, Nantes, F-44093, France.,CHU Nantes, Department of Neurology, Nantes, F-44093, France
| | - Franck Letournel
- CHU Angers, Neurobiology and Neuropathology Laboratory, Angers F-49033, France.,Université of Angers, UPRES EA3143, F-49033, France
| | - Michel Neunlist
- Inserm, U913, Nantes, F-44093, France.,Nantes University, Nantes, F-44093, France.,CHU Nantes, Department of Neurology, Nantes, F-44093, France.,CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Pascal Derkinderen
- Inserm, U913, Nantes, F-44093, France.,Nantes University, Nantes, F-44093, France.,CHU Nantes, Department of Neurology, Nantes, F-44093, France
| |
Collapse
|
29
|
Heuckeroth RO, Schäfer KH. Gene-environment interactions and the enteric nervous system: Neural plasticity and Hirschsprung disease prevention. Dev Biol 2016; 417:188-97. [PMID: 26997034 PMCID: PMC5026873 DOI: 10.1016/j.ydbio.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
Intestinal function is primarily controlled by an intrinsic nervous system of the bowel called the enteric nervous system (ENS). The cells of the ENS are neural crest derivatives that migrate into and through the bowel during early stages of organogenesis before differentiating into a wide variety of neurons and glia. Although genetic factors critically underlie ENS development, it is now clear that many non-genetic factors may influence the number of enteric neurons, types of enteric neurons, and ratio of neurons to glia. These non-genetic influences include dietary nutrients and medicines that may impact ENS structure and function before or after birth. This review summarizes current data about gene-environment interactions that affect ENS development and suggests that these factors may contribute to human intestinal motility disorders like Hirschsprung disease or irritable bowel syndrome.
Collapse
Affiliation(s)
- Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, USA; The Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Karl-Herbert Schäfer
- ENS Group, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany; University of Heidelberg, Paediatric Surgery Mannheim, Germany
| |
Collapse
|
30
|
Burgueño JF, Barba A, Eyre E, Romero C, Neunlist M, Fernández E. TLR2 and TLR9 modulate enteric nervous system inflammatory responses to lipopolysaccharide. J Neuroinflammation 2016; 13:187. [PMID: 27538577 PMCID: PMC4990868 DOI: 10.1186/s12974-016-0653-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 07/05/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Accumulating evidence suggest that the enteric nervous system (ENS) plays important roles in gastrointestinal inflammatory responses, which could be in part mediated by Toll-like receptor (TLR) activation. The aim of this study was to characterise the expression and functionality of TLR2/4/9 in the ENS. METHODS TLR2/4/9 expression was assessed in the plexuses of adult rats and embryonic ENS cultures by immunofluorescence and quantitative PCR. Following stimulation with TLR2/4/9 ligands or their combinations, activation of NF-kB, production of TNF-α, IL-6 and MCP-1 and chemoattraction of RAW264.7 macrophages were evaluated by means of Western blot, ELISA, immunofluorescence and migration assays in transwell inserts. RESULTS TLR2/4/9 staining colocalised with enteric neuronal markers, whereas their presence in enteroglial processes was low to inexistent. Stimulation of ENS cultures with selective ligands induced NF-kB activation and release of cytokines and chemokines by neurons and resident immunocytes. TLR2 neutralisation before lipopolysaccharide (LPS) challenge reduced production of inflammatory mediators, whereas combination of TLR2/4 ligands promoted macrophage migration. Combined stimulation of cultures with LPS and the CpG oligonucleotide 1826 (TLR4/9 ligands) caused a synergic increase in chemoattraction and cytokine production. CONCLUSIONS Our results suggest that the ENS, and particularly enteric neurons, can integrate a variety of microbial signals and respond in a relatively selective fashion, depending on the particular TLRs stimulated. These findings additionally suggest that the ENS is capable of initiating a defensive response against pathogens and expanding inflammation.
Collapse
Affiliation(s)
- Joan F Burgueño
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Albert Barba
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Elena Eyre
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Carolina Romero
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - Ester Fernández
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.
| |
Collapse
|
31
|
Cossais F, Durand T, Chevalier J, Boudaud M, Kermarrec L, Aubert P, Neveu I, Naveilhan P, Neunlist M. Postnatal development of the myenteric glial network and its modulation by butyrate. Am J Physiol Gastrointest Liver Physiol 2016; 310:G941-51. [PMID: 27056724 DOI: 10.1152/ajpgi.00232.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 03/16/2016] [Indexed: 02/08/2023]
Abstract
The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100β during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development.
Collapse
Affiliation(s)
- François Cossais
- INSERM, U913, Nantes, France; Université Nantes, Nantes, France; CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, France; and Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Tony Durand
- INSERM, U913, Nantes, France; Université Nantes, Nantes, France; CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, France; and Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Julien Chevalier
- INSERM, U913, Nantes, France; Université Nantes, Nantes, France; CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, France; and Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Marie Boudaud
- INSERM, U913, Nantes, France; Université Nantes, Nantes, France; CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, France; and Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Laetitia Kermarrec
- INSERM, U913, Nantes, France; Université Nantes, Nantes, France; CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, France; and Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Philippe Aubert
- INSERM, U913, Nantes, France; Université Nantes, Nantes, France; CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, France; and Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Isabelle Neveu
- INSERM, U913, Nantes, France; Université Nantes, Nantes, France; CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, France; and Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Philippe Naveilhan
- INSERM, U913, Nantes, France; Université Nantes, Nantes, France; CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, France; and Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Michel Neunlist
- INSERM, U913, Nantes, France; Université Nantes, Nantes, France; CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, France; and Centre de Recherche en Nutrition Humaine, Nantes, France
| |
Collapse
|
32
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
33
|
Tyrosine hydroxylase immunoreactivity is common in the enteric nervous system in teleosts. Cell Tissue Res 2015; 364:231-43. [DOI: 10.1007/s00441-015-2314-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022]
|
34
|
Liu X, Liu S, Xu Y, Liu X, Sun D. Bone morphogenetic protein 2 regulates the differentiation of nitrergic enteric neurons by modulating Smad1 signaling in slow transit constipation. Mol Med Rep 2015; 12:6547-54. [PMID: 26352281 PMCID: PMC4626182 DOI: 10.3892/mmr.2015.4297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 08/17/2015] [Indexed: 01/30/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily and have been implicated in chondrogenesis and neuronal differentiation. In order to examine the function of bone morphogenetic protein 2 (BMP‑2) on the differentiation of nitrergic enteric neurons in slow transit constipation (STC), the expression of BMP‑2 and neuronal nitric oxide synthase (nNOS) was investigated in the myenteric nerve plexus in STC and control tissues by immunohistochemical assays. The present study demonstrated that BMP‑2 and nNOS were expressed in the myenteric nerve plexus and their levels were differentially altered in the STC group and control group. In addition, the effect of BMP‑2 on primary myenteric neurons was investigated by measuring the neurite length. The results demonstrated that BMP‑2 regulated the differentiation of primary enteric neurons and increased the length of neurites compared with the control group. In addition, the effect of BMP‑2 on the expression of nNOS was also investigated in primary enteric neurons and the Smad1 signal transduction pathway by western blot analysis, reverse transcription quantitative polymerase chain reaction and immunofluorescence assay. The results suggested that BMP‑2 promoted the expression of nNOS in primary myenteric neurons and induced phosphorylation of Smad1. These data indicate a new role for BMP‑2 as an important transcriptional cofactor that regulates the differentiation of nitrergic enteric neurons through the Smad1 pathway. Intervention of BMP‑2 may be useful for the treatment of STC.
Collapse
Affiliation(s)
- Xuliang Liu
- Department of General Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shangming Liu
- Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Yanan Xu
- Department of Health Care For Cadre, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Xiuqin Liu
- Department of Internal Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Daqing Sun
- Department of General Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
35
|
Le Loupp AG, Bach-Ngohou K, Bourreille A, Boudin H, Rolli-Derkinderen M, Denis MG, Neunlist M, Masson D. Activation of the prostaglandin D2 metabolic pathway in Crohn's disease: involvement of the enteric nervous system. BMC Gastroenterol 2015; 15:112. [PMID: 26338799 PMCID: PMC4558965 DOI: 10.1186/s12876-015-0338-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023] Open
Abstract
Background Recent works provide evidence of the importance of the prostaglandin D2 (PGD2) metabolic pathway in inflammatory bowel diseases. We investigated the expression of PGD2 metabolic pathway actors in Crohn’s disease (CD) and the ability of the enteric nervous system (ENS) to produce PGD2 in inflammatory conditions. Methods Expression of key actors involved in the PGD2 metabolic pathway and its receptors was analyzed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in colonic mucosal biopsies of patients from three groups: controls, quiescent and active CD patients. To determine the ability of the ENS to secrete PGD2 in proinflammatory conditions, Lipocalin-type prostaglandin D synthase (L-PGDS) expression by neurons and glial cells was analyzed by immunostaining. PGD2 levels were determined in a medium of primary culture of ENS and neuro-glial coculture model treated by lipopolysaccharide (LPS). Results In patients with active CD, inflamed colonic mucosa showed significantly higher COX2 and L-PGDS mRNA expression, and significantly higher PGD2 levels than healthy colonic mucosa. On the contrary, peroxysome proliferator-activated receptor Gamma (PPARG) expression was reduced in inflamed colonic mucosa of CD patients with active disease. Immunostaining showed that L-PGDS was expressed in the neurons of human myenteric and submucosal plexi. A rat ENS primary culture model confirmed this expression. PGD2 levels were significantly increased on primary culture of ENS treated with LPS. This production was abolished by AT-56, a specific competitive L-PGDS inhibitor. The neuro-glial coculture model revealed that each component of the ENS, ECG and neurons, could contribute to PGD2 production. Conclusions Our results highlight the activation of the PGD2 metabolic pathway in Crohn’s disease. This study supports the hypothesis that in Crohn’s disease, enteric neurons and glial cells form a functional unit reacting to inflammation by producing PGD2.
Collapse
Affiliation(s)
- Anne-Gaelle Le Loupp
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Laboratoire de Biochimie, Institut de Biologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Kalyane Bach-Ngohou
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Laboratoire de Biochimie, Institut de Biologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Arnaud Bourreille
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Laboratoire de Biochimie, Institut de Biologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Hélène Boudin
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Malvyne Rolli-Derkinderen
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Marc G Denis
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Laboratoire de Biochimie, Institut de Biologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Michel Neunlist
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Damien Masson
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Laboratoire de Biochimie, Institut de Biologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| |
Collapse
|
36
|
Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel. J Clin Invest 2015; 125:899-907. [PMID: 25664848 DOI: 10.1172/jci76307] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The enteric nervous system (ENS) is sometimes called the "second brain" because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death. Here, we review molecular mechanisms and cellular processes that govern ENS development, identify areas in which more investigation is needed, and discuss the clinical implications of new basic research.
Collapse
|
37
|
Coquenlorge S, Duchalais E, Chevalier J, Cossais F, Rolli-Derkinderen M, Neunlist M. Modulation of lipopolysaccharide-induced neuronal response by activation of the enteric nervous system. J Neuroinflammation 2014; 11:202. [PMID: 25497784 PMCID: PMC4279994 DOI: 10.1186/s12974-014-0202-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/14/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Evidence continues to mount concerning the importance of the enteric nervous system (ENS) in controlling numerous intestinal functions in addition to motility and epithelial functions. Nevertheless, little is known concerning the direct participation of the ENS in the inflammatory response of the gut during infectious or inflammatory insults. In the present study we analyzed the ENS response to bacterial lipopolysaccharide, in particular the production of a major proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α). METHODS TNF-α expression (measured by qPCR, quantitative Polymerase Chain Reaction) and production (measured by ELISA) were measured in human longitudinal muscle-myenteric plexus (LMMP) and rat ENS primary cultures (rENSpc). They were either treated or not treated with lipopolysaccharide (LPS) in the presence or not of electrical field stimulation (EFS). Activation of extracellular signal-regulated kinase (ERK) and 5'-adenosine monophosphate-activated protein kinase (AMPK) pathways was analyzed by immunocytochemistry and Western blot analysis. Their implications were studied using specific inhibitors (U0126, mitogen-activated protein kinase kinase, MEK, inhibitor and C compound, AMPK inhibitor). We also analyzed toll-like receptor 2 (TLR2) expression and interleukin-6 (IL-6) production after LPS treatment simultaneously with EFS or TNF-α-neutralizing antibody. RESULTS Treatment of human LMMP or rENSpc with LPS induced an increase in TNF-α production. Activation of the ENS by EFS significantly inhibited TNF-α production. This regulation occurred at the transcriptional level. Signaling analyses showed that LPS induced activation of ERK but not AMPK, which was constitutively activated in rENSpc neurons. Both U0126 and C compound almost completely prevented LPS-induced TNF-α production. In the presence of LPS, EFS inhibited the ERK and AMPK pathways. In addition, we demonstrated using TNF-α-neutralizing antibody that LPS-induced TNF-α production increased TLR2 expression and reduced IL-6 production. CONCLUSIONS Our results show that LPS induced TNF-α production by enteric neurons through activation of the canonical ERK pathway and also in an AMPK-dependent manner. ENS activation through the inhibition of these pathways decreased TNF-α production, thereby modulating the inflammatory response induced by endotoxin.
Collapse
Affiliation(s)
- Sabrina Coquenlorge
- Neuropathies of the enteric nervous system and digestive diseases, INSERM UMR913, School of Medicine, University of Nantes, 1, rue Gaston Veil, Nantes, F-44035, France. .,University of Nantes, 1 quai de Tourville, BP 13522, Nantes, Cedex 1, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire, Nantes, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Centre de Recherche en Nutrition Humaine, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Emilie Duchalais
- Neuropathies of the enteric nervous system and digestive diseases, INSERM UMR913, School of Medicine, University of Nantes, 1, rue Gaston Veil, Nantes, F-44035, France. .,University of Nantes, 1 quai de Tourville, BP 13522, Nantes, Cedex 1, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire, Nantes, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Centre de Recherche en Nutrition Humaine, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Julien Chevalier
- Neuropathies of the enteric nervous system and digestive diseases, INSERM UMR913, School of Medicine, University of Nantes, 1, rue Gaston Veil, Nantes, F-44035, France. .,University of Nantes, 1 quai de Tourville, BP 13522, Nantes, Cedex 1, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire, Nantes, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Centre de Recherche en Nutrition Humaine, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Francois Cossais
- Neuropathies of the enteric nervous system and digestive diseases, INSERM UMR913, School of Medicine, University of Nantes, 1, rue Gaston Veil, Nantes, F-44035, France. .,University of Nantes, 1 quai de Tourville, BP 13522, Nantes, Cedex 1, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire, Nantes, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Centre de Recherche en Nutrition Humaine, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Malvyne Rolli-Derkinderen
- Neuropathies of the enteric nervous system and digestive diseases, INSERM UMR913, School of Medicine, University of Nantes, 1, rue Gaston Veil, Nantes, F-44035, France. .,University of Nantes, 1 quai de Tourville, BP 13522, Nantes, Cedex 1, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire, Nantes, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Centre de Recherche en Nutrition Humaine, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Michel Neunlist
- Neuropathies of the enteric nervous system and digestive diseases, INSERM UMR913, School of Medicine, University of Nantes, 1, rue Gaston Veil, Nantes, F-44035, France. .,University of Nantes, 1 quai de Tourville, BP 13522, Nantes, Cedex 1, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire, Nantes, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Centre de Recherche en Nutrition Humaine, Hopital Hôtel-Dieu, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| |
Collapse
|
38
|
Frequency decoding of calcium oscillations. Biochim Biophys Acta Gen Subj 2014; 1840:964-9. [DOI: 10.1016/j.bbagen.2013.11.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 11/15/2013] [Indexed: 01/14/2023]
|
39
|
Khen-Dunlop N, Sarnacki S, Victor A, Grosos C, Menard S, Soret R, Goudin N, Pousset M, Sauvat F, Revillon Y, Cerf-Bensussan N, Neunlist M. Prenatal intestinal obstruction affects the myenteric plexus and causes functional bowel impairment in fetal rat experimental model of intestinal atresia. PLoS One 2013; 8:e62292. [PMID: 23667464 PMCID: PMC3648556 DOI: 10.1371/journal.pone.0062292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/19/2013] [Indexed: 11/30/2022] Open
Abstract
Background Intestinal atresia is a rare congenital disorder with an incidence of 3/10 000 birth. About one-third of patients have severe intestinal dysfunction after surgical repair. We examined whether prenatal gastrointestinal obstruction might effect on the myenteric plexus and account for subsequent functional disorders. Methodology/Principal Findings We studied a rat model of surgically induced antenatal atresia, comparing intestinal samples from both sides of the obstruction and with healthy rat pups controls. Whole-mount preparations of the myenteric plexus were stained for choline acetyltransferase (ChAT) and nitric oxide synthase (nNOS). Quantitative reverse transcription PCR was used to analyze mRNAs for inflammatory markers. Functional motility and permeability analyses were performed in vitro. Phenotypic studies were also performed in 8 newborns with intestinal atresia. In the experimental model, the proportion of nNOS-immunoreactive neurons was similar in proximal and distal segments (6.7±4.6% vs 5.6±4.2%, p = 0.25), but proximal segments contained a higher proportion of ChAT-immunoreactive neurons (13.2±6.2% vs 7.5±4.3%, p = 0.005). Phenotypic changes were associated with a 100-fold lower concentration-dependent contractile response to carbachol and a 1.6-fold higher EFS-induced contractile response in proximal compared to distal segments. Transcellular (p = 0.002) but not paracellular permeability was increased. Comparison with controls showed that modifications involved not only proximal but also distal segments. Phenotypic studies in human atresia confirmed the changes in ChAT expression. Conclusion Experimental atresia in fetal rat induces differential myenteric plexus phenotypical as well as functional changes (motility and permeability) between the two sides of the obstruction. Delineating these changes might help to identify markers predictive of motility dysfunction and to define guidelines for post-surgical care.
Collapse
|
40
|
Hao MM, Bornstein JC, Vanden Berghe P, Lomax AE, Young HM, Foong JPP. The emergence of neural activity and its role in the development of the enteric nervous system. Dev Biol 2012; 382:365-74. [PMID: 23261929 DOI: 10.1016/j.ydbio.2012.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, the University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
41
|
de Heuvel E, Wallace L, Sharkey KA, Sigalet DL. Glucagon-like peptide 2 induces vasoactive intestinal polypeptide expression in enteric neurons via phophatidylinositol 3-kinase-γ signaling. Am J Physiol Endocrinol Metab 2012; 303:E994-1005. [PMID: 22895780 PMCID: PMC3469609 DOI: 10.1152/ajpendo.00291.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glucagon-like peptide 2 (GLP-2) is an enteroendocrine hormone trophic for intestinal mucosa; it has been shown to increase enteric neuronal expression of vasoactive intestinal polypeptide (VIP) in vivo. We hypothesized that GLP-2 would regulate VIP expression in enteric neurons via a phosphatidylinositol-3 kinase-γ (PI3Kγ) pathway. The mechanism of action of GLP-2 was investigated using primary cultures derived from the submucosal plexus (SMP) of the rat and mouse colon. GLP-2 (10(-8) M) stimulation for 24 h increased the proportion of enteric neurons expressing VIP (GLP-2: 40 ± 6% vs. control: 22 ± 5%). GLP-2 receptor expression was identified by immunohistochemistry on neurons (HuC/D+) and glial cells (GFAP+) but not on smooth muscle or fibroblasts in culture. Over 1-4 h, GLP-2 stimulation of SMP increased phosphorylated Akt/Akt ratios 6.1-fold, phosphorylated ERK/ERK 2.5-fold, and p70S6K 2.2-fold but did not affect intracellular cAMP. PI3Kγ gene deletion or pharmacological blockade of PI3Kγ, mammalian target of rapamycin (mTOR), and MEK/ERK pathways blocked the increase in VIP expression by GLP-2. GLP-2 increased the expression of growth factors and their receptors in SMP cells in culture [IGF-1r (3.2-fold increase), EGFr (5-fold), and ErbB-2-4r (6- to 7-fold)] and ligands [IGF-I (1.5-fold), amphiregulin (2.5-fold), epiregulin (3.2-fold), EGF (7.5-fold), heparin-bound EGF (2.0-fold), β-cellulin (50-fold increase), and neuregulins 2-4 (300-fold increase) (by qRT-PCR)]. We conclude that GLP-2 acts on enteric neurons and glial cells in culture via a PI3Kγ/Akt pathway, stimulating neuronal differentiation via mTOR and ERK pathways, and expression of receptors and ligands for the IGF-I and ErbB pathways.
Collapse
Affiliation(s)
- Elaine de Heuvel
- Gastrointestinal Research Group, Snyder Institute for Chronic Diseases
| | | | | | | |
Collapse
|
42
|
Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 2012; 143:1006-16.e4. [PMID: 22732731 PMCID: PMC3458182 DOI: 10.1053/j.gastro.2012.06.034] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Altered gastrointestinal motility is associated with significant morbidity and health care costs. Toll-like receptors (TLR) regulate intestinal homeostasis. We examined the roles of TLR4 signaling in survival of enteric neurons and gastrointestinal motility. METHODS We assessed changes in intestinal motility by assessing stool frequency, bead expulsion, and isometric muscle recordings of colonic longitudinal muscle strips from mice that do not express TLR4 (Tlr4(Lps-d) or TLR4(-/-)) or Myd88 (Myd88(-/-)), in wild-type germ-free mice or wild-type mice depleted of the microbiota, and in mice with neural crest-specific deletion of Myd88 (Wnt1Cre(+/-)/Myd88(fl/fl)). We studied the effects of the TLR4 agonist lipopolysaccharide (LPS) on survival of cultured, immortalized fetal enteric neurons and enteric neuronal cells isolated from wild-type and Tlr4(Lps-d) mice at embryonic day 13.5. RESULTS There was a significant delay in gastrointestinal motility and reduced numbers of nitrergic neurons in TLR4(Lps-d), TLR4(-/-), and Myd88(-/-) mice compared with wild-type mice. A similar phenotype was observed in germ-free mice, mice depleted of intestinal microbiota, and Wnt1Cre(+/-)/Myd88(fl/fl) mice. Incubation of enteric neuronal cells with LPS led to activation of the transcription factor nuclear factor (NF)-κB and increased cell survival. CONCLUSIONS Interactions between enteric neurons and microbes increases neuron survival and gastrointestinal motility in mice. LPS activation of TLR4 and NF-κB appears to promote survival of enteric neurons. Factors that regulate TLR4 signaling in neurons might be developed to alter gastrointestinal motility.
Collapse
Affiliation(s)
- Mallappa Anitha
- Division of Digestive Diseases, Emory University, 615 Michael Street, Atlanta, GA 30322
| | - Matam Vijay-Kumar
- Center for Inflammation, Immunity & Infection Department of Biology, Georgia State University, Petit Science Center, 100 Piedmont Avenue, Atlanta, GA 30303
| | - Shanthi V. Sitaraman
- Division of Digestive Diseases, Emory University, 615 Michael Street, Atlanta, GA 30322
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity & Infection Department of Biology, Georgia State University, Petit Science Center, 100 Piedmont Avenue, Atlanta, GA 30303
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University, 615 Michael Street, Atlanta, GA 30322
| |
Collapse
|
43
|
Noorian AR, Taylor GM, Annerino DM, Greene JG. Neurochemical phenotypes of myenteric neurons in the rhesus monkey. J Comp Neurol 2012; 519:3387-401. [PMID: 21618236 DOI: 10.1002/cne.22679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the neurochemical composition of the enteric nervous system (ENS) is critical for elucidating neurological function in the gastrointestinal (GI) tract in health and disease. Despite their status as the closest models of human neurological systems, relatively little is known about enteric neurochemistry in nonhuman primates. We describe neurochemical coding of the enteric nervous system, specifically the myenteric plexus, of the rhesus monkey (Macaca mulatta) by immunohistochemistry and directly compare it to human tissues. There are considerable differences in the myenteric plexus along different segments of the monkey GI tract. While acetylcholine neurons make up the majority of myenteric neurons in the stomach (70%), they are a minority in the rectum (47%). Conversely, only 22% of gastric myenteric neurons express nitric oxide synthase (NOS) compared to 52% in the rectum. Vasoactive intestinal peptide (VIP) is more prominent in the stomach (37%) versus the rest of the GI tract (≈10%), and catecholamine neurons are rare (≈1%). There is significant coexpression of NOS and VIP in myenteric neurons that is more prominent in the proximal GI tract. Taken as a whole, these data provide insight into the neurochemical anatomy underlying GI motility. While overall similarity to other mammalian species is clear, there are some notable differences between the ENS of rhesus monkeys, humans, and other species that will be important to take into account when evaluating models of human diseases in animals.
Collapse
Affiliation(s)
- Ali Reza Noorian
- Department of Neurology and the Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
44
|
Abdo H, Mahé MM, Derkinderen P, Bach-Ngohou K, Neunlist M, Lardeux B. The omega-6 fatty acid derivative 15-deoxy-Δ¹²,¹⁴-prostaglandin J2 is involved in neuroprotection by enteric glial cells against oxidative stress. J Physiol 2012; 590:2739-50. [PMID: 22473776 DOI: 10.1113/jphysiol.2011.222935] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that enteric glial cells (EGCs) are critical for enteric neuron survival and functions. In particular, EGCs exert direct neuroprotective effects mediated in part by the release of glutathione. However, other glial factors such as those identified as regulating the intestinal epithelial barrier and in particular the omega-6 fatty acid derivative 15-deoxy-Δ¹²,¹⁴-prostaglandin J2 (15d-PGJ2) could also be involved in EGC-mediated neuroprotection. Therefore, our study aimed to assess the putative role of EGC-derived 15d-PGJ2 in their neuroprotective effects. We first showed that pretreatment of primary cultures of enteric nervous system(ENS)or humann euroblastoma cells (SH-SY5Y)with 15d-PGJ2 dose dependently prevented hydrogen peroxide neurotoxicity. Furthermore, neuroprotective effects of EGCs were significantly inhibited following genetic invalidation in EGCs of the key enzyme involved in 15d-PGJ2 synthesis, i.e. L-PGDS. We next showed that 15d-PGJ2 effects were mediated by an Nrf2 dependent pathway but were not blocked by PPARγ inhibitor (GW9662) in SH-SY5Y cells and enteric neurons. Finally, 15d-PGJ2 induced a significant increase in glutamate cysteine ligase expression and intracellular glutathione in SH cells and enteric neurons. In conclusion, we identified 15d-PGJ2 as a novel glial-derived molecule with neuroprotective effects in the ENS. This study further supports the concept that omega-6 derivatives such as 15d-PGJ2 might be used in preventive and/or therapeutic strategies for the treatment of enteric neuropathies.
Collapse
Affiliation(s)
- Hind Abdo
- INSERM, U913, Nantes, F-44000, France
| | | | | | | | | | | |
Collapse
|
45
|
Aumann T, Horne M. Activity‐dependent regulation of the dopamine phenotype in substantia nigra neurons. J Neurochem 2012; 121:497-515. [DOI: 10.1111/j.1471-4159.2012.07703.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tim Aumann
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Neuroscience, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Mal Horne
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- St Vincent’s Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
46
|
Abstract
For many years it has been assumed that the identity of the transmitters expressed by neurons is stable and unchanging. Recent work, however, shows that electrical activity can respecify neurotransmitter expression during development and in the mature nervous system, and an understanding is emerging of the molecular mechanisms underlying activity-dependent transmitter respecification. Changes in postsynaptic neurotransmitter receptor expression accompany and match changes in transmitter specification, thus enabling synaptic transmission. The functional roles of neurotransmitter respecification are beginning to be understood and appear to involve homeostatic synaptic regulation, which in turn influences behaviour. Activation of this novel form of plasticity by sensorimotor stimuli may provide clinical benefits.
Collapse
|
47
|
Abstract
Neurons of the enteric nervous system (ENS) arise from neural crest cells that migrate into and along the developing gastrointestinal tract. A subpopulation of these neural-crest derived cells express pan-neuronal markers early in development, shortly after they first enter the gut. However, it is unknown whether these early enteric "neurons" are electrically active. In this study we used live Ca(2+) imaging to examine the activity of enteric neurons from mice at embryonic day 11.5 (E11.5), E12.5, E15.5, and E18.5 that were dissociated and cultured overnight. PGP9.5-immunoreactive neurons from E11.5 gut cultures responded to electrical field stimulation with fast [Ca(2+)](i) transients that were sensitive to TTX and ω-conotoxin GVIA, suggesting roles for voltage-gated Na(+) channels and N-type voltage-gated Ca(2+) channels. E11.5 neurons were also responsive to the nicotinic cholinergic agonist, dimethylphenylpiperazinium, and to ATP. In addition, spontaneous [Ca(2+)](i) transients were present. Similar responses were observed in neurons from older embryonic gut. Whole-cell patch-clamp recordings performed on E12.5 enteric neurons after 2-10 h in culture revealed that these neurons fired both spontaneous and evoked action potentials. Together, our results show that enteric neurons exhibit mature forms of activity at early stages of ENS development. This is the first investigation to directly examine the presence of neural activity during enteric neuron development. Along with the spinal cord and hindbrain, the ENS appears to be one of the earliest parts of the nervous system to exhibit electrical activity.
Collapse
|
48
|
Baudry C, Reichardt F, Marchix J, Bado A, Schemann M, des Varannes SB, Neunlist M, Moriez R. Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor. J Physiol 2011; 590:533-44. [PMID: 22124147 DOI: 10.1113/jphysiol.2011.219717] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nutritional factors can induce profound neuroplastic changes in the enteric nervous system (ENS), responsible for changes in gastrointestinal (GI) motility. However, long-term effects of a nutritional imbalance leading to obesity, such as Western diet (WD), upon ENS phenotype and control of GI motility remain unknown. Therefore, we investigated the effects of WD-induced obesity (DIO) on ENS phenotype and function as well as factors involved in functional plasticity. Mice were fed with normal diet (ND) or WD for 12 weeks. GI motility was assessed in vivo and ex vivo. Myenteric neurons and glia were analysed with immunohistochemical methods using antibodies against Hu, neuronal nitric oxide synthase (nNOS), Sox-10 and with calcium imaging techniques. Leptin and glial cell line-derived neurotrophic factor (GDNF) were studied using immunohistochemical, biochemical or PCR methods in mice and primary culture of ENS. DIO prevented the age-associated decrease in antral nitrergic neurons observed in ND mice. Nerve stimulation evoked a stronger neuronal Ca(2+) response in WD compared to ND mice. DIO induced an NO-dependent increase in gastric emptying and neuromuscular transmission in the antrum without any change in small intestinal transit. During WD but not ND, a time-dependent increase in leptin and GDNF occurred in the antrum. Finally, we showed that leptin increased GDNF production in the ENS and induced neuroprotective effects mediated in part by GDNF. These results demonstrate that DIO induces neuroplastic changes in the antrum leading to an NO-dependent acceleration of gastric emptying. In addition, DIO induced neuroplasticity in the ENS is likely to involve leptin and GDNF.
Collapse
Affiliation(s)
- Charlotte Baudry
- Inserm, U913, Institut F´ed´eratif de Recherche Th´erapeutique, IFR26 Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Calinescu AA, Liu T, Wang MM, Borjigin J. Transsynaptic activity-dependent regulation of axon branching and neurotrophin expression in vivo. J Neurosci 2011; 31:12708-15. [PMID: 21900550 PMCID: PMC3174489 DOI: 10.1523/jneurosci.2172-11.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/05/2011] [Accepted: 07/12/2011] [Indexed: 01/28/2023] Open
Abstract
The two major classes of activity-dependent neuroplasticity predict different consequences of activity alteration on circuit response. Hebbian plasticity (positive feedback) posits that alteration of neuronal activity causes a parallel response within a circuit. In contrast, homeostatic plasticity (negative feedback) predicts that altering neuronal activity results in compensatory responses within a circuit. The relative roles of these modes of plasticity in vivo are unclear, since neuronal circuits are difficult to manipulate in the intact organism. In this study, we tested the in vivo effects of activity deprivation in the superior cervical ganglion-pineal circuit of adult rats, which can be noninvasively silenced by exposing animals to constant light. We demonstrated that total deprivation of sympathetic activity markedly decreased the presence of axonal proteins in the pineal and reduced the density and thickness of sympathetic axonal arbors. In addition, we demonstrated that sympathetic inactivity eliminated pineal function and markedly decreased pineal expression of neurotrophins. Administration of β-adrenergic agonist restored the expression of presynaptic and postsynaptic proteins. Furthermore, compensatory axonal growth through collateral sprouting, normally seen following unilateral denervation of the pineal, was profoundly impaired in the absence of neural activity. Thus, these data suggest that sympathetic axonal terminals are maintained by neural activity that induces neurotrophins, which may act through a retrograde mechanism to preserve the integrity of axonal arbors via a positive feedback loop. Conversely, by using Hebbian-like neuroplasticity, silent yet intact circuits enter a hibernation mode marked by reduction of presynaptic axonal structures and dramatically reduced postsynaptic expression of neurotrophins.
Collapse
Affiliation(s)
| | - Tiecheng Liu
- Department of Molecular and Integrative Physiology and
| | - Michael M. Wang
- Department of Molecular and Integrative Physiology and
- Department of Neurology, University of Michigan Medical School, and
- Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan 48109-5622
| | - Jimo Borjigin
- Department of Molecular and Integrative Physiology and
| |
Collapse
|
50
|
De Quelen F, Chevalier J, Rolli-Derkinderen M, Mourot J, Neunlist M, Boudry G. n-3 polyunsaturated fatty acids in the maternal diet modify the postnatal development of nervous regulation of intestinal permeability in piglets. J Physiol 2011; 589:4341-52. [PMID: 21746785 DOI: 10.1113/jphysiol.2011.214056] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intestinal epithelial barrier (IEB) plays a key role in the maintenance of gut homeostasis and the development of the immune system in newborns. The enteric nervous system (ENS), a key regulator of gastrointestinal functions, has been shown to be modulated by nutritional factors. However, it remains currently unknown whether maternal diet, in particular n-3 polyunsaturated fatty acids (n-3PUFAs), can impact upon the IEB in newborn piglets and whether the ENS is involved in this effect. Sows received either a control diet (lard based) or an n-3PUFA diet (linseed oil based) during gestation and lactation. Intestinal paracellular permeability was assessed in Ussing chambers on piglets at birth, 3, 7, 14, 21 and 28 postnatal days (PND). Basal jejunal permeability increased significantly and similarly in both groups until PND14 and decreased thereafter. However, at PND28, permeability was higher in n-3PUFA animals as compared to controls. In addition, a vasoactive intestinal peptide (VIP) receptor antagonist increased paracellular permeability in controls but not in n-3PUFA piglets. Conversely, atropine and hexamethonium decreased paracellular permeability in the n-3PUFA group but not in the control group. Moreover, the n-3PUFA diet increased the proportion of choline acetyltransferase (ChAT)-immunoreactive (IR) neurons and decreased the proportion of VIP-IR neurons in the submucosal plexus of piglet jejunum compared to controls. In addition, in primary culture of rat ENS, we showed that 20:5n-3 but not 18:3n-3 increased the proportion of ChAT-IR neurons and decreased the proportion of VIP-IR neurons. In conclusion, supplementation of the maternal diet with n-3PUFAs modified intestinal permeability probably via diet-induced neuroplastic changes in the ENS of newborn piglets.
Collapse
Affiliation(s)
- F De Quelen
- INRA, UMR 1079, SENAH, F-35000 Rennes, France; Agrocampus Rennes, UMR 1079, SENAH, F-35000 Rennes, France; Valorex, F-35210 Combourtillé, France
| | | | | | | | | | | |
Collapse
|