1
|
Makowczenko KG, Jastrzebski JP, Kiezun M, Paukszto L, Dobrzyn K, Smolinska N, Kaminski T. Adaptation of the Porcine Pituitary Transcriptome, Spliceosome and Editome during Early Pregnancy. Int J Mol Sci 2023; 24:ijms24065946. [PMID: 36983019 PMCID: PMC10053595 DOI: 10.3390/ijms24065946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The physiological mechanisms of the porcine reproduction are relatively well-known. However, transcriptomic changes and the mechanisms accompanying transcription and translation processes in various reproductive organs, as well as their dependence on hormonal status, are still poorly understood. The aim of this study was to gain a principal understanding of alterations within the transcriptome, spliceosome and editome occurring in the pituitary of the domestic pig (Sus scrofa domestica L.), which controls basic physiological processes in the reproductive system. In this investigation, we performed extensive analyses of data obtained by high-throughput sequencing of RNA from the gilts' pituitary anterior lobes during embryo implantation and the mid-luteal phase of the estrous cycle. During analyses, we obtained detailed information on expression changes of 147 genes and 43 long noncoding RNAs, observed 784 alternative splicing events and also found the occurrence of 8729 allele-specific expression sites and 122 RNA editing events. The expression profiles of the selected 16 phenomena were confirmed by PCR or qPCR techniques. As a final result of functional meta-analysis, we acquired knowledge regarding intracellular pathways that induce changes in the processes accompanying transcription and translation regulation, which may induce modifications in the secretory activity of the porcine adenohypophyseal cells.
Collapse
Affiliation(s)
- Karol G Makowczenko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-719 Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Delpire E, Ben-Ari Y. A Wholistic View of How Bumetanide Attenuates Autism Spectrum Disorders. Cells 2022; 11:2419. [PMID: 35954263 PMCID: PMC9367773 DOI: 10.3390/cells11152419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023] Open
Abstract
The specific NKCC1 cotransporter antagonist, bumetanide, attenuates the severity of Autism Spectrum Disorders (ASD), and many neurodevelopmental or neurodegenerative disorders in animal models and clinical trials. However, the pervasive expression of NKCC1 in many cell types throughout the body is thought to challenge the therapeutic efficacy of bumetanide. However, many peripheral functions, including intestinal, metabolic, or vascular, etc., are perturbed in brain disorders contributing to the neurological sequels. Alterations of these functions also increase the incidence of the disorder suggesting complex bidirectional links with the clinical manifestations. We suggest that a more holistic view of ASD and other disorders is warranted to account for the multiple sites impacted by the original intra-uterine insult. From this perspective, large-spectrum active repositioned drugs that act centrally and peripherally might constitute a useful approach to treating these disorders.
Collapse
Affiliation(s)
- Eric Delpire
- Departments of Anesthesiology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yehezkel Ben-Ari
- NeuroChlore, Campus Scientifique de Luminy, 163 Route de Luminy, 13273 Marseilles, France
| |
Collapse
|
3
|
Ben-Ari Y, Cherubini E. The GABA Polarity Shift and Bumetanide Treatment: Making Sense Requires Unbiased and Undogmatic Analysis. Cells 2022; 11:396. [PMID: 35159205 PMCID: PMC8834580 DOI: 10.3390/cells11030396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
GABA depolarizes and often excites immature neurons in all animal species and brain structures investigated due to a developmentally regulated reduction in intracellular chloride concentration ([Cl-]i) levels. The control of [Cl-]i levels is mediated by the chloride cotransporters NKCC1 and KCC2, the former usually importing chloride and the latter exporting it. The GABA polarity shift has been extensively validated in several experimental conditions using often the NKCC1 chloride importer antagonist bumetanide. In spite of an intrinsic heterogeneity, this shift is abolished in many experimental conditions associated with developmental disorders including autism, Rett syndrome, fragile X syndrome, or maternal immune activation. Using bumetanide, an EMA- and FDA-approved agent, many clinical trials have shown promising results with the expected side effects. Kaila et al. have repeatedly challenged these experimental and clinical observations. Here, we reply to the recent reviews by Kaila et al. stressing that the GABA polarity shift is solidly accepted by the scientific community as a major discovery to understand brain development and that bumetanide has shown promising effects in clinical trials.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Neurochlore, Batiment Beret Delaage, Campus Scientifique de Luminy, 13009 Marseille, France
| | - Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, 00161 Roma, Italy;
| |
Collapse
|
4
|
Cardoso D, Cardoso RC, de Paula Nogueira G. Functions of the GABAergic system on serum LH concentrations in pre-pubertal Nellore heifers. Anim Reprod Sci 2021; 229:106764. [PMID: 33991835 DOI: 10.1016/j.anireprosci.2021.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
This study was conducted to evaluate the luteinizing hormone (LH) secretion pattern after gamma-aminobutyric acid (GABAA) antagonist to determine the effects of the GABAergic system on LH secretion during reproductive maturation in pre-pubertal Nellore heifers. Nellore heifers (n = 10) were administered a picrotoxin injection of 0.18 mg/kg, i.v. Blood samples were collected every 15 min for 3 h at different developmental stages (8, 10, 14 and 17 mo of age). Plasma concentrations of LH were quantified using an RIA (sensitivity of 0.04 ng/mL and CV of 15 %). There was an interaction between treatment and age (P = 0.034). Picrotoxin-treated heifers had lesser (P ≤ 0.05) LH mean concentrations during a 3 h period at 10 and 17 mo of age compared to control heifers (P ≤ 0.05). Comparing the period before and after Picrotoxin injection in the same animals, there was a 33 % decrease in LH concentration at 8 mo of age (P = 0.0165). These results indicate the GABAergic system has a stimulatory function in inducing LH secretion in pre-pubertal Nellore heifers. These findings corroborate previous results that GABA increases GnRH/LH secretion in other species during the pre-pubertal period.
Collapse
Affiliation(s)
- Daniel Cardoso
- Biological Institute, São Paulo Agency for Agribusiness Technology, Secretary of Agriculture and Food Supply, São Paulo, Brazil
| | | | | |
Collapse
|
5
|
Wang K, Kretschmannova K, Prévide RM, Smiljanic K, Chen Q, Fletcher PA, Sherman A, Stojilkovic SS. Cell-Type-Specific Expression Pattern of Proton-Sensing Receptors and Channels in Pituitary Gland. Biophys J 2020; 119:2335-2348. [PMID: 33098866 DOI: 10.1016/j.bpj.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
In mammalian cells, extracellular protons act as orthosteric and allosteric ligands for multiple receptors and channels. The aim of this study is to identify proton sensors in the rat pituitary gland. qRT-PCR analysis indicated the expression of G-protein-coupled receptor 68 gene (Gpr68) and acid-sensing ion channel (ASIC) genes Asic1, Asic2, and Asic4 in anterior pituitary cells and Asic1 and Asic2 in immortalized GH3 pituitary cells. Asic1a and Asic2b were the dominant splice isoforms. Single anterior pituitary cell RNA sequencing and immunocytochemical analysis showed that nonexcitable folliculostellate cells express GPR68 gene and protein, whereas excitable secretory cells express ASIC genes and proteins. Asic1 was detected in all secretory cell types, Asic2 in gonadotrophs, thyrotrophs, and somatotrophs, and Asic4 in lactotrophs. Extracellular acidification activated two types of currents in a concentration-dependent manner: a fast-developing, desensitizing current with an estimated EC50-value of pH 6.7 and a slow-developing, non-desensitizing current that required a higher proton concentration for activation. The desensitizing current was abolished by removal of bath sodium and application of amiloride, a blocker of ASIC channels, whereas the non-desensitizing current was amiloride insensitive and voltage dependent. Activation of both currents increased the excitability of secretory pituitary cells, consistent with their potential physiological relevance in control of voltage-gated calcium influx and calcium-dependent cellular functions.
Collapse
Affiliation(s)
- Kai Wang
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Karla Kretschmannova
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Rafael M Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Qing Chen
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland.
| |
Collapse
|
6
|
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202:105725. [PMID: 32652201 DOI: 10.1016/j.jsbmb.2020.105725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/02/2023]
Abstract
The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
7
|
Sivcev S, Slavikova B, Rupert M, Ivetic M, Nekardova M, Kudova E, Zemkova H. Synthetic testosterone derivatives modulate rat P2X2 and P2X4 receptor channel gating. J Neurochem 2019; 150:28-43. [PMID: 31069814 DOI: 10.1111/jnc.14718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
P2X receptors (P2XRs) are ATP-gated cationic channels that are allosterically modulated by numerous compounds, including steroids and neurosteroids. These compounds may both inhibit and potentiate the activity of P2XRs, but sex steroids such as 17β-estradiol or progesterone are reported to be inactive. Here, we tested a hypothesis that testosterone, another sex hormone, modulates activity of P2XRs. We examined actions of native testosterone and a series of testosterone derivatives on the gating of recombinant P2X2R, P2X4R and P2X7R and native channels expressed in pituitary cells and hypothalamic neurons. The 17β-ester derivatives of testosterone rapidly and positively modulate the 1 µM ATP-evoked currents in P2X2R- and P2X4R-expressing cells, but not agonist-evoked currents in P2X7R-expressing cells. In general, most of the tested testosterone derivatives are more potent modulators than endogenous testosterone. The comparison of chemical structures and whole-cell recordings revealed that their interactions with P2XRs depend on the lipophilicity and length of the alkyl chain at position C-17. Pre-treatment with testosterone butyrate or valerate increases the sensitivity of P2X2R and P2X4R to ATP by several fold, reduces the rate of P2X4R desensitization, accelerates resensitization, and enhances ethidium uptake by P2X4R. Native channels are also potentiated by testosterone derivatives, while endogenously expressed GABA receptors type A are inhibited. The effect of ivermectin, a P2X4R-specific allosteric modulator, on deactivation is antagonized by testosterone derivatives in a concentration-dependent manner. Together, our results provide evidence for potentiation of particular subtypes of P2XRs by testosterone derivatives and suggest a potential role of ivermectin binding site for steroid-induced modulation. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Marian Rupert
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Nekardova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Zemková H, Stojilkovic SS. Neurotransmitter receptors as signaling platforms in anterior pituitary cells. Mol Cell Endocrinol 2018; 463:49-64. [PMID: 28684290 PMCID: PMC5752632 DOI: 10.1016/j.mce.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
The functions of anterior pituitary cells are controlled by two major groups of hypothalamic and intrapituitary ligands: one exclusively acts on G protein-coupled receptors and the other activates both G protein-coupled receptors and ligand-gated receptor channels. The second group of ligands operates as neurotransmitters in neuronal cells and their receptors are termed as neurotransmitter receptors. Most information about pituitary neurotransmitter receptors was obtained from secretory studies, RT-PCR analyses of mRNA expression and immunohistochemical and biochemical analyses, all of which were performed using a mixed population of pituitary cells. However, recent electrophysiological and imaging experiments have characterized γ-aminobutyric acid-, acetylcholine-, and ATP-activated receptors and channels in single pituitary cell types, expanding this picture and revealing surprising differences in their expression between subtypes of secretory cells and between native and immortalized pituitary cells. The main focus of this review is on the electrophysiological and pharmacological properties of these receptors and their roles in calcium signaling and calcium-controlled hormone secretion.
Collapse
Affiliation(s)
- Hana Zemková
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology, ASCR, Prague, Czech Republic.
| | - Stanko S Stojilkovic
- Sections on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
9
|
Stojilkovic SS, Bjelobaba I, Zemkova H. Ion Channels of Pituitary Gonadotrophs and Their Roles in Signaling and Secretion. Front Endocrinol (Lausanne) 2017; 8:126. [PMID: 28649232 PMCID: PMC5465261 DOI: 10.3389/fendo.2017.00126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gonadotrophs are basophilic cells of the anterior pituitary gland specialized to secrete gonadotropins in response to elevation in intracellular calcium concentration. These cells fire action potentials (APs) spontaneously, coupled with voltage-gated calcium influx of insufficient amplitude to trigger gonadotropin release. The spontaneous excitability of gonadotrophs reflects the expression of voltage-gated sodium, calcium, potassium, non-selective cation-conducting, and chloride channels at their plasma membrane (PM). These cells also express the hyperpolarization-activated and cyclic nucleotide-gated cation channels at the PM, as well as GABAA, nicotinic, and purinergic P2X channels gated by γ-aminobutyric acid (GABA), acetylcholine (ACh), and ATP, respectively. Activation of these channels leads to initiation or amplification of the pacemaking activity, facilitation of calcium influx, and activation of the exocytic pathway. Gonadotrophs also express calcium-conducting channels at the endoplasmic reticulum membranes gated by inositol trisphosphate and intracellular calcium. These channels are activated potently by hypothalamic gonadotropin-releasing hormone (GnRH) and less potently by several paracrine calcium-mobilizing agonists, including pituitary adenylate cyclase-activating peptides, endothelins, ACh, vasopressin, and oxytocin. Activation of these channels causes oscillatory calcium release and a rapid gonadotropin release, accompanied with a shift from tonic firing of single APs to periodic bursting type of electrical activity, which accounts for a sustained calcium signaling and gonadotropin secretion. This review summarizes our current understanding of ion channels as signaling molecules in gonadotrophs, the role of GnRH and paracrine agonists in their gating, and the cross talk among channels.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic,
| | - Ivana Bjelobaba
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Hana Zemkova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
10
|
Kaur A, Bali A, Singh N, Jaggi AS. Investigating the stress attenuating potential of furosemide in immobilization and electric foot-shock stress models in mice. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:497-507. [PMID: 25604076 DOI: 10.1007/s00210-015-1084-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
The present study was designed to investigate the antistress effect of furosemide (sodium potassium chloride co-transporter inhibitor) in immobilization and foot-shock stress-induced behavioral alterations in the mice. Acute stress was induced in Swiss albino mice either by applying electric foot shocks of 0.6-mA intensity of 1-s duration with 30-s inter-shock interval for 1 h or immobilizing for 150 min. The acute stress-induced behavioral changes were assessed by using actophotometer, hole board, open-field, and social interaction tests. Biochemically, the corticosterone levels were estimated in the serum as a biomarker of hypothalamus-pituitary-adrenal (HPA) axis. Acute stress resulted in the development of behavioral alterations and elevation of the corticosterone levels. Intraperitoneal administration of furosemide (25 and 50 mg/kg) significantly attenuated immobilization and foot-shock stress-induced behavioral changes along with normalization of the corticosterone levels. It may be concluded that furosemide produces beneficial effects in reestablishing the behavioral and biochemical alterations in immobilization and foot-shock-induced acute stress in mice.
Collapse
Affiliation(s)
- Aalamjeet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | | | | | | |
Collapse
|
11
|
Mijiddorj T, Kanasaki H, Sukhbaatar U, Oride A, Kyo S. DS1, a delta subunit-containing GABA(A) receptor agonist, increases gonadotropin subunit gene expression in mouse pituitary gonadotrophs. Biol Reprod 2014; 92:45. [PMID: 25519184 DOI: 10.1095/biolreprod.114.123893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
4-Chloro-N-[6,8-dibromo-2-(2-thienyl)imidazo[1,2-alpyridine-3-yl] (DS1) is a GABA(A) receptor agonist that selectively binds to delta subunit-containing GABA(A) alpha4beta3delta receptors. In the present study, we examined the effect of DS1 on pituitary gonadotropin subunit gene expression using the mouse pituitary gonadotroph cell line LbetaT2. DS1 increased the promoter activity of the gonadotropin subunits luteinizing hormone beta (LHbeta), follicle-stimulating hormone beta (FSHbeta), and alpha. Gonadotropin-releasing hormone (GnRH) receptor promoters were also activated by DS1. The effects of DS1 on gonadotropin subunit promoters were obvious, but they were less than those induced by stimulation with GnRH. GnRH-stimulated gonadotropin subunit promoters were enhanced in the presence of DS1. A prototypic specific agonist for GABAA receptors, muscimol, failed to increase LHbeta and FSHbeta subunit promoter activity and had no effect on GnRH-increased LHbeta and FSHbeta promoter activity. In addition, SKF97541, a specific agonist for GABAB receptors, did not modulate basal or GnRH-induced LHbeta and FSHbeta promoter activity. A natural GABA compound failed to increase gonadotropin promoter activity and potentiated the effect of GnRH on the FSHbeta promoter. DS1 increased the activity of serum response element (SRE) and cAMP response element (CRE) promoters, which reflect the activity of the extracellular signal-regulated kinase and cAMP/protein kinase A (PKA) pathways, and GnRH-increased SRE and CRE promoter activity was enhanced in the presence of DS1. A specific inhibitor of the ERK signaling pathway, U0126, prevented DS1-induced LHbeta and FSHbeta promoter activity almost completely; however, H89, a PKA inhibitor, did not modulate the effect of DS1. Our current observations demonstrate that the GABAA alpha4beta3delta receptor agonist DS1 can stimulate gonadotropin subunit gene expression in association with the ERK signaling pathway.
Collapse
Affiliation(s)
- Tselmeg Mijiddorj
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Unurjargal Sukhbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
12
|
Chernysheva MP, Romanova IV, Mikhrina AL. Effect of retinol on interaction of the protein period1, oxytocin, and GABA at the prenatal period of formation of the circadian clock-mechanism in rats. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s002209301301012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Pfeiffer K, Torkkeli PH, French AS. Activation of GABAA receptors modulates all stages of mechanoreception in spider mechanosensory neurons. J Neurophysiol 2011; 107:196-204. [PMID: 21957226 DOI: 10.1152/jn.00717.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
GABA(A) receptors mediate mainly inhibitory effects, but there are also many examples of excitatory effects in both mammalian and invertebrate preparations. Here, we aimed to create a complete, quantitative picture of GABA(A)-mediated excitation in a mechanosensory neuron where this phenomenon has been well established. We used muscimol to activate GABA(A) receptors in spider VS-3 neurons and measured the dynamic behavior independently and separately at each of three stages of mechanoreception (receptor current, receptor potential, and action potentials) before and during modulation. We calculated frequency response functions between each stage, estimated information as signal entropy, and estimated information capacity from coherence. Since coherence is sensitive to both noise and nonlinearity, we measured signal-to-noise separately at each stage by averaging responses to repeated mechanical inputs. Muscimol depolarized VS-3 neurons and, after brief inhibition, increased their firing rates. During this excitation, we found significant changes at each stage. Receptor current was attenuated but became more selective to high frequencies. Membrane impedance and time constant fell, favoring higher frequency transmission from receptor current to receptor potential. Action potential firing increased and had higher total entropy. Information capacity from signal-to-noise was always much higher than from coherence, confirming that intracellular noise does not limit signal transmission in these neurons. We conclude that GABA(A) receptor activation shifts each stage of mechanotransduction to higher frequency sensitivity, while the elevated firing rate increases the amount of information that can be encoded. These results show that a single neurotransmitter can finely modulate a sensory neuron's sensitivity and ability to transmit information.
Collapse
Affiliation(s)
- Keram Pfeiffer
- Dept. of Physiology and Biophysics, Dalhousie Univ., Halifax, Nova Scotia B3H 4R2, Canada
| | | | | |
Collapse
|
14
|
Kowalski A, Żylińska L, Boczek T, Rębas E. GABA-shunt enzymes activity in GH3 cells with reduced level of PMCA2 or PMCA3 isoform. Biochem Biophys Res Commun 2011; 411:815-20. [DOI: 10.1016/j.bbrc.2011.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 11/29/2022]
|
15
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
16
|
Nakane R, Oka Y. Excitatory action of GABA in the terminal nerve gonadotropin-releasing hormone neurons. J Neurophysiol 2010; 103:1375-84. [PMID: 20071623 DOI: 10.1152/jn.00910.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The terminal nerve (TN)-gonadotropin-releasing hormone (GnRH) neurons have been suggested to function as a neuromodulatory system that regulates the motivational and arousal state of the animal and have served as a model system for the study of GnRH neuron physiology. To investigate the synaptic control of the TN-GnRH neurons, we analyzed electrophysiologically the effect of GABA on the TN-GnRH neurons. GABA generally hyperpolarizes most of the neurons in the adult brain by activating GABA(A) receptors while the activation of GABA(A) receptors depolarizes some specific neurons in the mature brain. Here we examined the GABA(A) receptor-mediated responses in the TN-GnRH neurons of adult teleost fish, the dwarf gourami, by means of gramicidin-perforated patch-clamp and cell-attached patch-clamp recordings. The reversal potential for the currents through GABA(A) receptors under the voltage clamp was depolarized relative to the resting membrane potential. GABA(A) receptor activation depolarized TN-GnRH neurons under the current clamp and had excitatory effect on their electrical activity, whereas the stronger GABA(A) receptor activation had bidirectional effect (excitatory-inhibitory). This excitatory effect is suggested to arise from high [Cl(-)](i) and was shown to be suppressed by bumetanide, the blocker of Cl(-)-accumulating sodium-potassium-2-chloride co-transporter (NKCC). The present results demonstrate that GABA(A) receptor activation induces excitation in TN-GnRH neurons, which may facilitate their neuromodulatory functions by increasing their spontaneous firing frequencies. The excitatory actions of GABA in the adult brain have recently been attracting much attention, and the easily accessible large TN-GnRH neurons should be a nice model system to analyze their physiological functions.
Collapse
Affiliation(s)
- Ryo Nakane
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | | |
Collapse
|
17
|
Irwin RP, Allen CN. GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network. Eur J Neurosci 2009; 30:1462-75. [PMID: 19821838 DOI: 10.1111/j.1460-9568.2009.06944.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intercellular communication between gamma-aminobutyric acid (GABA)ergic suprachiasmatic nucleus (SCN) neurons facilitates light-induced phase changes and synchronization of individual neural oscillators within the SCN network. We used ratiometric Ca(2+) imaging techniques to record changes in the intracellular calcium concentration ([Ca(2+)](i)) to study the role of GABA in interneuronal communication and the response of the SCN neuronal network to optic nerve stimulations that mimic entraining light signals. Stimulation of the retinohypothalamic tract (RHT) evoked divergent Ca(2+) responses in neurons that varied regionally within the SCN with a pattern that correlated with those evoked by pharmacological GABA applications. GABA(A) and GABA(B) receptor agonists and antagonists were used to evaluate components of the GABA-induced changes in [Ca(2+)](i). Application of the GABA(A) receptor antagonist gabazine induced changes in baseline [Ca(2+)](i) in a direction opposite to that evoked by GABA, and similarly altered the RHT stimulation-induced Ca(2+) response. GABA application induced Ca(2+) responses varied in time and region within the SCN network. The NKCC1 cotransporter blocker, bumetanide, and L-type calcium channel blocker, nimodipine, attenuated the GABA-induced rise of [Ca(2+)](i). These results suggest that physiological GABA induces opposing effects on [Ca(2+)](i) based on the chloride equilibrium potential, and may play an important role in neuronal Ca(2+) balance, synchronization and modulation of light input signaling in the SCN network.
Collapse
Affiliation(s)
- Robert P Irwin
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
18
|
Reyes-García MG, García-Tamayo F. A neurotransmitter system that regulates macrophage pro-inflammatory functions. J Neuroimmunol 2009; 216:20-31. [PMID: 19732963 DOI: 10.1016/j.jneuroim.2009.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/16/2009] [Accepted: 06/29/2009] [Indexed: 02/08/2023]
Abstract
Neurotransmitters released through peripheral and autonomic nerves play an important role in the signaling from the cells of the nervous system to lymphocytes, macrophages and other cells of the immune system. Macrophages are related to numerous physiological and pathological inflammatory processes since their cytokines play an important role in the defensive responses against invasive microorganisms, atherosclerosis progress, insulin resistance, behavior deviation, hematopoiesis feedback, degenerative chronic diseases and the stimulation of the hypothalamus-hypophysis-adrenal axis. Production of pro-inflammatory cytokines by macrophages is the main target for the modulatory activity of diverse neurotransmitters. In this brief review, we show how some neurotransmitters released by the central or the autonomic nervous systems down-regulate peripheral macrophages' inflammatory functions to balance immune protective mechanisms, although they can also promote the collateral progress of diverse diseases. The possible therapeutic uses of some neurotransmitters and the agonists or antagonist of their respective receptors are included as well.
Collapse
Affiliation(s)
- María Guadalupe Reyes-García
- Laboratorio de Inmunobiología, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), México DF, Mexico.
| | | |
Collapse
|
19
|
Pfeiffer K, Panek I, Höger U, French AS, Torkkeli PH. Random Stimulation of Spider Mechanosensory Neurons Reveals Long-Lasting Excitation by GABA and Muscimol. J Neurophysiol 2009; 101:54-66. [DOI: 10.1152/jn.91020.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptor activation inhibits many primary afferent neurons by depolarization and increased membrane conductance. Deterministic (step and sinusoidal) functions are commonly used as stimuli to test such inhibition. We found that when the VS-3 mechanosensory neurons innervating the spider lyriform slit-sense organ were stimulated by randomly varying white-noise mechanical or electrical signals, their responses to GABAA receptor agonists were more complex than the inhibition observed during deterministic stimulation. Instead, there was rapid excitation, then brief inhibition, followed by long-lasting excitation. During the final excitatory phase, VS-3 neuron sensitivity to high-frequency signals increased selectively and their linear information capacity also increased. Using experimental and simulation approaches we found that the excitatory effect could also be achieved by depolarizing the neurons without GABA application and that excitation could override the inhibitory effect produced by increased membrane conductance (shunting). When the VS-3 neurons were exposed to bumetanide, an antagonist of the Cl− transporter NKCC1, the GABA-induced depolarization decreased without any change in firing rate, suggesting that the effects of GABA can be maintained for a long time without additional Cl− influx. Our results show that the VS-3 neuron's response to GABA depends profoundly on the type of signals the neuron is conveying while the transmitter binds to its receptors.
Collapse
|
20
|
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | | |
Collapse
|