1
|
Shen TC, Lin MC, Lin CL, Lin WH, Chuang BK. Acute mountain sickness on Jade Mountain: Results from the real-world practice (2018-2019). J Formos Med Assoc 2024; 123:1161-1166. [PMID: 38331638 DOI: 10.1016/j.jfma.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Acute mountain sickness (AMS) is initiated in response to a hypoxic and hypobaric environment at a high altitude. The precise prevalence of AMS in Jade Mountain climbers remained largely unknown, particularly data obtained from real medical consultations. An overnight stay at the Pai-Yun Lodge (3402 m) is usually required before an ascent of the Jade Mountain. Since 2004, a Pai-Yun Clinic has been established in the Pai-Yun Lodge. The Pai-Yun Clinic provided regular and emergency medical service every weekend. We conducted a retrospective study by using medical records from the Pai-Yun Clinic between 2018 and 2019. A total of 1021 patients were enrolled, with 56.2 % males. Different age groups were 3.2 %, 54.5 %, 37.9 %, and 4.4 % in <20, 20-39, 40-59, and ≥60 years, respectively. There were 582 (57.0 %) patients diagnosed to have AMS (230 [39.5 %] were mild type and 352 [60.5 %] were severe type). The factors associated with AMS development included young age, absence of climbing history (>3000 m) within the last 3 months, first climbing (>3000 m) experience, taking preventive medication, low oxygen saturation, and a high Lake Louise AMS score (LLAMSS). The factors associated with AMS severity included absence of taking preventive medication, low oxygen saturation, and a high LLAMSS. Approximately 15 % of Jade Mountain climbers needed medical service, of which 60 % had AMS. 60 % of patients with AMS must require oxygen supply or medication prescription. Oxygen saturation measure and LLAMSS evaluation are reasonable tools to predict the occurrence and severity of AMS on Jade Mountain.
Collapse
Affiliation(s)
- Te-Chun Shen
- Division of Critical Care Medicine, Chu Shang Show Chwan Hospital, Nantou, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Chen Lin
- Department of Nursing, Chu Shang Show Chwan Hospital, Nantou, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Ho Lin
- Management Office, Jade Mountain National Park, Nantou, Taiwan
| | - Bi-Kun Chuang
- Department of Otorhinolaryngology, Chu Shang Show Chwan Hospital, Nantou, Taiwan.
| |
Collapse
|
2
|
Liu B, Yuan M, Yang M, Zhu H, Zhang W. The Effect of High-Altitude Hypoxia on Neuropsychiatric Functions. High Alt Med Biol 2024; 25:26-41. [PMID: 37815821 DOI: 10.1089/ham.2022.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Liu, Bo, Minlan Yuan, Mei Yang, Hongru Zhu, and Wei Zhang. The effect of high-altitude hypoxia on neuropsychiatric functions. High Alt Med Biol. 25:26-41, 2024. Background: In recent years, there has been a growing popularity in engaging in activities at high altitudes, such as hiking and work. However, these high-altitude environments pose risks of hypoxia, which can lead to various acute or chronic cerebral diseases. These conditions include common neurological diseases such as acute mountain sickness (AMS), high-altitude cerebral edema, and altitude-related cerebrovascular diseases, as well as psychiatric disorders such as anxiety, depression, and psychosis. However, reviews of altitude-related neuropsychiatric conditions and their potential mechanisms are rare. Methods: We conducted searches on PubMed and Google Scholar, exploring existing literature encompassing preclinical and clinical studies. Our aim was to summarize the prevalent neuropsychiatric diseases induced by altitude hypoxia, the potential pathophysiological mechanisms, as well as the available pharmacological and nonpharmacological strategies for prevention and intervention. Results: The development of altitude-related cerebral diseases may arise from various pathogenic processes, including neurovascular alterations associated with hypoxia, cytotoxic responses, activation of reactive oxygen species, and dysregulation of the expression of hypoxia inducible factor-1 and nuclear factor erythroid 2-related factor 2. Furthermore, the interplay between hypoxia-induced neurological and psychiatric changes is believed to play a role in the progression of brain damage. Conclusions: While there is some evidence pointing to pathophysiological changes in hypoxia-induced brain damage, the precise mechanisms responsible for neuropsychiatric alterations remain elusive. Currently, the range of prevention and intervention strategies available is primarily focused on addressing AMS, with a preference for prevention rather than treatment.
Collapse
Affiliation(s)
- Bo Liu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
- Zigong Mental Health Center, Zigong, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences and Forensic Medicine, Chengdu, Sichuan
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Steele AR, Howe CA, Gibbons TD, Foster K, Williams AM, Caldwell HG, Brewster LM, Duffy J, Monteleone JA, Subedi P, Anholm JD, Stembridge M, Ainslie PN, Tremblay JC. Hemorheological, cardiorespiratory, and cerebrovascular effects of pentoxifylline following acclimatization to 3,800 m. Am J Physiol Heart Circ Physiol 2024; 326:H705-H714. [PMID: 38241007 PMCID: PMC11221811 DOI: 10.1152/ajpheart.00783.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Pentoxifylline is a nonselective phosphodiesterase inhibitor used for the treatment of peripheral artery disease. Pentoxifylline acts through cyclic adenosine monophosphate, thereby enhancing red blood cell deformability, causing vasodilation and decreasing inflammation, and potentially stimulating ventilation. We conducted a double-blind, placebo-controlled, crossover, counter-balanced study to test the hypothesis that pentoxifylline could lower blood viscosity, enhance cerebral blood flow, and decrease pulmonary artery pressure in lowlanders following 11-14 days at 3,800 m. Participants (6 males/10 females; age, 27 ± 4 yr old) received either a placebo or 400 mg of pentoxifylline orally the night before and again 2 h before testing. We assessed arterial blood gases, venous hemorheology (blood viscosity, red blood cell deformability, and aggregation), and inflammation (TNF-α) in room air (end-tidal oxygen partial pressure, ∼52 mmHg). Global cerebral blood flow (gCBF), ventilation, and pulmonary artery systolic pressure (PASP) were measured in room air and again after 8-10 min of isocapnic hypoxia (end-tidal oxygen partial pressure, 40 mmHg). Pentoxifylline did not alter arterial blood gases, TNF-α, or hemorheology compared with placebo. Pentoxifylline did not affect gCBF or ventilation during room air or isocapnic hypoxia compared with placebo. However, in females, PASP was reduced with pentoxifylline during room air (placebo, 19 ± 3; pentoxifylline, 16 ± 3 mmHg; P = 0.021) and isocapnic hypoxia (placebo, 22 ± 5; pentoxifylline, 20 ± 4 mmHg; P = 0.029), but not in males. Acute pentoxifylline administration in lowlanders at 3,800 m had no impact on arterial blood gases, hemorheology, inflammation, gCBF, or ventilation. Unexpectedly, however, pentoxifylline reduced PASP in female participants, indicating a potential effect of sex on the pulmonary vascular responses to pentoxifylline.NEW & NOTEWORTHY We conducted a double-blind, placebo-controlled study on the rheological, cardiorespiratory and cerebrovascular effects of acute pentoxifylline in healthy lowlanders after 11-14 days at 3,800 m. Although red blood cell deformability was reduced and blood viscosity increased compared with low altitude, acute pentoxifylline administration had no impact on arterial blood gases, hemorheology, inflammation, cerebral blood flow, or ventilation. Pentoxifylline decreased pulmonary artery systolic pressure in female, but not male, participants.
Collapse
Affiliation(s)
- Andrew R Steele
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States
| | - Katharine Foster
- Pulmonary and Critical Care, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Alexandra M Williams
- Department of Cellular & Physiological Sciences, Faculty of Medicine, University of British Columbia, Kelowna, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - L Madden Brewster
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Jennifer Duffy
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Justin A Monteleone
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Prajan Subedi
- Pulmonary and Critical Care, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - James D Anholm
- Pulmonary and Critical Care, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Joshua C Tremblay
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Stacey BS, Hoiland RL, Caldwell HG, Howe CA, Vermeulen T, Tymko MM, Vizcardo‐Galindo GA, Bermudez D, Figueroa‐Mujíica RJ, Gasho C, Tuaillon E, Hirtz C, Lehmann S, Marchi N, Tsukamoto H, Villafuerte FC, Ainslie PN, Bailey DM. Lifelong exposure to high-altitude hypoxia in humans is associated with improved redox homeostasis and structural-functional adaptations of the neurovascular unit. J Physiol 2023; 601:1095-1120. [PMID: 36633375 PMCID: PMC10952731 DOI: 10.1113/jp283362] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
High-altitude (HA) hypoxia may alter the structural-functional integrity of the neurovascular unit (NVU). Herein, we compared male lowlanders (n = 9) at sea level (SL) and after 14 days acclimatization to 4300 m (chronic HA) in Cerro de Pasco (CdP), Péru (HA), against sex-, age- and body mass index-matched healthy highlanders (n = 9) native to CdP (lifelong HA). Venous blood was assayed for serum proteins reflecting NVU integrity, in addition to free radicals and nitric oxide (NO). Regional cerebral blood flow (CBF) was examined in conjunction with cerebral substrate delivery, dynamic cerebral autoregulation (dCA), cerebrovascular reactivity to carbon dioxide (CVRCO2 ) and neurovascular coupling (NVC). Psychomotor tests were employed to examine cognitive function. Compared to lowlanders at SL, highlanders exhibited elevated basal plasma and red blood cell NO bioavailability, improved anterior and posterior dCA, elevated anterior CVRCO2 and preserved cerebral substrate delivery, NVC and cognition. In highlanders, S100B, neurofilament light-chain (NF-L) and T-tau were consistently lower and cognition comparable to lowlanders following chronic-HA. These findings highlight novel integrated adaptations towards regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia. KEY POINTS: High-altitude (HA) hypoxia has the potential to alter the structural-functional integrity of the neurovascular unit (NVU) in humans. For the first time, we examined to what extent chronic and lifelong hypoxia impacts multimodal biomarkers reflecting NVU structure and function in lowlanders and native Andean highlanders. Despite lowlanders presenting with a reduction in systemic oxidative-nitrosative stress and maintained cerebral bioenergetics and cerebrovascular function during chronic hypoxia, there was evidence for increased axonal injury and cognitive impairment. Compared to lowlanders at sea level, highlanders exhibited elevated vascular NO bioavailability, improved dynamic regulatory capacity and cerebrovascular reactivity, comparable cerebral substrate delivery and neurovascular coupling, and maintained cognition. Unlike lowlanders following chronic HA, highlanders presented with lower concentrations of S100B, neurofilament light chain and total tau. These findings highlight novel integrated adaptations towards the regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia.
Collapse
Affiliation(s)
- Benjamin S. Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Ryan L. Hoiland
- Department of Anaesthesiology, Pharmacology and Therapeutics, Vancouver General HospitalUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Cellular and Physiological Sciences, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hannah G. Caldwell
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Connor A. Howe
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Tyler Vermeulen
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Michael M. Tymko
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medicine, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Gustavo A. Vizcardo‐Galindo
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Daniella Bermudez
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Rómulo J. Figueroa‐Mujíica
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Christopher Gasho
- Division of Pulmonary and Critical CareLoma Linda University School of MedicineLoma LindaCAUSA
| | - Edouard Tuaillon
- Department of Infectious DiseasesUniversity of MontpellierMontpellierFrance
| | - Christophe Hirtz
- LBPC‐PPCUniversité de Montpellier, IRMB CHU de Montpellier, INM INSERMMontpellierFrance
| | - Sylvain Lehmann
- LBPC‐PPCUniversité de Montpellier, IRMB CHU de Montpellier, INM INSERMMontpellierFrance
| | - Nicola Marchi
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional GenomicsUniversity of MontpellierMontpellierFrance
| | - Hayato Tsukamoto
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Francisco C. Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Philip N. Ainslie
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Damian M. Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| |
Collapse
|
5
|
Yang J, Jia Z, Song X, Shi J, Wang X, Zhao X, He K. Proteomic and clinical biomarkers for acute mountain sickness in a longitudinal cohort. Commun Biol 2022; 5:548. [PMID: 35668171 PMCID: PMC9170681 DOI: 10.1038/s42003-022-03514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Ascending to high-altitude by non-high-altitude natives is a well-suited model for studying acclimatization to extreme environments. Acute mountain sickness (AMS) is frequently experienced by visitors. The diagnosis of AMS mainly depends on a self-questionnaire, revealing the need for reliable biomarkers for AMS. Here, we profiled 22 AMS symptom phenotypes, 65 clinical indexes, and plasma proteomic profiles of AMS via a combination of proximity extension assay and multiple reaction monitoring of a longitudinal cohort of 53 individuals. We quantified 1069 proteins and validated 102 proteins. Via differential analysis, machine learning, and functional association analyses. We found and validated that RET played an important role in the pathogenesis of AMS. With high-accuracies (AUCs > 0.9) of XGBoost-based models, we prioritized ADAM15, PHGDH, and TRAF2 as protective, predictive, and diagnostic biomarkers, respectively. Our findings shed light on the precision medicine for AMS and the understanding of acclimatization to high-altitude environments.
Collapse
Affiliation(s)
- Jing Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
- Research Center for Medical Big Data, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China.
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China.
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.
| | - Xinyu Song
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Research Center for Medical Big Data, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoreng Wang
- Laboratory of Radiation Injury Treatment, Medical Innovation Research Division, PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
- Research Center for Medical Big Data, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China.
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Horiuchi M, Rossetti GM, Oliver SJ. Dietary nitrate supplementation effect on dynamic cerebral autoregulation in normoxia and acute hypoxia. J Cereb Blood Flow Metab 2022; 42:486-494. [PMID: 32151227 PMCID: PMC8985441 DOI: 10.1177/0271678x20910053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We tested the hypothesis that increasing the nitric oxide (NO) bioavailability by dietary nitrate would recover the hypoxia-induced reduction in dynamic cerebral autoregulation (CA). Twelve healthy males (age 21 ± 2 years) completed four days of dietary supplementation with a placebo or inorganic nitrate drink (140-ml beetroot juice per day) followed by 60-min of normoxia or hypoxia (fraction of inspired oxygen [FiO2] = 13%). Duplex ultrasonography was used to perform volumetric change-based assessment of dynamic CA in the internal carotid artery (ICA). Dynamic CA was assessed by rate of regulation (RoR) of vascular conductance using the thigh-cuff method. Four days of beetroot supplementation increased circulating nitrate by 208 [171,245] μM (mean difference [95% confidence interval]) compared with placebo. Dynamic CA was lower in hypoxia than normoxia (RoR Δ-0.085 [-0.116, -0.054]). Compared with placebo, nitrate did not alter dynamic CA in normoxia (RoR Δ-0.022 [-0.060, 0.016]) or hypoxia (RoR Δ0.017 [-0.019, 0.053]). Further, nitrate did not affect ICA vessel diameter, blood velocity or flow in either normoxia or hypoxia. Increased bioavailability of NO through dietary nitrate supplementation did not recover the hypoxia-induced reduction in dynamic CA. This suggests the mechanism of hypoxia-induced reduction in dynamic CA does not relate to the availability of NO.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fujiyoshida, Japan
| | - Gabriella Mk Rossetti
- Extremes Research Group, College of Human Sciences, Bangor University, Bangor, Wales
| | - Samuel J Oliver
- Extremes Research Group, College of Human Sciences, Bangor University, Bangor, Wales
| |
Collapse
|
7
|
Doutreleau S. [Physiological and pathological responses to altitude]. Rev Mal Respir 2021; 38:1013-1024. [PMID: 34782179 DOI: 10.1016/j.rmr.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/28/2020] [Indexed: 11/27/2022]
Abstract
Hypobaric hypoxia, the hallmark of a high altitude environment, has important physiological effects on both the cardiovascular and respiratory systems in order to maintain a balance between oxygen demand and supply. This dynamic of acclimatization is influenced both by the level of altitude and the speed of progression, but is also very individual with a wide spectrum of responses and sensitivities. This wide range of responses is associated with nonspecific symptoms characterising acute mountain sickness and high-altitude cerebral or pulmonary oedema. This article reviews the current knowledge about both the acclimatization processes and specific diseases of high-altitude.
Collapse
Affiliation(s)
- S Doutreleau
- Inserm, UM sports et pathologies, laboratoire HP2, CHU Grenoble-Alpes, université Grenoble Alpes, EXALT - centre d'expertise sur l'altitude, 38000 Grenoble, France.
| |
Collapse
|
8
|
Gangwar A, Paul S, Arya A, Ahmad Y, Bhargava K. Altitude acclimatization via hypoxia-mediated oxidative eustress involves interplay of protein nitrosylation and carbonylation: A redoxomics perspective. Life Sci 2021; 296:120021. [PMID: 34626604 DOI: 10.1016/j.lfs.2021.120021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
AIM Hypoxia is an important feature of multiple diseases like cancer and obesity and also an environmental stressor to high altitude travelers. Emerging research suggests the importance of redox signaling in physiological responses transforming the notion of oxidative stress into eustress and distress. However, the behavior of redox protein post-translational modifications (PTMs), and their correlation with stress acclimatization in humans remains sketchy. Scant information exists about modifications in redoxome during physiological exposure to environmental hypoxia. In this study, we investigated redox PTMs, nitrosylation and carbonylation, in context of extended environmental hypoxia exposure. METHODS The volunteers were confirmed to be free of any medical conditions and matched for age and weight. The human global redoxome and the affected networks were investigated using TMT-labeled quantitative proteo-bioinformatics and biochemical assays. The percolator PSM algorithm was used for peptide-spectrum match (PSM) validation in database searches. The FDR for peptide matches was set to 0.01. 1-way ANOVA and Tukey's Multiple Comparison test were used for biochemical assays. p-value<0.05 was considered statistically significant. Three independent experiments (biological replicates) were performed. Results were presented as Mean ± standard error of mean (SEM). KEY FINDINGS This investigation revealed direct and indirect interplay between nitrosylation and carbonylation especially within coagulation and inflammation networks; interlinked redox signaling (via nitrosylation‑carbonylation); and novel nitrosylation and carbonylation sites in individual proteins. SIGNIFICANCE This study elucidates the role of redox PTMs in hypoxia signaling favoring tolerance and survival. Also, we demonstrated direct and indirect interplay between nitrosylation and carbonylation is crucial to extended hypoxia tolerance.
Collapse
Affiliation(s)
- Anamika Gangwar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Subhojit Paul
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Aditya Arya
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| | - Kalpana Bhargava
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| |
Collapse
|
9
|
Ogoh S, Washio T, Stacey BS, Tsukamoto H, Iannetelli A, Owens TS, Calverley TA, Fall L, Marley CJ, Saito S, Watanabe H, Hashimoto T, Ando S, Miyamoto T, Bailey DM. Integrated respiratory chemoreflex-mediated regulation of cerebral blood flow in hypoxia: Implications for oxygen delivery and acute mountain sickness. Exp Physiol 2021; 106:1922-1938. [PMID: 34318560 DOI: 10.1113/ep089660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022]
Abstract
NEW FINDINGS What is the central question of this study? To what extent do hypoxia-induced changes in the peripheral and central respiratory chemoreflex modulate anterior and posterior cerebral oxygen delivery, with corresponding implications for susceptibility to acute mountain sickness? What is the main finding and its importance? We provide evidence for site-specific regulation of cerebral blood flow in hypoxia that preserves oxygen delivery in the posterior but not the anterior cerebral circulation, with minimal contribution from the central respiratory chemoreflex. External carotid artery vasodilatation might prove to be an alternative haemodynamic risk factor that predisposes to acute mountain sickness. ABSTRACT The aim of the present study was to determine the extent to which hypoxia-induced changes in the peripheral and central respiratory chemoreflex modulate anterior and posterior cerebral blood flow (CBF) and oxygen delivery (CDO2 ), with corresponding implications for the pathophysiology of the neurological syndrome, acute mountain sickness (AMS). Eight healthy men were randomly assigned single blind to 7 h of passive exposure to both normoxia (21% O2 ) and hypoxia (12% O2 ). The peripheral and central respiratory chemoreflex, internal carotid artery, external carotid artery (ECA) and vertebral artery blood flow (duplex ultrasound) and AMS scores (questionnaires) were measured throughout. A reduction in internal carotid artery CDO2 was observed during hypoxia despite a compensatory elevation in perfusion. In contrast, vertebral artery and ECA CDO2 were preserved, and the former was attributable to a more marked increase in perfusion. Hypoxia was associated with progressive activation of the peripheral respiratory chemoreflex (P < 0.001), whereas the central respiratory chemoreflex remained unchanged (P > 0.05). Symptom severity in participants who developed clinical AMS was positively related to ECA blood flow (Lake Louise score, r = 0.546-0.709, P = 0.004-0.043; Environmental Symptoms Questionnaires-Cerebral symptoms score, r = 0.587-0.771, P = 0.001-0.027, n = 4). Collectively, these findings highlight the site-specific regulation of CBF in hypoxia that maintains CDO2 selectively in the posterior but not the anterior cerebral circulation, with minimal contribution from the central respiratory chemoreflex. Furthermore, ECA vasodilatation might represent a hitherto unexplored haemodynamic risk factor implicated in the pathophysiology of AMS.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan.,Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Hayato Tsukamoto
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Thomas S Owens
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Thomas A Calverley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Lewis Fall
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Shotaro Saito
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Hironori Watanabe
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | | | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
10
|
Janigro D, Bailey DM, Lehmann S, Badaut J, O'Flynn R, Hirtz C, Marchi N. Peripheral Blood and Salivary Biomarkers of Blood-Brain Barrier Permeability and Neuronal Damage: Clinical and Applied Concepts. Front Neurol 2021; 11:577312. [PMID: 33613412 PMCID: PMC7890078 DOI: 10.3389/fneur.2020.577312] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Within the neurovascular unit (NVU), the blood–brain barrier (BBB) operates as a key cerebrovascular interface, dynamically insulating the brain parenchyma from peripheral blood and compartments. Increased BBB permeability is clinically relevant for at least two reasons: it actively participates to the etiology of central nervous system (CNS) diseases, and it enables the diagnosis of neurological disorders based on the detection of CNS molecules in peripheral body fluids. In pathological conditions, a suite of glial, neuronal, and pericyte biomarkers can exit the brain reaching the peripheral blood and, after a process of filtration, may also appear in saliva or urine according to varying temporal trajectories. Here, we specifically examine the evidence in favor of or against the use of protein biomarkers of NVU damage and BBB permeability in traumatic head injury, including sport (sub)concussive impacts, seizure disorders, and neurodegenerative processes such as Alzheimer's disease. We further extend this analysis by focusing on the correlates of human extreme physiology applied to the NVU and its biomarkers. To this end, we report NVU changes after prolonged exercise, freediving, and gravitational stress, focusing on the presence of peripheral biomarkers in these conditions. The development of a biomarker toolkit will enable minimally invasive routines for the assessment of brain health in a broad spectrum of clinical, emergency, and sport settings.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology Case Western Reserve University, Cleveland, OH, United States.,FloTBI Inc., Cleveland, OH, United States
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, United Kingdom
| | - Sylvain Lehmann
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Jerome Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Robin O'Flynn
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
11
|
Identification of antioxidant proteins using a discriminative intelligent model of k-space amino acid pairs based descriptors incorporating with ensemble feature selection. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Carr J, Stone R, Tymko C, Tymko K, Coombs GB, Hoiland RL, Howe CA, Tymko MM, Ainslie PN, Patrician A. Global REACH 2018: The Effect of an Expiratory Resistance Mask with Dead Space on Sleep and Acute Mountain Sickness During Acute Exposure to Hypobaric Hypoxia. High Alt Med Biol 2020; 21:297-302. [DOI: 10.1089/ham.2019.0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jay Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia–Okanagan Campus, Kelowna, Canada
| | - Rachel Stone
- Department of Kinesiology, University of Windsor, Windsor, Canada
| | - Courtney Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia–Okanagan Campus, Kelowna, Canada
| | - Kaitlyn Tymko
- Department of Kinesiology, University of Manitoba, Winnipeg, Canada
| | - Geoff B. Coombs
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia–Okanagan Campus, Kelowna, Canada
| | - Ryan L. Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia–Okanagan Campus, Kelowna, Canada
- Department of Anaesthesiology, Pharmacology, and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Connor A. Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia–Okanagan Campus, Kelowna, Canada
| | - Michael M. Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia–Okanagan Campus, Kelowna, Canada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia–Okanagan Campus, Kelowna, Canada
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia–Okanagan Campus, Kelowna, Canada
| |
Collapse
|
13
|
Bailey DM, Lanéelle D, Trihan JE, Marchi N, Stacey BS, Tamiya K, Washio T, Tuaillon E, Hirtz C, Lehmann S, Ogoh S, Normand H. Gravitational Transitions Increase Posterior Cerebral Perfusion and Systemic Oxidative-nitrosative Stress: Implications for Neurovascular Unit Integrity. Neuroscience 2020; 441:142-160. [PMID: 32502571 DOI: 10.1016/j.neuroscience.2020.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The present study examined if repeated bouts of micro- and hypergravity during parabolic flight (PF) alter structural integrity of the neurovascular unit (NVU) subsequent to free radical-mediated changes in regional cerebral perfusion. Six participants (5♂, 1♀) aged 29 ± 11 years were examined before, during and after a 3 h PF and compared to six sex and age-matched (27 ± 6 years) normogravity controls. Blood flow was measured in the anterior (middle cerebral artery, MCA; internal carotid artery, ICA) and posterior (vertebral artery, VA) circulation (duplex ultrasound) in-flight over the course of 15 parabolas. Venous blood was assayed for free radicals (electron paramagnetic resonance spectroscopy), nitric oxide (NO, ozone-based chemiluminescence) and NVU integrity (chemiluminescence/ELISA) in normogravity before and after exposure to 31 parabolas. While MCA velocity did not change (P > 0.05), a selective increase in VA flow was observed during the most marked gravitational transition from micro- to hypergravity (P < 0.05). Increased oxidative-nitrosative stress defined by a free radical-mediated reduction in NO and elevations in glio-vascular GFAP and S100ß were observed after PF (P < 0.05), the latter proportional to the increase in VA flow (r = 0.908, P < 0.05). In contrast, biomarkers of neuronal-axonal damage (neuron-specific enolase, neurofilament light-chain, ubiquitin carboxy-terminal hydrolase L1 and tau) did not change (P > 0.05). Collectively, these findings suggest that the cumulative effects of repeated gravitational transitions may promote minor blood-brain barrier disruption, potentially related to the combined effects of haemodynamic (posterior cerebral hyperperfusion) and molecular (systemic oxidative-nitrosative) stress.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK.
| | - Damien Lanéelle
- Service de Médecine Vasculaire, Centre Hospitalo-Universitaire, Caen, France; UNICAEN, INSERM, COMETE, GIP CYCERON, Normandie University, Caen, France
| | - Jean-Eudes Trihan
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Nicola Marchi
- UMR, Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (CNRS Unit Mixte de Recherche 5203; INSERM U1191), University of Montpellier, France
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Kazuki Tamiya
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Edouard Tuaillon
- Unit Mixte de Recherche, INSERM l'Etablissement Français du Sang, University of Montpellier 1, Montpellier, France
| | - Christophe Hirtz
- LBPC-PPC, University of Montpellier, Institute of Regenerative Medicine-Biotherapy IRMB, Centre Hospitalier Universitaire de Montpellier, INSERM, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, University of Montpellier, Institute of Regenerative Medicine-Biotherapy IRMB, Centre Hospitalier Universitaire de Montpellier, INSERM, Montpellier, France
| | - Shigehiko Ogoh
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK; Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Hervé Normand
- UNICAEN, INSERM, COMETE, GIP CYCERON, Normandie University, Caen, France; UNICAEN, COMETE, Caen, France; INSERM, U 1075 COMETE, Caen, France; Department of Clinical Physiology, Centre Hospitalier Universitaire de Caen, Caen, France
| |
Collapse
|
14
|
Berger MM, Sareban M, Bärtsch P. Acute mountain sickness: Do different time courses point to different pathophysiological mechanisms? J Appl Physiol (1985) 2020; 128:952-959. [DOI: 10.1152/japplphysiol.00305.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acute mountain sickness (AMS) is a syndrome of nonspecific symptoms (i.e., headache, anorexia, nausea, vomiting, dizziness, and fatigue) that may develop in nonacclimatized individuals after rapid exposure to altitudes ≥2,500 m. In field studies, mean AMS scores usually peak after the first night at a new altitude. Analyses of the individual time courses of AMS in four studies performed at 3,450 m and 4,559 m revealed that three different patterns are hidden in the above-described overall picture. In 41% of those who developed AMS (i.e., AMS-C score >0.70), symptoms peaked on day 1, in 39%, symptoms were most prominent on day 2, and in 20%, symptoms were most prominent on day 3. We suggest to name the different time courses of AMS type I, type II, and type III, respectively. Here, we hypothesize that the variation of time courses of AMS are caused by different pathophysiological mechanisms. This assumption could explain why no consistent correlations between an overall assessment of AMS and single pathophysiological factors have been found in a large number of studies over the past 50 yr. In this paper, we will briefly review the fundamental mechanisms implicated in the pathophysiology of AMS and discuss how they might contribute to the three different AMS time courses.
Collapse
Affiliation(s)
- Marc M. Berger
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, Germany
| | - Mahdi Sareban
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bärtsch
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Duke CB, Sallade TD, Starling J, Pant S, Sheets A, McElwee MK, Young DS, Taylor RA, Keyes LE. Hypertension and Acute Mountain Sickness in Himalayan Trekkers in Nepal: An Observational Cohort Study. Wilderness Environ Med 2020; 31:157-164. [PMID: 32205041 DOI: 10.1016/j.wem.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 01/14/2023]
Abstract
INTRODUCTION A history of preexisting hypertension is common in people participating in mountain activities; however, the relationship between blood pressure (BP), preexisting hypertension, and acute mountain sickness (AMS) is not well studied. We sought to determine these relationships among trekkers in the Everest region of Nepal. METHODS This was a prospective observational cohort study of a convenience sample of adult, nonpregnant volunteers trekking in the Everest Base Camp region in Nepal. We recorded Lake Louise Scores for AMS and measured BP at 2860 m, 3400 m, and 4300 m. The primary outcome was AMS. RESULTS A total of 672 trekkers (including 60 with history of preexisting hypertension) were enrolled at 2860 m. We retained 529 at 3400 m and 363 at 4300 m. At 3400 m, 11% of participants had AMS, and 13% had AMS at 4300 m. We found no relationship between AMS and measured BP values (P>0.05), nor was there any relation of BP to AMS severity as measured by higher Lake Louise Scores (P>0.05). Preexisting hypertension (odds ratio [OR] 0.16; 95% CI 0.025-0.57), male sex (OR 0.59; 95% CI 0.37-0.96), and increased SpO2 (OR 0.93; 95% CI 0.87-0.98) were associated with reduced rates of AMS in multivariate analyses adjusting for known risk factors for AMS. CONCLUSIONS AMS is common in trekkers in Nepal, even at 3400 m. There is no relationship between measured BP and AMS. However, a medical history of hypertension may be associated with a lower risk of AMS. More work is needed to confirm this novel finding.
Collapse
Affiliation(s)
- Charles B Duke
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT
| | - T Douglas Sallade
- Department of Emergency Medicine, Geisinger Medical Center, Danville, PA
| | - Jennifer Starling
- Department of Emergency Medicine, University of Colorado and Colorado Permanente Medical Group, Saint Joseph Hospital, Denver, CO
| | - Sushil Pant
- Mountain Medicine Society of Nepal, Kathmandu, Nepal
| | | | - Matthew K McElwee
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN
| | - David S Young
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO
| | | | - Linda E Keyes
- University of Colorado Emergency Medicine and Boulder Emergency Physicians, Boulder, CO.
| |
Collapse
|
16
|
Abstract
BACKGROUND The aim of the study was to provide a theoretical basis for the early diagnosis and prediction of acute altitude sickness, to provide a better entry mode for healthy people from plain areas to plateau areas, and to preliminarily clarify the possible mechanism of this approach. METHODS We measured endothelin-1 (ET-1), asymmetric dimethylarginine (ADMA), vascular endothelial growth factor (VEGF), nitric oxide (NO), and hypoxia-inducible factor 1 (HIF-1) levels in each sample and determined flow-mediated dilation (FMD) values using a portable OMRON color Doppler with a 7.0- to 12.0-MHz linear array probe. We used the Lewis Lake score to diagnose acute mountain sickness (AMS) and to stratify the disease severity. RESULTS We found no cases of AMS at any of the studied elevation gradients. We found significant differences in FMD values between individuals when at 400 m above sea level and when at 2200, 3200, and 4200 m above sea level (P < .05) but found no significant differences among those at 2200, 3200, and 4200 m. Our variance analysis showed that serum ET-1, VEGF, ADMA, NO, and HIF-1 levels in individuals at ≥3000 m and those at subplateau and plain areas (<3000 m) significantly differed (P < .05). The level of these factors also significantly differed between individuals at elevation gradients of plateau areas (3260 m vs 4270 m) (P < .05). We found no significant differences in serum ET-1, VEGF, and ADMA levels between individuals at the plateau (2260 m) and plain (400 m) areas (P > .05). NO and HIF-1 levels were significantly different in serum samples from individuals between the plateau (2260 m) and plain (400 m) areas (P < .05). However, with increasing altitude, the NO level gradually increased, whereas ET-1, ADMA, VEGF, and HIF-1 levels showed a decreasing trend. With the increase of altitude, there is no correlation between the trend of FMD and hematologic-related factors such as VEGF, NO, and HIF-1. CONCLUSION A healthy young male population ascending to a high-altitude area experiences a low incidence of AMS. Entering an acute plateau exposure environment from different altitude gradients may weaken the effect of acute highland exposure on vascular endothelial dysfunction in healthy individuals. Changes in serum ET-1, VEGF, ADMA, NO, and HIF-1 levels in healthy young men may be related to the body's self-regulation and protect healthy individuals from AMS. A short stay in a subplateau region may initiate an oxygen-free preconditioning process in healthy individuals, thereby protecting them from AMS. Noninvasive brachial artery endothelial function test instead of the detection of invasive hematologic-related factors for early diagnosis and prediction of the occurrence and severity of acute high-altitude disease is still lack of sufficient theoretical basis.
Collapse
Affiliation(s)
- Ning Fan
- Graduate School of Qinghai University
| | - Cun Liu
- Qinghai Cardiovascular Hospital
| | - Ming Ren
- The Affiliated Hospital of Qing Hai University, Xi Ning, Qing Hai, China
| |
Collapse
|
17
|
UBC-Nepal expedition: dynamic cerebral autoregulation is attenuated in lowlanders upon ascent to 5050 m. Eur J Appl Physiol 2020; 120:675-686. [DOI: 10.1007/s00421-020-04307-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
|
18
|
Tymko MM, Tremblay JC, Bailey DM, Green DJ, Ainslie PN. The impact of hypoxaemia on vascular function in lowlanders and high altitude indigenous populations. J Physiol 2019; 597:5759-5776. [PMID: 31677355 DOI: 10.1113/jp277191] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
Exposure to hypoxia elicits widespread physiological responses that are critical for successful acclimatization; however, these responses may induce apparent maladaptive consequences. For example, recent studies conducted in both the laboratory and the field (e.g. at high altitude) have demonstrated that endothelial function is reduced in hypoxia. Herein, we review the several proposed mechanism(s) pertaining to the observed reduction in endothelial function in hypoxia including: (i) changes in blood flow patterns (i.e. shear stress), (ii) increased inflammation and production of reactive oxygen species (i.e. oxidative stress), (iii) heightened sympathetic nerve activity, and (iv) increased red blood cell concentration and mass leading to elevated nitric oxide scavenging. Although some of these mechanism(s) have been examined in lowlanders, less in known about endothelial function in indigenous populations that have chronically adapted to environmental hypoxia for millennia (e.g. the Peruvian, Tibetan and Ethiopian highlanders). There is some evidence indicating that healthy Tibetan and Peruvian (i.e. Andean) highlanders have preserved endothelial function at high altitude, but less is known about the Ethiopian highlanders. However, Andean highlanders suffering from chronic mountain sickness, which is characterized by an excessive production of red blood cells, have markedly reduced endothelial function. This review will provide a framework and mechanistic model for vascular endothelial adaptation to hypoxia in lowlanders and highlanders. Elucidating the pathways responsible for vascular adaption/maladaptation to hypoxia has potential clinical implications for disease featuring low oxygen delivery (e.g. heart failure, pulmonary disease). In addition, a greater understanding of vascular function at high altitude will clinically benefit the global estimated 85 million high altitude residents.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Daniel J Green
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
19
|
Harrell JW, Peltonen GL, Schrage WG. Reactive oxygen species and cyclooxygenase products explain the majority of hypoxic cerebral vasodilation in healthy humans. Acta Physiol (Oxf) 2019; 226:e13288. [PMID: 31033206 DOI: 10.1111/apha.13288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
AIM The role of reactive oxygen species (ROS) in human cerebral blood flow (CBF) during hypoxia is largely unknown. Additionally, it is unknown whether ROS interact with cyclooxygenase-derived signals during hypoxia to increase CBF. We hypothesized ROS inhibition would reduce hypoxic CBF, and combined inhibition of cyclooxygenase (COX) and ROS would decrease hypoxic CBF more than ROS suppression alone. METHODS We measured middle cerebral artery velocity with transcranial Doppler ultrasound in 12 healthy adults during normoxia and 2 isocapnic hypoxia trials. Intravenous ascorbic acid infusion during the first hypoxia trial suppressed ROS. Oral indomethacin inhibited COX between hypoxia trials. The second bout of hypoxia tested the combined effects of ROS and COX inhibition. Middle cerebral artery velocity was normalized for blood pressure as cerebrovascular conductance index. RESULTS Hypoxia increased cerebrovascular conductance index in both trials (P < 0.05). Ascorbic acid infusion did not alter cerebrovascular conductance index during hypoxia. Combined ascorbic acid and indomethacin significantly reduced hypoxia-mediated increases in cerebrovascular conductance index from 17 ± 2 to 4 ± 1 cm s-1 100 mm Hg-1 (P < 0.05). CONCLUSION ROS are not obligatory for hypoxic cerebral vasodilation. Current data indicate ROS and COX together may account for the majority of the increase in CBF through the middle cerebral artery during hypoxia. These data are the first to demonstrate compensatory hypoxic vasodilatory signalling in human cerebral circulation.
Collapse
Affiliation(s)
- John W. Harrell
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology University of Wisconsin‐Madison Madison Wisconsin
| | - Garrett L. Peltonen
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology University of Wisconsin‐Madison Madison Wisconsin
- Department of Kinesiology Western New Mexico University Silver City New Mexico
| | - William G. Schrage
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology University of Wisconsin‐Madison Madison Wisconsin
| |
Collapse
|
20
|
Patrician A, Tymko MM, Caldwell HG, Howe CA, Coombs GB, Stone R, Hamilton A, Hoiland RL, Ainslie PN. The Effect of an Expiratory Resistance Mask with Dead Space on Sleep, Acute Mountain Sickness, Cognition, and Ventilatory Acclimatization in Normobaric Hypoxia. High Alt Med Biol 2019; 20:61-70. [PMID: 30720346 DOI: 10.1089/ham.2018.0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We examined the hypothesis that an expiratory resistance mask containing a small amount of dead space (ER/DS) would reduce the apnea-hypopnea index (AHI) during sleep, attenuate the severity of acute mountain sickness (AMS), and offset decrements in cognitive function compared with a sham mask. In a double-blinded, randomized, sham-controlled, crossover design, 19 volunteers were exposed to two nights of normobaric hypoxia (FIO2 = 0.125), using a ER/DS mask (3.5 mm restrictive expiratory orifice; 125 mL DS volume) and sham mask (zero-flow resistance; 50 mL DS volume). Cognitive function, AMS, and ventilatory acclimatization were assessed before and after the 12-hour normobaric hypoxia exposure. Polysomnography was conducted during sleep. AHI was reduced using the ER/DS sleep mask compared with the sham (30.1 ± 23.9 events·hr-1 vs. 58.9 ± 34.4 events·hr-1, respectively; p = 0.01). Likewise, oxygen desaturation index and headache severity were reduced (both p < 0.05). There were also benefits on limiting the hypoxia-induced reductions in select measures of reaction speed and attention (p < 0.05). Our study indicates that a simple noninvasive and portable ER/DS mask resulted in reductions (49%) in AHI, and reduced headache severity and aspects of cognitive decline. The field applications of this ER/DS mask should be investigated before recommendations can be made to support its benefit for travel to high altitude.
Collapse
Affiliation(s)
- Alexander Patrician
- Center for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Kelowna, Canada
| | - Michael M Tymko
- Center for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Kelowna, Canada
| | - Hannah G Caldwell
- Center for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Kelowna, Canada
| | - Connor A Howe
- Center for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Kelowna, Canada
| | - Geoff B Coombs
- Center for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Kelowna, Canada
| | - Rachel Stone
- Center for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Kelowna, Canada
| | - Allison Hamilton
- Center for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Kelowna, Canada
| | - Ryan L Hoiland
- Center for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Center for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Kelowna, Canada
| |
Collapse
|
21
|
Bailey DM, Brugniaux JV, Filipponi T, Marley CJ, Stacey B, Soria R, Rimoldi SF, Cerny D, Rexhaj E, Pratali L, Salmòn CS, Murillo Jáuregui C, Villena M, Smirl JD, Ogoh S, Pietri S, Scherrer U, Sartori C. Exaggerated systemic oxidative-inflammatory-nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. J Physiol 2019; 597:611-629. [PMID: 30397919 PMCID: PMC6332753 DOI: 10.1113/jp276898] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Chronic mountain sickness (CMS) is a maladaptation syndrome encountered at high altitude (HA) characterised by severe hypoxaemia that carries a higher risk of stroke and migraine and is associated with increased morbidity and mortality. We examined if exaggerated oxidative-inflammatory-nitrosative stress (OXINOS) and corresponding decrease in vascular nitric oxide bioavailability in patients with CMS (CMS+) is associated with impaired cerebrovascular function and adverse neurological outcome. Systemic OXINOS was markedly elevated in CMS+ compared to healthy HA (CMS-) and low-altitude controls. OXINOS was associated with blunted cerebral perfusion and vasoreactivity to hypercapnia, impaired cognition and, in CMS+, symptoms of depression. These findings are the first to suggest that a physiological continuum exists for hypoxaemia-induced systemic OXINOS in HA dwellers that when excessive is associated with accelerated cognitive decline and depression, helping identify those in need of more specialist neurological assessment and targeted support. ABSTRACT Chronic mountain sickness (CMS) is a maladaptation syndrome encountered at high altitude (HA) characterised by severe hypoxaemia that carries a higher risk of stroke and migraine and is associated with increased morbidity and mortality. The present cross-sectional study examined to what extent exaggerated systemic oxidative-inflammatory-nitrosative stress (OXINOS), defined by an increase in free radical formation and corresponding decrease in vascular nitric oxide (NO) bioavailability, is associated with impaired cerebrovascular function, accelerated cognitive decline and depression in CMS. Venous blood was obtained from healthy male lowlanders (80 m, n = 17), and age- and gender-matched HA dwellers born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 23) and without (CMS-, n = 14) CMS. We sampled blood for oxidative (electron paramagnetic resonance spectroscopy, HPLC), nitrosative (ozone-based chemiluminescence) and inflammatory (fluorescence) biomarkers. We employed transcranial Doppler ultrasound to measure cerebral blood flow (CBF) and reactivity. We utilised psychometric tests and validated questionnaires to assess cognition and depression. Highlanders exhibited elevated systemic OXINOS (P < 0.05 vs. lowlanders) that was especially exaggerated in the more hypoxaemic CMS+ patients (P < 0.05 vs. CMS-). OXINOS was associated with blunted cerebral perfusion and vasoreactivity to hypercapnia, impaired cognition and, in CMS+, symptoms of depression. Collectively, these findings are the first to suggest that a physiological continuum exists for hypoxaemia-induced OXINOS in HA dwellers that when excessive is associated with accelerated cognitive decline and depression, helping identify those in need of specialist neurological assessment and support.
Collapse
Affiliation(s)
- Damian M. Bailey
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Julien V. Brugniaux
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
- HP2 Laboratory, INSERM U1042Grenoble Alpes UniversityGrenobleFrance
| | - Teresa Filipponi
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Christopher J. Marley
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Benjamin Stacey
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Rodrigo Soria
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | - Stefano F. Rimoldi
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | - David Cerny
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | - Emrush Rexhaj
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | | | | | | | | | - Jonathan D. Smirl
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise ScienceUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | | | | | - Urs Scherrer
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
- Facultad de Ciencias, Departamento de BiologíaUniversidad de TarapacáAricaChile
| | - Claudio Sartori
- Department of Internal MedicineUniversity HospitalUNIL‐LausanneSwitzerland
| |
Collapse
|
22
|
Vinnikov D, Nenna R, Soumagne T. Will an electronic nose help at high altitude? Breathe (Sheff) 2018; 14:322-324. [PMID: 30519300 PMCID: PMC6269179 DOI: 10.1183/20734735.019918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
An electronic nose does not simply detect the concentrations of selected VOCs in the exhaled air, but verifies the cumulative signature, reflecting the overall VOC concentration. This technology is novel but promising. http://ow.ly/IPCt30mbIBV.
Collapse
Affiliation(s)
- Denis Vinnikov
- School of Public Health, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Raffaella Nenna
- Dept of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Thibaud Soumagne
- Dept of Respiratory Medicine, University Hospital, Besançon, France.,Dept of Physiology, University Hospital, Besançon, France
| |
Collapse
|
23
|
Fall L, Brugniaux JV, Davis D, Marley CJ, Davies B, New KJ, McEneny J, Young IS, Bailey DM. Redox-regulation of haemostasis in hypoxic exercising humans: a randomised double-blind placebo-controlled antioxidant study. J Physiol 2018; 596:4879-4891. [PMID: 29989171 DOI: 10.1113/jp276414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/04/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In vitro evidence has identified that coagulation is activated by increased oxidative stress, though the link and underlying mechanism in humans have yet to be established. We conducted the first randomised controlled trial in healthy participants to examine if oral antioxidant prophylaxis alters the haemostatic responses to hypoxia and exercise given their synergistic capacity to promote free radical formation. Systemic free radical formation was shown to increase during hypoxia and was further compounded by exercise, responses that were attenuated by antioxidant prophylaxis. In contrast, antioxidant prophylaxis increased thrombin generation at rest in normoxia, and this was normalised only in the face of prevailing oxidation. Collectively, these findings suggest that human free radical formation is an adaptive phenomenon that serves to maintain vascular haemostasis. ABSTRACT In vitro evidence suggests that blood coagulation is activated by increased oxidative stress although the link and underlying mechanism in humans have yet to be established. We conducted the first randomised controlled trial to examine if oral antioxidant prophylaxis alters the haemostatic responses to hypoxia and exercise. Healthy males were randomly assigned double-blind to either an antioxidant (n = 20) or placebo group (n = 16). The antioxidant group ingested two capsules/day that each contained 500 mg of l-ascorbic acid and 450 international units (IU) of dl-α-tocopherol acetate for 8 weeks. The placebo group ingested capsules of identical external appearance, taste and smell (cellulose). Both groups were subsequently exposed to acute hypoxia and maximal physical exercise with venous blood sampled pre-supplementation (normoxia), post-supplementation at rest (normoxia and hypoxia) and following maximal exercise (hypoxia). Systemic free radical formation (electron paramagnetic resonance spectroscopic detection of the ascorbate radical (A•- )) increased during hypoxia (15,152 ± 1193 AU vs. 14,076 ± 810 AU at rest, P < 0.05) and was further compounded by exercise (16,569 ± 1616 AU vs. rest, P < 0.05), responses that were attenuated by antioxidant prophylaxis. In contrast, antioxidant prophylaxis increased thrombin generation as measured by thrombin-antithrombin complex, at rest in normoxia (28.7 ± 6.4 vs. 4.3 ± 0.2 μg mL-1 pre-intervention, P < 0.05) and was restored but only in the face of prevailing oxidation. Collectively, these findings are the first to suggest that human free radical formation likely reflects an adaptive response that serves to maintain vascular haemostasis.
Collapse
Affiliation(s)
- Lewis Fall
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK
| | | | - Danielle Davis
- Department of Sport Health and Nutrition, Leeds Trinity University, Leeds, UK
| | | | - Bruce Davies
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK
| | - Karl J New
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK
| | - Jane McEneny
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Ian S Young
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK
| |
Collapse
|
24
|
Berendsen RR, van Vessem ME, Bruins M, Teppema LJSM, Aarts LPHJ, Kayser B. Electronic Nose Technology Fails to Sniff Out Acute Mountain Sickness. High Alt Med Biol 2018; 19:232-236. [PMID: 29641295 DOI: 10.1089/ham.2017.0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Berendsen, Remco R., Marieke E. van Vessem, Marcel Bruins, Luc J.S.M. Teppema, Leon P.H.J. Aarts, and Bengt Kayser. Electronic nose technology fails to sniff out acute mountain sickness. High Alt Med Biol. 19:232-236, 2018. AIM The aim of the study was to evaluate whether an electronic nose can discriminate between individuals with and without acute mountain sickness (AMS) following rapid ascent to 4554 m. RESULTS We recruited recreational climbers (19 women, 82 men; age 35 ± 10 years, mean ± standard deviation [SD]) upon arrival at 4554 m (Capanna Regina Margherita, Italy) for a proof of concept study. AMS was assessed with the Lake Louise self-report score (LLSRS) and the abbreviated Environmental Symptoms Questionnaire (ESQc); scores ≥3 and ≥0.7 were considered AMS, respectively. Exhaled air was analyzed with an electronic nose (Aeonose; The eNose Company, Netherlands). The collected data were analyzed using an artificial neural network. AMS prevalence was 44% with the LLSRS (mean score of those sick 4.4 ± 1.4 [SD]) and 20% with the ESQc (1.2 ± 0.5). The electronic nose could not discriminate between AMS and no AMS (LLSRS p = 0.291; ESQc p = 0.805). CONCLUSION The electronic nose technology utilized in this study could not discriminate between climbers with and without symptoms of AMS in the setting of an acute exposure to an altitude of 4554 m. At this stage, we cannot fully exclude that this technology per se is not able to discriminate for AMS. The quest for objective means to diagnose AMS thus continues.
Collapse
Affiliation(s)
- Remco R Berendsen
- 1 Department of Anesthesiology, Leiden University Medical Center , Leiden, Netherlands
| | - Marieke E van Vessem
- 2 Department of Cardiology, Leiden University Medical Center , Leiden, Netherlands
| | | | - Luc J S M Teppema
- 1 Department of Anesthesiology, Leiden University Medical Center , Leiden, Netherlands
| | - Leon P H J Aarts
- 1 Department of Anesthesiology, Leiden University Medical Center , Leiden, Netherlands
| | - Bengt Kayser
- 4 Institute of Sport Sciences, University of Lausanne , Lausanne, Switzerland
| |
Collapse
|
25
|
Muza SR. Wearable physiological sensors and real-time algorithms for detection of acute mountain sickness. J Appl Physiol (1985) 2018; 124:557-563. [DOI: 10.1152/japplphysiol.00367.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This is a minireview of potential wearable physiological sensors and algorithms (process and equations) for detection of acute mountain sickness (AMS). Given the emerging status of this effort, the focus of the review is on the current clinical assessment of AMS, known risk factors (environmental, demographic, and physiological), and current understanding of AMS pathophysiology. Studies that have examined a range of physiological variables to develop AMS prediction and/or detection algorithms are reviewed to provide insight and potential technological roadmaps for future development of real-time physiological sensors and algorithms to detect AMS. Given the lack of signs and nonspecific symptoms associated with AMS, development of wearable physiological sensors and embedded algorithms to predict in the near term or detect established AMS will be challenging. Prior work using [Formula: see text], HR, or HRv has not provided the sensitivity and specificity for useful application to predict or detect AMS. Rather than using spot checks as most prior studies have, wearable systems that continuously measure SpO2 and HR are commercially available. Employing other statistical modeling approaches such as general linear and logistic mixed models or time series analysis to these continuously measured variables is the most promising approach for developing algorithms that are sensitive and specific for physiological prediction or detection of AMS.
Collapse
Affiliation(s)
- Stephen R. Muza
- Strategic Science Management Office, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
26
|
Irarrázaval S, Allard C, Campodónico J, Pérez D, Strobel P, Vásquez L, Urquiaga I, Echeverría G, Leighton F. Oxidative Stress in Acute Hypobaric Hypoxia. High Alt Med Biol 2017; 18:128-134. [DOI: 10.1089/ham.2016.0119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Sebastián Irarrázaval
- Department of Orthopedic Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Allard
- Center for Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Campodónico
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Druso Pérez
- Center for Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Strobel
- Center for Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Vásquez
- Center for Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Inés Urquiaga
- Center for Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guadalupe Echeverría
- Center for Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Federico Leighton
- Center for Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Chen HL, Lin HC, Lu CH, Chen PC, Huang CC, Chou KH, Su MC, Friedman M, Chen YW, Lin WC. Systemic inflammation and alterations to cerebral blood flow in obstructive sleep apnea. J Sleep Res 2017; 26:789-798. [PMID: 28513057 DOI: 10.1111/jsr.12553] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
Abstract
Systemic inflammation and alterations to regional cerebral blood flow (CBF) have been reported previously in obstructive sleep apnea (OSA). This study utilized arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI) to evaluate CBF in OSA patients and determine its relationship with systemic inflammation. Twenty male patients with moderate and severe OSA [apnea-hypopnea index (AHI) >15] and 16 healthy male volunteers (AHI <5) were recruited. Early- or late-phase changes in leucocyte apoptosis and its subsets were determined by flow cytometry. Perfusion MRI data were acquired with a pulsed continuous ASL technique. The CBF maps were compared using voxel-based statistics to determine differences between the OSA and control groups. The differences in CBF, clinical severity and leucocyte apoptosis were correlated. Exploratory groupwise comparison between the two groups revealed that the OSA patients exhibited low CBF values in the vulnerable regions. The lower regional CBF values were correlated with higher clinical disease severity and leucocyte apoptosis. OSA impairs cerebral perfusion in vulnerable regions, and this deficit is associated with increased disease severity. The apparent correlation between systemic inflammation and cerebral perfusion may be indicative of haemodynamic alterations and their consequences in OSA.
Collapse
Affiliation(s)
- Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Ching Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Chin Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kun-Hsien Chou
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Mao-Chang Su
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Michael Friedman
- Division of Sleep Surgery, Department of Otolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Yi-Wen Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Thin Air Resulting in High Pressure: Mountain Sickness and Hypoxia-Induced Pulmonary Hypertension. Can Respir J 2017; 2017:8381653. [PMID: 28522921 PMCID: PMC5385916 DOI: 10.1155/2017/8381653] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 12/31/2022] Open
Abstract
With rising altitude the partial pressure of oxygen falls. This phenomenon leads to hypobaric hypoxia at high altitude. Since more than 140 million people permanently live at heights above 2500 m and more than 35 million travel to these heights each year, understanding the mechanisms resulting in acute or chronic maladaptation of the human body to these circumstances is crucial. This review summarizes current knowledge of the body's acute response to these circumstances, possible complications and their treatment, and health care issues resulting from long-term exposure to high altitude. It furthermore describes the characteristic mechanisms of adaptation to life in hypobaric hypoxia expressed by the three major ethnic groups permanently dwelling at high altitude. We additionally summarize current knowledge regarding possible treatment options for hypoxia-induced pulmonary hypertension by reviewing in vitro, rodent, and human studies in this area of research.
Collapse
|
29
|
Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. Eur Respir Rev 2017; 26:26/143/160096. [PMID: 28143879 PMCID: PMC9488514 DOI: 10.1183/16000617.0096-2016] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/23/2016] [Indexed: 12/28/2022] Open
Abstract
At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases. Lack of acclimatisation is the main risk factor for acute altitude illness; descent is the optimal treatmenthttp://ow.ly/45d2305JyZ0
Collapse
Affiliation(s)
- Andrew M Luks
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Erik R Swenson
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.,Medical Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Peter Bärtsch
- Dept of Internal Medicine, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Bailey DM, Rasmussen P, Overgaard M, Evans KA, Bohm AM, Seifert T, Brassard P, Zaar M, Nielsen HB, Raven PB, Secher NH. Nitrite and
S
-Nitrosohemoglobin Exchange Across the Human Cerebral and Femoral Circulation. Circulation 2017; 135:166-176. [DOI: 10.1161/circulationaha.116.024226] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
Abstract
Background:
The mechanisms underlying red blood cell (RBC)–mediated hypoxic vasodilation remain controversial, with separate roles for nitrite (
) and
S
-nitrosohemoglobin (SNO-Hb) widely contested given their ability to transduce nitric oxide bioactivity within the microcirculation. To establish their relative contribution in vivo, we quantified arterial-venous concentration gradients across the human cerebral and femoral circulation at rest and during exercise, an ideal model system characterized by physiological extremes of O
2
tension and blood flow.
Methods:
Ten healthy participants (5 men, 5 women) aged 24±4 (mean±SD) years old were randomly assigned to a normoxic (21% O
2
) and hypoxic (10% O
2
) trial with measurements performed at rest and after 30 minutes of cycling at 70% of maximal power output in hypoxia and equivalent relative and absolute intensities in normoxia. Blood was sampled simultaneously from the brachial artery and internal jugular and femoral veins with plasma and RBC nitric oxide metabolites measured by tri-iodide reductive chemiluminescence. Blood flow was determined by transcranial Doppler ultrasound (cerebral blood flow) and constant infusion thermodilution (femoral blood flow) with net exchange calculated via the Fick principle.
Results:
Hypoxia was associated with a mild increase in both cerebral blood flow and femoral blood flow (
P
<0.05 versus normoxia) with further, more pronounced increases observed in femoral blood flow during exercise (
P
<0.05 versus rest) in proportion to the reduction in RBC oxygenation (
r
=0.680–0.769,
P
<0.001). Plasma
gradients reflecting consumption (arterial>venous;
P
<0.05) were accompanied by RBC iron nitrosylhemoglobin formation (venous>arterial;
P
<0.05) at rest in normoxia, during hypoxia (
P
<0.05 versus normoxia), and especially during exercise (
P
<0.05 versus rest), with the most pronounced gradients observed across the bioenergetically more active, hypoxemic, and acidotic femoral circulation (
P
<0.05 versus cerebral). In contrast, we failed to observe any gradients consistent with RBC SNO-Hb consumption and corresponding delivery of plasma
S
-nitrosothiols (
P
>0.05).
Conclusions:
These findings suggest that hypoxia and, to a far greater extent, exercise independently promote arterial-venous delivery gradients of intravascular nitric oxide, with deoxyhemoglobin-mediated
reduction identified as the dominant mechanism underlying hypoxic vasodilation.
Collapse
Affiliation(s)
- Damian M. Bailey
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Peter Rasmussen
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Morten Overgaard
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Kevin A. Evans
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Aske M. Bohm
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Thomas Seifert
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Patrice Brassard
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Morten Zaar
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Henning B. Nielsen
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Peter B. Raven
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Niels H. Secher
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| |
Collapse
|
31
|
Horiuchi M, Endo J, Dobashi S, Kiuchi M, Koyama K, Subudhi AW. Effect of progressive normobaric hypoxia on dynamic cerebral autoregulation. Exp Physiol 2016; 101:1276-1284. [DOI: 10.1113/ep085789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/12/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Masahiro Horiuchi
- Division of Human Environmental Science; Mount Fuji Research Institute; Japan
| | - Junko Endo
- Division of Human Environmental Science; Mount Fuji Research Institute; Japan
| | - Shohei Dobashi
- Integrated Graduate School Department of Medicine; Engineering, and Agricultural Sciences; University of Yamanashi; Japan
| | - Masataka Kiuchi
- Integrated Graduate School Department of Medicine; Engineering, and Agricultural Sciences; University of Yamanashi; Japan
| | - Katsuhiro Koyama
- Integrated Graduate School Department of Medicine; Engineering, and Agricultural Sciences; University of Yamanashi; Japan
| | - Andrew W. Subudhi
- Department of Biology; University of Colorado; Colorado Springs CO USA
- Altitude Research Center; University of Colorado Anschutz Medical Campus; Aurora CO USA
| |
Collapse
|
32
|
Strapazzon G, Malacrida S, Vezzoli A, Dal Cappello T, Falla M, Lochner P, Moretti S, Procter E, Brugger H, Mrakic-Sposta S. Oxidative stress response to acute hypobaric hypoxia and its association with indirect measurement of increased intracranial pressure: a field study. Sci Rep 2016; 6:32426. [PMID: 27579527 PMCID: PMC5006564 DOI: 10.1038/srep32426] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/03/2016] [Indexed: 12/28/2022] Open
Abstract
High altitude is the most intriguing natural laboratory to study human physiological response to hypoxic conditions. In this study, we investigated changes in reactive oxygen species (ROS) and oxidative stress biomarkers during exposure to hypobaric hypoxia in 16 lowlanders. Moreover, we looked at the potential relationship between ROS related cellular damage and optic nerve sheath diameter (ONSD) as an indirect measurement of intracranial pressure. Baseline measurement of clinical signs and symptoms, biological samples and ultrasonography were assessed at 262 m and after passive ascent to 3830 m (9, 24 and 72 h). After 24 h the imbalance between ROS production (+141%) and scavenging (−41%) reflected an increase in oxidative stress related damage of 50–85%. ONSD concurrently increased, but regression analysis did not infer a causal relationship between oxidative stress biomarkers and changes in ONSD. These results provide new insight regarding ROS homeostasis and potential pathophysiological mechanisms of acute exposure to hypobaric hypoxia, plus other disease states associated with oxidative-stress damage as a result of tissue hypoxia.
Collapse
Affiliation(s)
| | - Sandro Malacrida
- EURAC Institute of Mountain Emergency Medicine, Bolzano, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessandra Vezzoli
- CNR Institute of Bioimaging and Molecular Physiology, Segrate (Milano), Italy
| | | | - Marika Falla
- Department of Neurology, General Hospital of Bolzano, Bolzano, Italy.,Department of Neurology and Psychiatry, Sapienza University, Roma, Italy
| | | | - Sarah Moretti
- CNR Institute of Bioimaging and Molecular Physiology, Segrate (Milano), Italy
| | - Emily Procter
- EURAC Institute of Mountain Emergency Medicine, Bolzano, Italy
| | - Hermann Brugger
- EURAC Institute of Mountain Emergency Medicine, Bolzano, Italy
| | | |
Collapse
|
33
|
Lin WC, Huang CC, Chen HL, Chou KH, Chen PC, Tsai NW, Chen MH, Friedman M, Lin HC, Lu CH. Longitudinal brain structural alterations and systemic inflammation in obstructive sleep apnea before and after surgical treatment. J Transl Med 2016; 14:139. [PMID: 27188598 PMCID: PMC4901987 DOI: 10.1186/s12967-016-0887-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/28/2016] [Indexed: 01/10/2023] Open
Abstract
Background Systemic inflammation, neurocognitive impairments, and morphologic brain changes are associated with obstructive sleep apnea (OSA). Understanding their longitudinal evolution and interactions after surgical treatment provides clues to the pathogenesis of cognitive impairment and its reversibility. In the present study, we investigate clinical disease severity, systemic inflammation, cognitive deficits, and corresponding gray matter volume (GMV) changes in OSA, and the modifications following surgery. Methods Twenty-one patients with OSA (apnea-hypopnea index, AHI > 5) and 15 healthy volunteers (AHI < 5) underwent serial evaluation, including polysomnography, flow cytometry for leukocyte apoptosis categorization, cognitive function evaluation, and high-resolution brain scan. Disease severity, leukocyte apoptosis, cognitive function, and imaging data were collected to assess therapeutic efficacy 3 months after surgery. Results Pre-operatively, patients presented with worse cognitive function, worse polysomnography scores, and higher early leukocyte apoptosis associated with increased insular GMV. There was reduced GMV in the anterior cingulate gyrus before and after surgery in the cases compared to that in controls, suggesting an irreversible structural deficit. Post-operatively, there were significant improvements in different cognitive domains, including attention, executive and visuospatial function, and depression, and in early leukocyte apoptosis. There was also a significant decrease in GMVs after treatment, suggesting recovery from vasogenic edema in the precuneus, insula, and cerebellum. Improvement in early leukocyte apoptosis post-surgery predicted better recovery of precuneus GMV. Conclusions In OSA, increased disease severity and systemic inflammation can alter GMV in vulnerable regions. Surgical treatment may improve disease severity and systemic inflammation, with subsequent recovery in brain structures and functions. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0887-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Hsien Chou
- Department of Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chin Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Michael Friedman
- Division of Sleep Surgery, Department of Otolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, IL, USA.,Department of Otolaryngology, Advanced Center for Specialty Care, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Hsin-Ching Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung District, Kaohsiung, Taiwan. .,Sleep Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan. .,Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
34
|
Pichler Hefti J, Leichtle A, Stutz M, Hefti U, Geiser T, Huber AR, Merz TM. Increased endothelial microparticles and oxidative stress at extreme altitude. Eur J Appl Physiol 2016; 116:739-48. [DOI: 10.1007/s00421-015-3309-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
|
35
|
Lawley JS, Levine BD, Williams MA, Malm J, Eklund A, Polaner DM, Subudhi AW, Hackett PH, Roach RC. Cerebral spinal fluid dynamics: effect of hypoxia and implications for high-altitude illness. J Appl Physiol (1985) 2016; 120:251-62. [DOI: 10.1152/japplphysiol.00370.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/17/2015] [Indexed: 12/24/2022] Open
Abstract
The pathophysiology of acute mountain sickness and high-altitude cerebral edema, the cerebral forms of high-altitude illness, remain uncertain and controversial. Persistently elevated or pathological fluctuations in intracranial pressure are thought to cause symptoms similar to those reported by individuals suffering cerebral forms of high-altitude illness. This review first focuses on the basic physiology of the craniospinal system, including a detailed discussion of the long-term and dynamic regulation of intracranial pressure. Thereafter, we critically examine the available literature, based primarily on invasive pressure monitoring, that suggests intracranial pressure is acutely elevated at altitude due to brain swelling and/or elevated sagittal sinus pressure, but normalizes over time. We hypothesize that fluctuations in intracranial pressure occur around a slightly elevated or normal mean intracranial pressure, in conjunction with oscillations in arterial Po2 and arterial blood pressure. Then these modest fluctuations in intracranial pressure, in concert with direct vascular stretch due to dilatation and/or increased blood pressure transmission, activate the trigeminal vascular system and cause symptoms of acute mountain sickness. Elevated brain water (vasogenic edema) may be due to breakdown of the blood-brain barrier. However, new information suggests cerebral spinal fluid flux into the brain may be an important factor. Regardless of the source (or mechanisms responsible) for the excess brain water, brain swelling occurs, and a “tight fit” brain would be a major risk factor to produce symptoms; activities that produce large changes in brain volume and cause fluctuations in blood pressure are likely contributing factors.
Collapse
Affiliation(s)
- Justin S. Lawley
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, Texas
- UT Southwestern Medical Center, Dallas, Texas
| | - Benjamin D. Levine
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, Texas
- UT Southwestern Medical Center, Dallas, Texas
| | - Michael A. Williams
- Sandra and Malcolm Berman Brain & Spine Institute, Dept. of Neurology, Sinai Hospital, Baltimore, Maryland
| | - Jon Malm
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - David M. Polaner
- Departments of Anesthesiology and Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Andrew W. Subudhi
- Department of Biology, University of Colorado, Colorado Springs, Colorado
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | | | - Robert C. Roach
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
36
|
Bruno RM, Ghiadoni L, Pratali L. Vascular adaptation to extreme conditions: The role of hypoxia. Artery Res 2016. [DOI: 10.1016/j.artres.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
37
|
Identifying Antioxidant Proteins by Using Optimal Dipeptide Compositions. Interdiscip Sci 2015; 8:186-191. [DOI: 10.1007/s12539-015-0124-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/29/2015] [Accepted: 08/29/2015] [Indexed: 11/26/2022]
|
38
|
Swenson ER. Pharmacology of acute mountain sickness: old drugs and newer thinking. J Appl Physiol (1985) 2015; 120:204-15. [PMID: 26294748 DOI: 10.1152/japplphysiol.00443.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023] Open
Abstract
Pharmacotherapy in acute mountain sickness (AMS) for the past half century has largely rested on the use of carbonic anhydrase (CA) inhibitors, such as acetazolamide, and corticosteroids, such as dexamethasone. The benefits of CA inhibitors are thought to arise from their known ventilatory stimulation and resultant greater arterial oxygenation from inhibition of renal CA and generation of a mild metabolic acidosis. The benefits of corticosteroids include their broad-based anti-inflammatory and anti-edemagenic effects. What has emerged from more recent work is the strong likelihood that drugs in both classes act on other pathways and signaling beyond their classical actions to prevent and treat AMS. For the CA inhibitors, these include reduction in aquaporin-mediated transmembrane water transport, anti-oxidant actions, vasodilation, and anti-inflammatory effects. In the case of corticosteroids, these include protection against increases in vascular endothelial and blood-brain barrier permeability, suppression of inflammatory cytokines and reactive oxygen species production, and sympatholysis. The loci of action of both classes of drug include the brain, but may also involve the lung as revealed by benefits that arise with selective administration to the lungs by inhalation. Greater understanding of their pluripotent actions and sites of action in AMS may help guide development of better drugs with more selective action and fewer side effects.
Collapse
Affiliation(s)
- Erik R Swenson
- Veterans Affairs Puget Sound Health Care System, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle
| |
Collapse
|
39
|
Herrera EA, Farías JG, González-Candia A, Short SE, Carrasco-Pozo C, Castillo RL. Ω3 Supplementation and intermittent hypobaric hypoxia induce cardioprotection enhancing antioxidant mechanisms in adult rats. Mar Drugs 2015; 13:838-60. [PMID: 25658050 PMCID: PMC4344605 DOI: 10.3390/md13020838] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/29/2023] Open
Abstract
Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg−1·day−1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)—normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p < 0.05); reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 μmol/mg prot.; p < 0.05); and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile.
| | - Alejandro González-Candia
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Stefania E Short
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile.
| | - Catalina Carrasco-Pozo
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Rodrigo L Castillo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| |
Collapse
|
40
|
Woodside JDS, Gutowski M, Fall L, James PE, McEneny J, Young IS, Ogoh S, Bailey DM. Systemic oxidative-nitrosative-inflammatory stress during acute exercise in hypoxia; implications for microvascular oxygenation and aerobic capacity. Exp Physiol 2014; 99:1648-62. [DOI: 10.1113/expphysiol.2014.081265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John D. S. Woodside
- Vascular Physiology Unit; Institute of Cardiovascular Science; University College London; London UK
| | - Mariusz Gutowski
- Institute of Biochemistry and Cell Biology; Shanghai Institute for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Lewis Fall
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Pontypridd UK
| | - Philip E. James
- Wales Heart Research Institute; Cardiff University School of Medicine; Heath Park Cardiff Pontypridd UK
| | - Jane McEneny
- Centre for Public Health; Nutrition and Metabolism Group; Queen's University Belfast; Belfast UK
| | - Ian S. Young
- Centre for Public Health; Nutrition and Metabolism Group; Queen's University Belfast; Belfast UK
| | - Shigehiko Ogoh
- Department of Biomedical Engineering; Toyo University; Kawagoe-Shi Saitama Japan
| | - Damian M. Bailey
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Pontypridd UK
| |
Collapse
|
41
|
Bailey DM, Lundby C, Berg RMG, Taudorf S, Rahmouni H, Gutowski M, Mulholland CW, Sullivan JL, Swenson ER, McEneny J, Young IS, Pedersen BK, Møller K, Pietri S, Culcasi M. On the antioxidant properties of erythropoietin and its association with the oxidative-nitrosative stress response to hypoxia in humans. Acta Physiol (Oxf) 2014; 212:175-87. [PMID: 24811856 DOI: 10.1111/apha.12313] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
AIM The aim of this study was to examine if erythropoietin (EPO) has the potential to act as a biological antioxidant and determine the underlying mechanisms. METHODS The rate at which its recombinant form (rHuEPO) reacts with hydroxyl (HO˙), 2,2-diphenyl-1-picrylhydrazyl (DPPH˙) and peroxyl (ROO˙) radicals was evaluated in-vitro. The relationship between the erythopoietic and oxidative-nitrosative stress response to poikilocapneic hypoxia was determined separately in-vivo by sampling arterial blood from eleven males in normoxia and following 12 h exposure to 13% oxygen. Electron paramagnetic resonance spectroscopy, ELISA and ozone-based chemiluminescence were employed for direct detection of ascorbate (A(˙-) ) and N-tert-butyl-α-phenylnitrone spin-trapped alkoxyl (PBN-OR) radicals, 3-nitrotyrosine (3-NT) and nitrite (NO2-). RESULTS We found rHuEPO to be a potent scavenger of HO˙ (kr = 1.03-1.66 × 10(11) m(-1) s(-1) ) with the capacity to inhibit Fenton chemistry through catalytic iron chelation. Its ability to scavenge DPPH˙ and ROO˙ was also superior compared to other more conventional antioxidants. Hypoxia was associated with a rise in arterial EPO and free radical-mediated reduction in nitric oxide, indicative of oxidative-nitrosative stress. The latter was confirmed by an increased systemic formation of A˙(-) , PBN-OR, 3-NT and corresponding loss of NO2- (P < 0.05 vs. normoxia). The erythropoietic and oxidative-nitrosative stress responses were consistently related (r = -0.52 to 0.68, P < 0.05). CONCLUSION These findings demonstrate that EPO has the capacity to act as a biological antioxidant and provide a mechanistic basis for its reported cytoprotective benefits within the clinical setting.
Collapse
Affiliation(s)
- D. M. Bailey
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Treforest UK
- Aix-Marseille Université; CNRS; Institut de Chimie Radicalaire UMR 7273; Équipe Sondes Moleculaires en Biologie et Stress Oxydant; Marseille France
| | - C. Lundby
- Center for Integrative Human Physiology; Institute of Physiology; University of Zurich; Zurich Switzerland
| | - R. M. G. Berg
- Department of Infectious Diseases; Centre of Inflammation and Metabolism; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - S. Taudorf
- Department of Infectious Diseases; Centre of Inflammation and Metabolism; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - H. Rahmouni
- Aix-Marseille Université; CNRS; Institut de Chimie Radicalaire UMR 7273; Équipe Sondes Moleculaires en Biologie et Stress Oxydant; Marseille France
| | - M. Gutowski
- Institute of Biochemistry and Cell Biology; Shanghai Institute for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - C. W. Mulholland
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Treforest UK
| | - J. L. Sullivan
- Burnett College of Biomedical Sciences; University of Central Florida; Orlando FL USA
| | - E. R. Swenson
- Division of Pulmonary and Critical Care Medicine; Department of Medicine; University of Washington; Seattle WA USA
| | - J. McEneny
- Centre for Clinical and Population Sciences; Queen's University Belfast; Belfast UK
| | - I. S. Young
- Centre for Clinical and Population Sciences; Queen's University Belfast; Belfast UK
| | - B. K. Pedersen
- Department of Infectious Diseases; Centre of Inflammation and Metabolism; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - K. Møller
- Department of Infectious Diseases; Centre of Inflammation and Metabolism; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Neuroanaesthesiology; University Hospital Rigshospitalet; Copenhagen Denmark
| | - S. Pietri
- Aix-Marseille Université; CNRS; Institut de Chimie Radicalaire UMR 7273; Équipe Sondes Moleculaires en Biologie et Stress Oxydant; Marseille France
| | - M. Culcasi
- Aix-Marseille Université; CNRS; Institut de Chimie Radicalaire UMR 7273; Équipe Sondes Moleculaires en Biologie et Stress Oxydant; Marseille France
| |
Collapse
|
42
|
Pichler Hefti J, Sonntag D, Hefti U, Risch L, Schoch OD, Turk AJ, Hess T, Bloch KE, Maggiorini M, Merz TM, Weinberger KM, Huber AR. Oxidative stress in hypobaric hypoxia and influence on vessel-tone modifying mediators. High Alt Med Biol 2014; 14:273-9. [PMID: 24067187 DOI: 10.1089/ham.2012.1110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Increased pulmonary artery pressure is a well-known phenomenon of hypoxia and is seen in patients with chronic pulmonary diseases, and also in mountaineers on high altitude expedition. Different mediators are known to regulate pulmonary artery vessel tone. However, exact mechanisms are not fully understood and a multimodal process consisting of a whole panel of mediators is supposed to cause pulmonary artery vasoconstriction. We hypothesized that increased hypoxemia is associated with an increase in vasoconstrictive mediators and decrease of vasodilatators leading to a vasoconstrictive net effect. Furthermore, we suggested oxidative stress being partly involved in changement of these parameters. Oxygen saturation (Sao2) and clinical parameters were assessed in 34 volunteers before and during a Swiss research expedition to Mount Muztagh Ata (7549 m) in Western China. Blood samples were taken at four different sites up to an altitude of 6865 m. A mass spectrometry-based targeted metabolomic platform was used to detect multiple parameters, and revealed functional impairment of enzymes that require oxidation-sensitive cofactors. Specifically, the tetrahydrobiopterin (BH4)-dependent enzyme nitric oxide synthase (NOS) showed significantly lower activities (citrulline-to-arginine ratio decreased from baseline median 0.21 to 0.14 at 6265 m), indicating lower NO availability resulting in less vasodilatative activity. Correspondingly, an increase in systemic oxidative stress was found with a significant increase of the percentage of methionine sulfoxide from a median 6% under normoxic condition to a median level of 30% (p<0.001) in camp 1 at 5533 m. Furthermore, significant increase in vasoconstrictive mediators (e.g., tryptophan, serotonin, and peroxidation-sensitive lipids) were found. During ascent up to 6865 m, significant altitude-dependent changes in multiple vessel-tone modifying mediators with excess in vasoconstrictive metabolites could be demonstrated. These changes, as well as highly significant increase in systemic oxidative stress, may be predictive for increase in acute mountain sickness score and changes in Sao2.
Collapse
Affiliation(s)
- Jacqueline Pichler Hefti
- 1 Center of Laboratory Medicine, Cantonal Hospital Aarau and University of Bern , Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Padhy G, Sethy NK, Ganju L, Bhargava K. Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Alt Med Biol 2014; 14:289-97. [PMID: 24067188 DOI: 10.1089/ham.2012.1095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Systematic identification of molecular signatures for hypobaric hypoxia can aid in better understanding of human adaptation to high altitude. In an attempt to identify proteins promoting hypoxia tolerance during acute exposure to high altitude, we screened and identified hypoxia tolerant and susceptible rats based on hyperventilation time to a simulated altitude of 32,000 ft (9754 m). The hypoxia tolerance was further validated by estimating 8-isoprotane levels and protein carbonyls, which revealed that hypoxia tolerant rats possessed significant lower plasma levels as compared to susceptible rats. We used a comparative plasma proteome profiling approach using 2-dimensional gel electrophoresis (2-DGE) combined with MALDI TOF/TOF for both groups, along with an hypoxic control group. This resulted in the identification of 19 differentially expressed proteins. Seven proteins (TTR, GPx-3, PON1, Rab-3D, CLC11, CRP, and Hp) were upregulated in hypoxia tolerant rats, while apolipoprotein A-I (APOA1) was upregulated in hypoxia susceptible rats. We further confirmed the consistent higher expression levels of three antioxidant proteins (PON1, TTR, and GPx-3) in hypoxia-tolerant animals using ELISA and immunoblotting. Collectively, these proteomics-based results highlight the role of antioxidant enzymes in conferring hypoxia tolerance during acute hypobaric hypoxia. The expression of these antioxidant enzymes could be used as putative biomarkers for screening altitude adaptation as well as aiding in better management of altered oxygen pathophysiologies.
Collapse
Affiliation(s)
- Gayatri Padhy
- 1 Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences , Defence Research and Development Organization, Timarpur, Delhi, India
| | | | | | | |
Collapse
|
44
|
Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow. Med Eng Phys 2014; 36:563-75. [DOI: 10.1016/j.medengphy.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
|
45
|
Subudhi AW, Fan JL, Evero O, Bourdillon N, Kayser B, Julian CG, Lovering AT, Panerai RB, Roach RC. AltitudeOmics: cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness. J Appl Physiol (1985) 2014; 116:724-9. [DOI: 10.1152/japplphysiol.00880.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cerebral autoregulation (CA) acts to maintain brain blood flow despite fluctuations in perfusion pressure. Acute hypoxia is thought to impair CA, but it is unclear if CA is affected by acclimatization or related to the development of acute mountain sickness (AMS). We assessed changes in CA using transfer function analysis of spontaneous fluctuations in radial artery blood pressure (indwelling catheter) and resulting changes in middle cerebral artery blood flow velocity (transcranial Doppler) in 21 active individuals at sea level upon arrival at 5,260 m (ALT1), after 16 days of acclimatization (ALT16), and upon re-exposure to 5,260 m after 7 days at 1,525 m (POST7). The Lake Louise Questionnaire was used to evaluate AMS symptom severity. CA was impaired upon arrival at ALT1 ( P < 0.001) and did not change with acclimatization at ALT16 or upon re-exposure at POST7. CA was not associated with AMS symptoms (all R < 0.50, P > 0.05). These findings suggest that alterations in CA are an intrinsic consequence of hypoxia and are not directly related to the occurrence or severity of AMS.
Collapse
Affiliation(s)
- Andrew W. Subudhi
- University of Colorado Altitude Research Center, Department of Emergency Medicine, Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Colorado Springs, Department of Biology, Colorado Springs, Colorado
| | - Jui-Lin Fan
- University of Lausanne, Institute of Sports Sciences, Lausanne, Switzerland
- University of Geneva, Lemanic Doctoral School of Neuroscience, Geneva, Switzerland
| | - Oghenero Evero
- University of Colorado Altitude Research Center, Department of Emergency Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Nicolas Bourdillon
- University of Lausanne, Institute of Sports Sciences, Lausanne, Switzerland
| | - Bengt Kayser
- University of Lausanne, Institute of Sports Sciences, Lausanne, Switzerland
| | - Colleen G. Julian
- University of Colorado Altitude Research Center, Department of Emergency Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Andrew T. Lovering
- University of Oregon, Department of Human Physiology, Eugene, Oregon; and
| | - Ronney B. Panerai
- University of Leicester, Leicester Royal Infirmary, Department of Cardiovascular Sciences, Leicester, United Kingdom
| | - Robert C. Roach
- University of Colorado Altitude Research Center, Department of Emergency Medicine, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
46
|
Lewis NCS, Messinger L, Monteleone B, Ainslie PN. Effect of acute hypoxia on regional cerebral blood flow: effect of sympathetic nerve activity. J Appl Physiol (1985) 2014; 116:1189-96. [PMID: 24610534 DOI: 10.1152/japplphysiol.00114.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We examined 1) whether global cerebral blood flow (CBF) would increase across a 6-h bout of normobaric poikilocapnic hypoxia and be mediated by a larger increase in blood flow in the vertebral artery (VA) than in the internal carotid artery (ICA); and 2) whether additional increases in global CBF would be evident following an α1-adrenergic blockade via further dilation of the ICA and VA. In 11 young normotensive individuals, ultrasound measures of ICA and VA flow were obtained in normoxia (baseline) and following 60, 210, and 330 min of hypoxia (FiO2 = 0.11). Ninety minutes prior to final assessment, participants received an α1-adrenoreceptor blocker (prazosin, 1 mg/20 kg body mass) or placebo. Compared with baseline, following 60, 220, and 330 min of hypoxia, global CBF [(ICAFlow + VAFlow) ∗ 2] increased by 160 ± 52 ml/min (+28%; P = 0.05), 134 ± 23 ml/min (+23%; P = 0.02), and 113 ± 51 (+19%; P = 0.27), respectively. Compared with baseline, ICAFlow increased by 23% following 60 min of hypoxia (P = 0.06), after which it progressively declined. The percentage increase in VA flow was consistently larger than ICA flow during hypoxia by ∼20% (P = 0.002). Compared with baseline, ICA and VA diameters increased during hypoxia by ∼9% and ∼12%, respectively (P ≤ 0.05), and were correlated with reductions in SaO2. Flow and diameters were unaltered following α1 blockade (P ≥ 0.10). In conclusion, elevations in global CBF during acute hypoxia are partly mediated via greater increases in VA flow compared with ICA flow; this regional difference was unaltered following α1 blockade, indicating that a heightened sympathetic nerve activity with hypoxia does not constrain further dilation of larger extracranial blood vessels.
Collapse
Affiliation(s)
- Nia C S Lewis
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
| | | | | | | |
Collapse
|
47
|
Winter CD, Whyte TR, Cardinal J, Rose SE, O'Rourke PK, Kenny RG. Elevated plasma S100B levels in high altitude hypobaric hypoxia do not correlate with acute mountain sickness. Neurol Res 2014; 36:779-85. [PMID: 24620985 DOI: 10.1179/1743132814y.0000000337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Ascent to high altitude may result in a hypobaric hypoxic brain injury. The development of acute mountain sickness (AMS) is considered a multifactorial process with hypoxia-induced blood-brain barrier (BBB) dysfunction and resultant vasogenic oedema cited as one potential mechanism. Peripheral S100B is considered a biomarker of BBB dysfunction. This study aims to investigate the S100B release profile secondary to hypoxic brain injury and comment on BBB disturbance and AMS. METHODS A prospective field study of 12 subjects who ascended Mt Fuji (3700 m) was undertaken. RESULTS The mean baseline plasma S100B level was 0·11 μg/l (95% CI 0·09-0·12), which increased to 0·22 μg/l (95% CI 0·17-0·27) at the average of three high altitude levels (2590, 3700, and 2590 m on descent) (P < 0·001). The mean level for the seven subjects who experienced AMS rose from 0·10 to 0·19 μg/l compared to 0·12 to 0·25 μg/l for the five subjects who did not develop AMS (P = 0·33). CONCLUSION Ascending to 3700 m resulted in elevated plasma S100B levels but this was not associated with AMS.
Collapse
|
48
|
Smirl JD, Lucas SJE, Lewis NCS, duManoir GR, Smith KJ, Bakker A, Basnyat AS, Ainslie PN, Ainslie PN. Cerebral pressure-flow relationship in lowlanders and natives at high altitude. J Cereb Blood Flow Metab 2014; 34:248-57. [PMID: 24169852 PMCID: PMC3915197 DOI: 10.1038/jcbfm.2013.178] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 12/30/2022]
Abstract
We investigated if dynamic cerebral pressure-flow relationships in lowlanders are altered at high altitude (HA), differ in HA natives and after return to sea level (SL). Lowlanders were tested at SL (n=16), arrival to 5,050 m, after 2-week acclimatization (with and without end-tidal PO2 normalization), and upon SL return. High-altitude natives (n=16) were tested at 5,050 m. Testing sessions involved resting spontaneous and driven (squat-stand maneuvers at very low (VLF, 0.05 Hz) and low (LF, 0.10 Hz) frequencies) measures to maximize blood pressure (BP) variability and improve assessment of the pressure-flow relationship using transfer function analysis (TFA). Blood flow velocity was assessed in the middle (MCAv) and posterior (PCAv) cerebral arteries. Spontaneous VLF and LF phases were reduced and coherence was elevated with acclimatization to HA (P<0.05), indicating impaired pressure-flow coupling. However, when BP was driven, both the frequency- and time-domain metrics were unaltered and comparable with HA natives. Acute mountain sickness was unrelated to TFA metrics. In conclusion, the driven cerebral pressure-flow relationship (in both frequency and time domains) is unaltered at 5,050 m in lowlanders and HA natives. Our findings indicate that spontaneous changes in TFA metrics do not necessarily reflect physiologically important alterations in the capacity of the brain to regulate BP.
Collapse
Affiliation(s)
- Jonathan D Smirl
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Samuel J E Lucas
- 1] Department of Physiology, University of Otago, Dunedin, New Zealand [2] School of Physical Education, University of Otago, Dunedin, New Zealand [3] School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Nia C S Lewis
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | | | - Kurt J Smith
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Akke Bakker
- University of Twente, Enschede, The Netherlands
| | | | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
49
|
Julian CG, Subudhi AW, Hill RC, Wilson MJ, Dimmen AC, Hansen KC, Roach RC. Exploratory proteomic analysis of hypobaric hypoxia and acute mountain sickness in humans. J Appl Physiol (1985) 2013; 116:937-44. [PMID: 24265281 DOI: 10.1152/japplphysiol.00362.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our objective in this exploratory study was to identify novel biomarkers of importance for acute mountain sickness (AMS) using discovery-based proteomic methods. Peripheral blood samples were collected and AMS symptoms were assessed in 20 healthy volunteers prior to [-15 h (baseline) and 0 h; 1,609 m; barometric pressure = 625 mmHg] and after a 9-h exposure to hypobaric hypoxia (9 h; 4,875 m; barometric pressure = 425 mmHg). AMS status was assessed using the Lake Louise Questionnaire. Plasma samples were pooled according to AMS status at each time point. Protein composition of the samples was determined by a GeLC-MS/MS approach using two analytical platforms (LTQ-XL linear ion trap mass spectrometer and a LTQ-FT ultra hybrid mass spectrometer) for technical replication. Spectral counting was used to make semiquantitative comparisons of protein abundance between AMS-susceptible (AMS) and AMS-resistant (AMS·R) subjects with exposure to hypobaric hypoxia. After 9 h of hypoxia, the abundance of proteins with antioxidant properties (i.e., peroxiredoxin 6, glutathione peroxidase, and sulfhydryl oxidase 1) rose in AMS but not AMS·R. Our exploratory analyses suggest that exposure to hypobaric hypoxia enhances enzymatic antioxidant systems in AMS vs. AMS·R, which, we propose, may be an overcompensation for hypoxia-induced oxidant production. On the basis of our findings we 1) speculate that quenching oxidant activity may have adverse downstream effects that are of pathophysiological importance for AMS such as interrupting oxidant-sensitive cell signaling and gene transcription and 2) question the existing assumption that increased oxidant production in AMS is pathological.
Collapse
Affiliation(s)
- Colleen G Julian
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Denver, Aurora, Colorado
| | | | | | | | | | | | | |
Collapse
|
50
|
Neutrophil gelatinase-associated lipocalin: its response to hypoxia and association with acute mountain sickness. DISEASE MARKERS 2013; 35:537-42. [PMID: 24227892 PMCID: PMC3817649 DOI: 10.1155/2013/601214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022]
Abstract
Acute Mountain Sickness (AMS) is a common clinical challenge at high altitude (HA). A point-of-care biochemical marker for AMS could have widespread utility. Neutrophil gelatinase-associated lipocalin (NGAL) rises in response to renal injury, inflammation and oxidative stress. We investigated whether NGAL rises with HA and if this rise was related to AMS, hypoxia or exercise. NGAL was assayed in a cohort (n = 22) undertaking 6 hours exercise at near sea-level (SL); a cohort (n = 14) during 3 hours of normobaric hypoxia (FiO2 11.6%) and on two trekking expeditions (n = 52) to over 5000 m. NGAL did not change with exercise at SL or following normobaric hypoxia. During the trekking expeditions NGAL levels (ng/ml, mean ± sd, range) rose significantly (P < 0.001) from 68 ± 14 (60–102) at 1300 m to 183 ± 107 (65–519); 143 ± 66 (60–315) and 150 ± 71 (60–357) at 3400 m, 4270 m and 5150 m respectively. At 5150 m there was a significant difference in NGAL between those with severe AMS (n = 7), mild AMS (n = 16) or no AMS (n = 23): 201 ± 34 versus 171 ± 19 versus 124 ± 12 respectively (P = 0.009 for severe versus no AMS; P = 0.026 for mild versus no AMS). In summary, NGAL rises in response to prolonged hypobaric hypoxia and demonstrates a relationship to the presence and severity of AMS.
Collapse
|