1
|
Sasaki R, Hand BJ, Liao WY, Semmler JG, Opie GM. Investigating the Effects of Repetitive Paired-Pulse Transcranial Magnetic Stimulation on Visuomotor Training Using TMS-EEG. Brain Topogr 2024; 37:1158-1170. [PMID: 39066878 PMCID: PMC11408544 DOI: 10.1007/s10548-024-01071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
I-wave periodicity repetitive paired-pulse transcranial magnetic stimulation (iTMS) can modify acquisition of a novel motor skill, but the associated neurophysiological effects remain unclear. The current study therefore used combined TMS-electroencephalography (TMS-EEG) to investigate the neurophysiological effects of iTMS on subsequent visuomotor training (VT). Sixteen young adults (26.1 ± 5.1 years) participated in three sessions including real iTMS and VT (iTMS + VT), control iTMS and VT (iTMSControl + VT), or iTMS alone. Motor-evoked potentials (MEPs) and TMS-evoked potentials (TEPs) were measured before and after iTMS, and again after VT, to assess neuroplastic changes. Irrespective of the intervention, MEP amplitude was not changed after iTMS or VT. Motor skill was improved compared with baseline, but no differences were found between stimulus conditions. In contrast, the P30 peak was altered by VT when preceded by control iTMS (P < 0.05), but this effect was not apparent when VT was preceded by iTMS or following iTMS alone (all P > 0.15). In contrast to expectations, iTMS was unable to modulate MEP amplitude or influence motor learning. Despite this, changes in P30 amplitude suggested that motor learning was associated with altered cortical reactivity. Furthermore, this effect was abolished by priming with iTMS, suggesting an influence of priming that failed to impact learning.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Brodie J Hand
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Wei-Yeh Liao
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - John G Semmler
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - George M Opie
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
2
|
Ciumărnean L, Sârb OF, Drăghici NC, Sălăgean O, Milaciu MV, Orășan OH, Vlad CV, Vlad IM, Alexescu T, Para I, Țărmure SF, Hirișcău EI, Dogaru GB. Obesity Control and Supplementary Nutraceuticals as Cofactors of Brain Plasticity in Multiple Sclerosis Populations. Int J Mol Sci 2024; 25:10909. [PMID: 39456690 PMCID: PMC11507128 DOI: 10.3390/ijms252010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Brain plasticity, the brain's ability to adapt its structure and function, plays a crucial role in mitigating MS's impact. This paper explores the potential benefits of lifestyle changes and nutraceuticals on brain plasticity in the MS population. Lifestyle modifications, including physical activity and dietary adjustments, can enhance brain plasticity by upregulating neurotrophic factors, promoting synaptogenesis, and reducing oxidative stress. Nutraceuticals, such as vitamin D, omega-3 fatty acids, and antioxidants like alpha lipoic acid, have shown promise in supporting brain health through anti-inflammatory and neuroprotective mechanisms. Regular physical activity has been linked to increased levels of brain-derived neurotrophic factor and improved cognitive function. Dietary interventions, including caloric restriction and the intake of polyphenols, can also positively influence brain plasticity. Integrating these lifestyle changes and nutraceuticals into the management of MS can provide a complementary approach to traditional therapies, potentially improving neurological outcomes and enhancing the quality of life for the MS population.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Oliviu-Florențiu Sârb
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Nicu-Cătălin Drăghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Olga-Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Călin-Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Irina-Maria Vlad
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Teodora Alexescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Ioana Para
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Simina-Felicia Țărmure
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Elisabeta-Ioana Hirișcău
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Youssef L, Harroum N, Francisco BA, Johnson L, Arvisais D, Pageaux B, Romain AJ, Hayward KS, Neva JL. Neurophysiological effects of acute aerobic exercise in young adults: a systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 164:105811. [PMID: 39025386 DOI: 10.1016/j.neubiorev.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Evidence continues to accumulate that acute aerobic exercise (AAE) impacts neurophysiological excitability as measured by transcranial magnetic stimulation (TMS). Yet, uncertainty exists about which TMS measures are modulated after AAE in young adults. The influence of AAE intensity and duration of effects are also uncertain. This pre-registered meta-analysis (CRD42017065673) addressed these uncertainties by synthesizing data from 23 studies (including 474 participants) published until February 2024. Meta-analysis was run using a random-effects model and Hedge's g used as effect size. Our results demonstrated a decrease in short-interval intracortical inhibition (SICI) following AAE (g = 0.27; 95 % CI [0.16-0.38]; p <.0001), particularly for moderate (g = 0.18; 95 % CI [0.05-0.31]; p <.01) and high (g = 0.49; 95 % CI [0.27-0.71]; p <.0001) AAE intensities. These effects remained for 30 minutes after AAE. Additionally, increased corticospinal excitability was only observed for high intensity AAE (g = 0.28; 95 % CI, [0.07-0.48]; p <.01). Our results suggest potential mechanisms for inducing a more susceptible neuroplastic environment following AAE.
Collapse
Affiliation(s)
- Layale Youssef
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada.
| | - Nesrine Harroum
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| | - Beatrice A Francisco
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Liam Johnson
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Denis Arvisais
- Direction des bibliothèques, Bibliothèques des sciences de la santé, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| | - Ahmed Jérôme Romain
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Research Center of the University Institute of Mental Health of Montreal, Montreal, QC, Canada
| | - Kathryn S Hayward
- Departments of Physiotherapy and Medicine (RMH), University of Melbourne, Parkville, VIC, Australia
| | - Jason L Neva
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| |
Collapse
|
5
|
Ross RE, Saladin ME, George MS, Gregory CM. Acute effects of aerobic exercise on corticomotor plasticity in individuals with and without depression. J Psychiatr Res 2024; 176:108-118. [PMID: 38852541 PMCID: PMC11283944 DOI: 10.1016/j.jpsychires.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Although complex in nature, the pathophysiology of depression involves reduced or impaired neuroplastic capabilities. Restoring or enhancing neuroplasticity may serve as a treatment target for developing therapies for depression. Aerobic exercise (AEx) has antidepressant benefits and may enhance neuroplasticity in depression although the latter has yet to be substantiated. Therefore, we sought to examine the acute effect of AEx on neuroplasticity in depression. METHODS Sixteen individuals with (DEP; 13 female; age = 28.5 ± 7.3; Montgomery-Äsberg Depression Rating Scale [MADRS] = 21.3 ± 5.2) and without depression (HC; 13 female; age 27.2 ± 7.5; MADRS = 0.8 ± 1.2) completed three experimental visits consisting of 15 min of low intensity AEx (LO) at 35% heart rate reserve (HRR), high intensity AEx (HI) at 70% HRR, or sitting (CON). Following AEx, excitatory paired associative stimulation (PAS25ms) was employed to probe neuroplasticity. Motor evoked potentials (MEP) were assessed via transcranial magnetic stimulation before and after PAS25ms to indicate acute changes in neuroplasticity. RESULTS PAS25ms primed with HI AEx led to significant increases in MEP amplitude compared to LO and CON. HI AEx elicited enhanced PAS25ms-induced neuroplasticity for up to 1-h post-PAS. There were no significant between-group differences. CONCLUSION HI AEx enhances PAS measured neuroplasticity in individuals with and without depression. HI AEx may have a potent influence on the brain and serve as an effective primer, or adjunct, to therapies that seek to harness neuroplasticity.
Collapse
Affiliation(s)
- Ryan E Ross
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA.
| | - Michael E Saladin
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Chris M Gregory
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Cadwallader CJ, Curtin D, Taylor EM, de Moel T, Jarvis H, Hutchison C, Hendrikse J, Chong TTJ, Coxon JP. Exercise-induced cortical disinhibition mediates the relationship between fitness and memory in older adults. J Physiol 2024; 602:2945-2959. [PMID: 38747052 DOI: 10.1113/jp285537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Regular exercise benefits learning and memory in older adults, but the neural mechanisms mediating these effects remain unclear. Evidence in young adults indicates that acute exercise creates a favourable environment for synaptic plasticity by enhancing cortical disinhibition. As such, we investigated whether plasticity-related disinhibition mediated the relationship between cardiorespiratory fitness and memory function in healthy older adults (n = 16, mean age = 66.06). Participants completed a graded maximal exercise test and assessments of visual and verbal memory, followed by two counterbalanced sessions involving 20 min of either high-intensity interval training exercise or rest. Disinhibition was measured following intermittent theta burst stimulation via paired-pulse transcranial magnetic stimulation. In line with our hypotheses, we observed a positive correlation between cardiorespiratory fitness and verbal memory, which was mediated by plasticity-related cortical disinhibition. Our novel finding implicates cortical disinhibition as a mechanism through which the effects of acute bouts of exercise may translate to improved memory in older adults. This finding extends current understanding of the physiological mechanisms underlying the positive influence of cardiorespiratory fitness for memory function in older adults, and further highlights the importance of promoting exercise engagement to maintain cognitive health in later life. KEY POINTS: There are well established benefits of regular exercise for memory function in older adults, but the mechanisms are unclear. Cortical disinhibition is important for laying down new memories, and is enhanced following acute exercise in young adults, suggesting it is a potential mechanism underlying these benefits in ageing. Older adults completed a fitness test and assessments of memory, followed by two sessions involving either 20 min of exercise or rest. Disinhibition was measured following intermittent theta burst stimulation via paired-pulse transcranial magnetic stimulation. Cardiorespiratory fitness was positively associated with memory performance. Higher fitness was associated with enhanced cortical disinhibition following acute exercise. Cortical disinhibition completely mediated the relationship between fitness and memory. This novel finding provides a mechanistic account for the positive influence of cardiorespiratory fitness on memory in later life, and emphasises the importance of regular exercise for cognitive health in older populations.
Collapse
Affiliation(s)
- Claire J Cadwallader
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Dylan Curtin
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Eleanor M Taylor
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Tamar de Moel
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Huw Jarvis
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Christopher Hutchison
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
- Cognitive, Dementia and Memory Service, Peninsula Health, Victoria, Australia
| | - Joshua Hendrikse
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Trevor T-J Chong
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
- Department of Neurology, Alfred Health, Victoria, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Victoria, Australia
| | - James P Coxon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| |
Collapse
|
7
|
Skog HM, Määttä S, Säisänen L, Lakka TA, Haapala EA. Associations of physical fitness with cortical inhibition and excitation in adolescents and young adults. Front Neurosci 2024; 18:1297009. [PMID: 38741791 PMCID: PMC11090042 DOI: 10.3389/fnins.2024.1297009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Objective We investigated the longitudinal associations of cumulative motor fitness, muscular strength, and cardiorespiratory fitness (CRF) from childhood to adolescence with cortical excitability and inhibition in adolescence. The other objective was to determine cross-sectional associations of motor fitness and muscular strength with brain function in adolescence. Methods In 45 healthy adolescents (25 girls and 20 boys) aged 16-19 years, we assessed cortical excitability and inhibition by navigated transcranial magnetic stimulation (nTMS), and motor fitness by 50-m shuttle run test and Box and block test, and muscular strength by standing long jump test. These measures of physical fitness and CRF by maximal exercise were assessed also at the ages 7-9, 9-11, and 15-17 years. Cumulative measures of physical measures were computed by summing up sample-specific z-scores at ages 7-9, 9-11, and 15-17 years. Results Higher cumulative motor fitness performance from childhood to adolescence was associated with lower right hemisphere resting motor threshold (rMT), lower silent period threshold (SPt), and lower motor evoked potential (MEP) amplitude in boys. Better childhood-to-adolescence cumulative CRF was also associated with longer silent period (SP) duration in boys and higher MEP amplitude in girls. Cross-sectionally in adolescence, better motor fitness and better muscular strength were associated with lower left and right rMT among boys and better motor fitness was associated with higher MEP amplitude and better muscular strength with lower SPt among girls. Conclusion Physical fitness from childhood to adolescence modifies cortical excitability and inhibition in adolescence. Motor fitness and muscular strength were associated with motor cortical excitability and inhibition. The associations were selective for specific TMS indices and findings were sex-dependent.
Collapse
Affiliation(s)
- Hanna Mari Skog
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo A. Lakka
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Eero A. Haapala
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
8
|
Katagiri N, Saho T, Shibukawa S, Tanabe S, Yamaguchi T. Predicting interindividual response to theta burst stimulation in the lower limb motor cortex using machine learning. Front Neurosci 2024; 18:1363860. [PMID: 38572150 PMCID: PMC10987705 DOI: 10.3389/fnins.2024.1363860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Using theta burst stimulation (TBS) to induce neural plasticity has played an important role in improving the treatment of neurological disorders. However, the variability of TBS-induced synaptic plasticity in the primary motor cortex prevents its clinical application. Thus, factors associated with this variability should be explored to enable the creation of a predictive model. Statistical approaches, such as regression analysis, have been used to predict the effects of TBS. Machine learning may potentially uncover previously unexplored predictive factors due to its increased capacity for capturing nonlinear changes. In this study, we used our prior dataset (Katagiri et al., 2020) to determine the factors that predict variability in TBS-induced synaptic plasticity in the lower limb motor cortex for both intermittent (iTBS) and continuous (cTBS) TBS using machine learning. Validation of the created model showed an area under the curve (AUC) of 0.85 and 0.69 and positive predictive values of 77.7 and 70.0% for iTBS and cTBS, respectively; the negative predictive value was 75.5% for both patterns. Additionally, the accuracy was 0.76 and 0.72, precision was 0.82 and 0.67, recall was 0.82 and 0.67, and F1 scores were 0.82 and 0.67 for iTBS and cTBS, respectively. The most important predictor of iTBS was the motor evoked potential amplitude, whereas it was the intracortical facilitation for cTBS. Our results provide additional insights into the prediction of the effects of TBS variability according to baseline neurophysiological factors.
Collapse
Affiliation(s)
- Natsuki Katagiri
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Tatsunori Saho
- Department of Radiological Technology, Kokura Memorial Hospital, Fukuoka, Japan
| | - Shuhei Shibukawa
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, University of Tokyo, Tokyo, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| |
Collapse
|
9
|
Stampanoni Bassi M, Gilio L, Buttari F, Dolcetti E, Bruno A, Galifi G, Azzolini F, Borrelli A, Mandolesi G, Gentile A, De Vito F, Musella A, Simonelli I, Centonze D, Iezzi E. Preventive exercise and physical rehabilitation promote long-term potentiation-like plasticity expression in patients with multiple sclerosis. Eur J Neurol 2024; 31:e16071. [PMID: 37754770 PMCID: PMC11236037 DOI: 10.1111/ene.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND AND PURPOSE Loss of long-term potentiation (LTP) expression has been associated with a worse disease course in relapsing-remitting multiple sclerosis (RR-MS) and represents a pathophysiological hallmark of progressive multiple sclerosis (PMS). Exercise and physical rehabilitation are the most prominent therapeutic approaches to promote synaptic plasticity. We aimed to explore whether physical exercise is able to improve the expression of LTP-like plasticity in patients with multiple sclerosis (MS). METHODS In 46 newly diagnosed RR-MS patients, we explored the impact of preventive exercise on LTP-like plasticity as assessed by intermittent theta-burst stimulation. Patients were divided into sedentary or active, based on physical activity performed during the 6 months prior to diagnosis. Furthermore, in 18 patients with PMS, we evaluated the impact of an 8-week inpatient neurorehabilitation program on clinical scores and LTP-like plasticity explored using paired associative stimulation (PAS). Synaptic plasticity expression was compared in patients and healthy subjects. RESULTS Reduced LTP expression was found in RR-MS patients compared with controls. Exercising RR-MS patients showed a greater amount of LTP expression compared with sedentary patients. In PMS patients, LTP expression was reduced compared with controls and increased after 8 weeks of rehabilitation. In this group of patients, LTP magnitude at baseline predicted the improvement in hand dexterity. CONCLUSIONS Both preventive exercise and physical rehabilitation may enhance the expression of LTP-like synaptic plasticity in MS, with potential beneficial effects on disability accumulation.
Collapse
Affiliation(s)
| | - Luana Gilio
- IRCCS NeuromedPozzilliItaly
- Faculty of PsychologyUninettuno Telematic International UniversityRomeItaly
| | | | | | | | | | | | | | - Georgia Mandolesi
- Synaptic Immunopathology LabIRCCS San Raffaele RomaRomeItaly
- Department of Human Sciences and Quality of Life PromotionUniversity of Roma San RaffaeleRomeItaly
| | | | | | - Alessandra Musella
- Synaptic Immunopathology LabIRCCS San Raffaele RomaRomeItaly
- Department of Human Sciences and Quality of Life PromotionUniversity of Roma San RaffaeleRomeItaly
| | - Ilaria Simonelli
- Service of Medical Statistics and Information TechnologyFatebenefratelli Isola Tiberina – Gemelli IsolaRomeItaly
- Department of Biomedicine and PreventionTor Vergata UniversityRomeItaly
| | - Diego Centonze
- IRCCS NeuromedPozzilliItaly
- Department of Systems MedicineTor Vergata UniversityRomeItaly
| | | |
Collapse
|
10
|
Urbin MA, Lafe CW, Bautista ME, Wittenberg GF, Simpson TW. Effects of noninvasive neuromodulation targeting the spinal cord on early learning of force control by the digits. CNS Neurosci Ther 2024; 30:e14561. [PMID: 38421127 PMCID: PMC10851178 DOI: 10.1111/cns.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS Control of finger forces underlies our capacity for skilled hand movements acquired during development and reacquired after neurological injury. Learning force control by the digits, therefore, predicates our functional independence. Noninvasive neuromodulation targeting synapses that link corticospinal neurons onto the final common pathway via spike-timing-dependent mechanisms can alter distal limb motor output on a transient basis, yet these effects appear subject to individual differences. Here, we investigated how this form of noninvasive neuromodulation interacts with task repetition to influence early learning of force control during precision grip. METHODS The unique effects of neuromodulation, task repetition, and neuromodulation coinciding with task repetition were tested in three separate conditions using a within-subject, cross-over design (n = 23). RESULTS We found that synchronizing depolarization events within milliseconds of stabilizing precision grip accelerated learning but only after accounting for individual differences through inclusion of subjects who showed upregulated corticospinal excitability at 2 of 3 time points following conditioning stimulation (n = 19). CONCLUSIONS Our findings provide insights into how the state of the corticospinal system can be leveraged to drive early motor skill learning, further emphasizing individual differences in the response to noninvasive neuromodulation. We interpret these findings in the context of biological mechanisms underlying the observed effects and implications for emerging therapeutic applications.
Collapse
Affiliation(s)
- Michael A. Urbin
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Charley W. Lafe
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Manuel E. Bautista
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - George F. Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Rehabilitation Neural Engineering Laboratories, Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tyler W. Simpson
- Rehabilitation Neural Engineering Laboratories, Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
11
|
Curtin D, Cadwallader CJ, Taylor EM, Andrews SC, Stout JC, Hendrikse JJ, Chong TTJ, Coxon JP. Ageing attenuates exercise-enhanced motor cortical plasticity. J Physiol 2023; 601:5733-5750. [PMID: 37917116 DOI: 10.1113/jp285243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiorespiratory exercise is known to modulate motor cortical plasticity in young adults, but the influence of ageing on this relationship is unknown. Here, we compared the effects of a single session of cardiorespiratory exercise on motor cortical plasticity in young and older adults. We acquired measures of cortical excitatory and inhibitory activity of the primary motor cortex using transcranial magnetic stimulation (TMS) from 20 young (mean ± SD = 25.30 ± 4.00 years, 14 females) and 20 older (mean ± SD = 64.10 ± 6.50 years, 11 females) healthy adults. Single- and paired-pulse TMS measurements were collected before and after a 20 min bout of high-intensity interval cycling exercise or an equivalent period of rest, and again after intermittent theta burst stimulation (iTBS). In both young (P = 0.027, Cohen's d = 0.87) and older adults (P = 0.006, Cohen's d = 0.85), there was an increase in glutamatergic excitation and a reduction in GABAergic inhibition from pre- to postexercise. However, in contrast to younger adults, older adults showed an attenuated plasticity response to iTBS following exercise (P = 0.011, Cohen's d = 0.85). These results demonstrate an age-dependent decline in cortical plasticity and indicate that a preceding bout of high-intensity interval exercise might be less effective for enhancing primary motor cortex plasticity in older adults. Our findings align with the hypothesis that the capacity for cortical plasticity is altered in older age. KEY POINTS: Exercise enhances motor cortical plasticity in young adults, but how ageing influences this effect is unknown. Here, we compared primary motor cortical plasticity responses in young and older adults before and after a bout of high-intensity interval exercise and again after a plasticity-inducing protocol, intermittent theta burst stimulation. In both young and older adults, exercise led to an increase in glutamatergic excitation and a reduction in GABAergic inhibition. Our key result was that older adults showed an attenuated plasticity response to theta burst stimulation following exercise, relative to younger adults. Our findings demonstrate an age-dependent decline in exercise-enhanced cortical plasticity and indicate that a preceding bout of high-intensity interval exercise might be less effective for enhancing primary motor cortex plasticity in older adults.
Collapse
Affiliation(s)
- Dylan Curtin
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Claire J Cadwallader
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Eleanor M Taylor
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sophie C Andrews
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Julie C Stout
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joshua J Hendrikse
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Trevor T-J Chong
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - James P Coxon
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Hill G, Johnson F, Uy J, Serrada I, Benyamin B, Van Den Berg M, Hordacre B. Moderate intensity aerobic exercise may enhance neuroplasticity of the contralesional hemisphere after stroke: a randomised controlled study. Sci Rep 2023; 13:14440. [PMID: 37660093 PMCID: PMC10475034 DOI: 10.1038/s41598-023-40902-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
Upregulation of neuroplasticity might help maximize stroke recovery. One intervention that appears worthy of investigation is aerobic exercise. This study aimed to determine whether a single bout of moderate intensity aerobic exercise can enhance neuroplasticity in people with stroke. Participants were randomly assigned (1:1) to a 20-min moderate intensity exercise intervention or remained sedentary (control). Transcranial magnetic stimulation measured corticospinal excitability of the contralesional hemisphere by recording motor evoked potentials (MEPs). Intermittent Theta Burst Stimulation (iTBS) was used to repetitively activate synapses in the contralesional primary motor cortex, initiating the early stages of neuroplasticity and increasing excitability. It was surmised that if exercise increased neuroplasticity, there would be a greater facilitation of MEPs following iTBS. Thirty-three people with stroke participated in this study (aged 63.87 ± 10.30 years, 20 male, 6.13 ± 4.33 years since stroke). There was an interaction between Time*Group on MEP amplitudes (P = 0.009). Participants allocated to aerobic exercise had a stronger increase in MEP amplitude following iTBS. A non-significant trend indicated time since stroke might moderate this interaction (P = 0.055). Exploratory analysis suggested participants who were 2-7.5 years post stroke had a strong MEP facilitation following iTBS (P < 0.001). There was no effect of age, sex, resting motor threshold, self-reported physical activity levels, lesion volume or weighted lesion load (all P > 0.208). Moderate intensity cycling may enhance neuroplasticity in people with stroke. This therapy adjuvant could provide opportunities to maximize stroke recovery.
Collapse
Affiliation(s)
- Gabrielle Hill
- Clinical Rehabilitation, College of Nursing and Health Sciences, Flinders University, Adelaide, 5042, Australia
| | - Finn Johnson
- Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
| | - Jeric Uy
- Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
| | - Ines Serrada
- Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health, Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, 5000, Australia
| | - Maayken Van Den Berg
- Clinical Rehabilitation, College of Nursing and Health Sciences, Flinders University, Adelaide, 5042, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, City East Campus, GPO Box 2471, Adelaide, 5001, Australia.
| |
Collapse
|
13
|
St Pierre MA, Shinohara M. Transcutaneous vagus nerve stimulation at nonspecific timings during training can compromise motor adaptation in healthy humans. J Neurophysiol 2023; 130:212-223. [PMID: 37377193 PMCID: PMC10393334 DOI: 10.1152/jn.00447.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
Adding afferent vagus nerve stimulation to motor training via implanted electrodes can modify neuromotor adaptation depending on the stimulation timing. This study aimed to understand neuromotor adaptations when transcutaneous vagus nerve stimulation (tVNS) is applied at nonspecific timings during motor skill training in healthy humans. Twenty-four healthy young adults performed visuomotor training to match a complex force trajectory pattern with the index and little finger abduction forces concurrently. Participants were assigned to the tVNS group receiving tVNS at the tragus or the sham group receiving sham stimulation to the earlobe. The corresponding stimulations were applied at nonspecific timings throughout the training trials. Visuomotor tests were performed without tVNS or sham stimulation before and after training sessions across days. The reduction in the root mean square error (RMSE) against the trained force trajectory was attenuated in the tVNS group compared with the sham group, while its in-session reduction was not different between groups. The reduction of RMSE against an untrained trajectory pattern was not different between groups. No training effect was observed in corticospinal excitability or GABA-mediated intracortical inhibition. These findings suggest that adding tVNS at nonspecific timings during motor skill training can compromise motor adaptation but not transfer in healthy humans.NEW & NOTEWORTHY Adding vagus nerve stimulation via implanted electrodes during motor training can facilitate motor recovery in disabled animals and humans. No study examined the effect of transcutaneous vagus nerve stimulation (tVNS) during training on neuromotor adaptation in healthy humans. We have found that adding tVNS at nonspecific timings during motor skill training can compromise motor adaptation but not transfer in healthy humans.
Collapse
Affiliation(s)
- Mitchell Adrien St Pierre
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Minoru Shinohara
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
14
|
Turrini S, Fiori F, Chiappini E, Lucero B, Santarnecchi E, Avenanti A. Cortico-cortical paired associative stimulation (ccPAS) over premotor-motor areas affects local circuitries in the human motor cortex via Hebbian plasticity. Neuroimage 2023; 271:120027. [PMID: 36925088 DOI: 10.1016/j.neuroimage.2023.120027] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that cortico-cortical paired associative stimulation (ccPAS) can strengthen connectivity between the ventral premotor cortex (PMv) and the primary motor cortex (M1) by modulating convergent input over M1 via Hebbian spike-timing-dependent plasticity (STDP). However, whether ccPAS locally affects M1 activity remains unclear. We tested 60 right-handed young healthy humans in two studies, using a combination of dual coil TMS and ccPAS over the left PMv and M1 to probe and manipulate PMv-to-M1 connectivity, and single- and paired-pulse TMS to assess neural activity within M1. We provide convergent evidence that ccPAS, relying on repeated activations of excitatory PMv-to-M1 connections, acts locally over M1. During ccPAS, motor-evoked potentials (MEPs) induced by paired PMv-M1 stimulation gradually increased. Following ccPAS, the threshold for inducing MEPs of different amplitudes decreased, and the input-output curve (IO) slope increased, highlighting increased M1 corticospinal excitability. Moreover, ccPAS reduced the magnitude of short-interval intracortical inhibition (SICI), reflecting suppression of GABA-ergic interneuronal mechanisms within M1, without affecting intracortical facilitation (ICF). These changes were specific to ccPAS Hebbian strengthening of PMv-to-M1 connectivity, as no modulations were observed when reversing the order of the PMv-M1 stimulation during a control ccPAS protocol. These findings expand prior ccPAS research that focused on the malleability of cortico-cortical connectivity at the network-level, and highlight local changes in the area of convergent activation (i.e., M1) during plasticity induction. These findings provide new mechanistic insights into the physiological basis of ccPAS that are relevant for protocol optimization.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States.
| | - Francesca Fiori
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; NeXT: Neurophysiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome 00128, Italy
| | - Emilio Chiappini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Institut für Klinische und Gesundheitspsychologie, Universität Wien, Vienna 1010, Austria
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States
| | - Alessio Avenanti
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile.
| |
Collapse
|
15
|
Wang YR, Lefebvre G, Picard M, Lamoureux-Andrichuk A, Ferland MC, Therrien-Blanchet JM, Boré A, Tremblay J, Descoteaux M, Champoux F, Théoret H. Physiological, Anatomical and Metabolic Correlates of Aerobic Fitness in Human Primary Motor Cortex: A Multimodal Study. Neuroscience 2023; 517:70-83. [PMID: 36921757 DOI: 10.1016/j.neuroscience.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Physical activity (PA) has been shown to benefit various cognitive functions and promote neuroplasticity. Whereas the effects of PA on brain anatomy and function have been well documented in older individuals, data are scarce in young adults. Whether high levels of cardiorespiratory fitness (CRF) achieved through regular PA are associated with significant structural and functional changes in this age group remains largely unknown. In the present study, twenty young adults that engaged in at least 8 hours per week of aerobic exercise during the last 5 years were compared to twenty sedentary controls on measures of cortical excitability, white matter microstructure, cortical thickness and metabolite concentration. All measures were taken in the left primary motor cortex and CRF was assessed with VO2max. Transcranial magnetic stimulation (TMS) revealed higher corticospinal excitability in high- compared to low-fit individuals reflected by greater input/output curve amplitude and slope. No group differences were found for other TMS (short-interval intracortical inhibition and intracortical facilitation), diffusion MRI (fractional anisotropy and apparent fiber density), structural MRI (cortical thickness) and magnetic resonance spectroscopy (NAA, GABA, Glx) measures. Taken together, the present data suggest that brain changes associated with increased CRF are relatively limited, at least in primary motor cortex, in contrast to what has been observed in older adults.
Collapse
Affiliation(s)
- Yi Ran Wang
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Geneviève Lefebvre
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Maude Picard
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Arnaud Boré
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Jonathan Tremblay
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Suzuki M, Saito K, Maeda Y, Cho K, Iso N, Okabe T, Suzuki T, Yamamoto J. Effects of Paired Associative Stimulation on Cortical Plasticity in Agonist–Antagonist Muscle Representations. Brain Sci 2023; 13:brainsci13030475. [PMID: 36979285 PMCID: PMC10046224 DOI: 10.3390/brainsci13030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Paired associative stimulation (PAS) increases and decreases cortical excitability in primary motor cortex (M1) neurons, depending on the spike timing-dependent plasticity, i.e., long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity, respectively. However, how PAS affects the cortical circuits for the agonist and antagonist muscles of M1 is unclear. Here, we investigated the changes in the LTP- and LTD-like plasticity for agonist and antagonist muscles during PAS: 200 pairs of 0.25-Hz peripheral electric stimulation of the right median nerve at the wrist, followed by a transcranial magnetic stimulation of the left M1 with an interstimulus interval of 25 ms (PAS-25 ms) and 10 ms (PAS-10 ms). The unconditioned motor evoked potential amplitudes of the agonist muscles were larger after PAS-25 ms than after PAS-10 ms, while those of the antagonist muscles were smaller after PAS-25 ms than after PAS-10 ms. The γ-aminobutyric acid A (GABAA)- and GABAB-mediated cortical inhibition for the agonist and antagonist muscles were higher after PAS-25 ms than after PAS-10 ms. The cortical excitability for the agonist and antagonist muscles reciprocally and topographically increased and decreased after PAS, respectively; however, GABAA and GABAB-mediated cortical inhibitory functions for the agonist and antagonist muscles were less topographically decreased after PAS-10 ms. Thus, PAS-25 ms and PAS-10 ms differentially affect the LTP- and LTD-like plasticity in agonist and antagonist muscles.
Collapse
Affiliation(s)
- Makoto Suzuki
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama City 350-1398, Saitama, Japan
- Faculty of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji City 192-0397, Tokyo, Japan
- Correspondence: ; Tel.: +81-42-955-6074
| | - Kazuo Saito
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama City 350-1398, Saitama, Japan
| | - Yusuke Maeda
- School of Health Sciences at Odawara, International University of Health and Welfare, 1-2-25 Shiroyama, Odawara City 250-8588, Kanagawa, Japan
| | - Kilchoon Cho
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama City 350-1398, Saitama, Japan
| | - Naoki Iso
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama City 350-1398, Saitama, Japan
| | - Takuhiro Okabe
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama City 350-1398, Saitama, Japan
| | - Takako Suzuki
- School of Health Sciences, Saitama Prefectural University, 820 Sannomiya, Koshigaya City 343-8540, Saitama, Japan
| | - Junichi Yamamoto
- Faculty of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji City 192-0397, Tokyo, Japan
| |
Collapse
|
17
|
Development of a Clinical Prediction Rule for Treatment Success with Transcranial Direct Current Stimulation for Knee Osteoarthritis Pain: A Secondary Analysis of a Double-Blind Randomized Controlled Trial. Biomedicines 2022; 11:biomedicines11010004. [PMID: 36672512 PMCID: PMC9855334 DOI: 10.3390/biomedicines11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The study’s objective was to develop a clinical prediction rule that predicts a clinically significant analgesic effect on chronic knee osteoarthritis pain after transcranial direct current stimulation treatment. This is a secondary analysis from a double-blind randomized controlled trial. Data from 51 individuals with chronic knee osteoarthritis pain and an impaired descending pain inhibitory system were used. The intervention comprised a 15-session protocol of anodal primary motor cortex transcranial direct current stimulation. Treatment success was defined by the Western Ontario and McMaster Universities’ Osteoarthritis Index pain subscale. Accuracy statistics were calculated for each potential predictor and for the final model. The final logistic regression model was statistically significant (p < 0.01) and comprised five physical and psychosocial predictor variables that together yielded a positive likelihood ratio of 14.40 (95% CI: 3.66−56.69) and an 85% (95%CI: 60−96%) post-test probability of success. This is the first clinical prediction rule proposed for transcranial direct current stimulation in patients with chronic pain. The model underscores the importance of both physical and psychosocial factors as predictors of the analgesic response to transcranial direct current stimulation treatment. Validation of the proposed clinical prediction rule should be performed in other datasets.
Collapse
|
18
|
Neuroelectric indices of motor response preparation are selectively associated with physical activity among adults with obesity. Int J Psychophysiol 2022; 182:200-210. [DOI: 10.1016/j.ijpsycho.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
|
19
|
Schapira G, Chang J, Kim Y, Ngo JP, Deblieck C, Bianco V, Edwards DJ, Dobkin BH, Wu AD, Iacoboni M. Intraclass Correlation in Paired Associative Stimulation and Metaplasticity. NEUROSCI 2022; 3:589-603. [PMID: 39483766 PMCID: PMC11523748 DOI: 10.3390/neurosci3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/03/2024] Open
Abstract
Paired associative stimulation (PAS) is a widely used noninvasive brain stimulation protocol to assess neural plasticity. Its reproducibility, however, has been rarely tested and with mixed results. With two consecutive studies, we aimed to provide further tests and a more systematic assessment of PAS reproducibility. We measured intraclass correlation coefficients (ICCs)-a widely used tool to assess whether groups of measurements resemble each other-in two PAS studies on healthy volunteers. The first study included five PAS sessions recording 10 MEPS every 10 min for an hour post-PAS. The second study included two PAS sessions recording 50 MEPS at 20 and 50 min post-PAS, based on analyses from the first study. In both studies PAS sessions were spaced one week apart. Within sessions ICC was fair to excellent for both studies, yet between sessions ICC was poor for both studies. We suggest that long term meta-plasticity effects (longer than one week) may interfere with between sessions reproducibility.
Collapse
Affiliation(s)
- Giuditta Schapira
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Justin Chang
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yeun Kim
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jacqueline P. Ngo
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Choi Deblieck
- Antwerp Management School, University of Antwerp, 2000 Antwerpen, Belgium
| | - Valentina Bianco
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00185 Rome, Italy
| | - Dylan J. Edwards
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
| | - Bruce H. Dobkin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Allan D. Wu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Marco Iacoboni
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Pauhl A, Yasen A, Christie A. Corticospinal Excitability and Inhibition Are Not Different between Concussed Males and Females. Brain Sci 2022; 12:brainsci12070824. [PMID: 35884631 PMCID: PMC9313179 DOI: 10.3390/brainsci12070824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
It has been consistently demonstrated that females report greater numbers of concussions in sex-comparable sports and take longer to recover from concussive symptoms than males. However, it is unknown if the neurophysiological consequences of concussion may contribute to these sex differences in concussion symptoms and recovery. The purpose of this study was to examine potential sex-related differences in neurophysiology in healthy and concussed individuals. Twenty-one (nine F) concussed individuals (20.9 ± 4.1 years; CONC) and twenty-one age-, sex-, height-, weight-, and activity-matched controls (21.2 ± 4.2 years; CONT) participated in the study. The CONC group reported to the lab within 72 h, 1-week, and 2-weeks post-injury and the CONT group followed a similar measurement schedule. Using transcranial magnetic stimulation, motor evoked potential (MEP) amplitude and cortical silent period (CSP) duration were measured from the first dorsal interosseous muscle to assess corticospinal excitability and inhibition, respectively. There were no significant differences across time (p ≥ 0.13) or between the CONC and CONT group in MEP amplitude (p = 0.72) or CSP duration (p = 0.54). Overall, males (119.08 ± 29.91 ms) had significantly longer CSP durations compared with females (101.24 ± 33.43 ms), indicating greater corticospinal inhibition in males, regardless of injury status (p = 0.04). An important and novel finding of this study was the lack of differences in these neurophysiological measures between males and females following concussion. To our knowledge, this is the first study to document greater corticospinal inhibition in males compared with females.
Collapse
Affiliation(s)
- Alexandra Pauhl
- Faculty of Health Sciences, School of Kinesiology, Western University, London, ON N6A 2X2, Canada;
| | - Alia Yasen
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA;
| | - Anita Christie
- Faculty of Health Sciences, School of Kinesiology, Western University, London, ON N6A 2X2, Canada;
- Correspondence: ; Tel.: +1-(519)-661-2111 (ext. 80984)
| |
Collapse
|
21
|
Enhancement of LTD-like plasticity by associative pairing of quadripulse magnetic stimulation with peripheral nerve stimulation. Clin Neurophysiol 2022; 138:9-17. [DOI: 10.1016/j.clinph.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 03/13/2022] [Indexed: 11/23/2022]
|
22
|
Hendy AM, Andrushko JW, Della Gatta PA, Teo WP. Acute Effects of High-Intensity Aerobic Exercise on Motor Cortical Excitability and Inhibition in Sedentary Adults. Front Psychol 2022; 13:814633. [PMID: 35369205 PMCID: PMC8967942 DOI: 10.3389/fpsyg.2022.814633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
Transcranial magnetic stimulation studies have demonstrated increased cortical facilitation and reduced inhibition following aerobic exercise, even when examining motor regions separate to the exercised muscle group. These changes in brain physiology following exercise may create favorable conditions for adaptive plasticity and motor learning. One candidate mechanism behind these benefits is the increase in brain-derived neurotropic factor (BDNF) observed following exercise, which can be quantified from a venous blood draw. The aim of this study was to investigate changes in motor cortex excitability and inhibition of the upper limb, and circulating BDNF, following high-intensity interval training (HIIT) on a stationary bicycle. Nineteen sedentary adults participated in a randomized crossover design study involving a single bout of high-intensity interval cycling for 20 min or seated rest. Venous blood samples were collected, and transcranial magnetic stimulation (TMS) was used to stimulate the extensor carpi radialis (ECR), where motor evoked potentials (MEP) were recorded pre- and post-condition. Following exercise, there was a significant increase (29.1%, p < 0.001) in corticospinal excitability measured at 120% of resting motor threshold (RMT) and a reduction in short-interval cortical inhibition (SICI quantified as 86.2% increase in the SICI ratio, p = 0.002). There was a non-significant (p = 0.125) 23.6% increase in BDNF levels. Collectively, these results reflect a net reduction in gamma aminobutyric acid (GABA)ergic synaptic transmission and increased glutamatergic facilitation, resulting in increased corticospinal excitability. This study supports the notion that acute high-intensity exercise provides a potent stimulus for inducing cortical neuroplasticity, which may support enhanced motor learning.
Collapse
Affiliation(s)
- Ashlee M. Hendy
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
- *Correspondence: Ashlee M. Hendy,
| | - Justin W. Andrushko
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Paul A. Della Gatta
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Wei-Peng Teo
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
- Motor Behaviour Laboratory, Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
23
|
Jennen L, Mazereel V, Lecei A, Samaey C, Vancampfort D, van Winkel R. Exercise to spot the differences: a framework for the effect of exercise on hippocampal pattern separation in humans. Rev Neurosci 2022; 33:555-582. [PMID: 35172422 DOI: 10.1515/revneuro-2021-0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
Abstract
Exercise has a beneficial effect on mental health and cognitive functioning, but the exact underlying mechanisms remain largely unknown. In this review, we focus on the effect of exercise on hippocampal pattern separation, which is a key component of episodic memory. Research has associated exercise with improvements in pattern separation. We propose an integrated framework mechanistically explaining this relationship. The framework is divided into three pathways, describing the pro-neuroplastic, anti-inflammatory and hormonal effects of exercise. The pathways are heavily intertwined and may result in functional and structural changes in the hippocampus. These changes can ultimately affect pattern separation through direct and indirect connections. The proposed framework might guide future research on the effect of exercise on pattern separation in the hippocampus.
Collapse
Affiliation(s)
- Lise Jennen
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Victor Mazereel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| | - Aleksandra Lecei
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Celine Samaey
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Davy Vancampfort
- University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium.,KU Leuven Department of Rehabilitation Sciences, ON IV Herestraat 49, bus 1510, 3000, Leuven, Belgium
| | - Ruud van Winkel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| |
Collapse
|
24
|
Suppa A, Asci F, Guerra A. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:73-89. [PMID: 35034759 DOI: 10.1016/b978-0-12-819410-2.00005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activity-dependent synaptic plasticity is the main theoretical framework to explain mechanisms of learning and memory. Synaptic plasticity can be explored experimentally in animals through various standardized protocols for eliciting long-term potentiation and long-term depression in hippocampal and cortical slices. In humans, several non-invasive protocols of repetitive transcranial magnetic stimulation and transcranial direct current stimulation have been designed and applied to probe synaptic plasticity in the primary motor cortex, as reflected by long-term changes in motor evoked potential amplitudes. These protocols mimic those normally used in animal studies for assessing long-term potentiation and long-term depression. In this chapter, we first discuss the physiologic basis of theta-burst stimulation, paired associative stimulation, and transcranial direct current stimulation. We describe the current biophysical and theoretical models underlying the molecular mechanisms of synaptic plasticity and metaplasticity, defined as activity-dependent changes in neural functions that modulate subsequent synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), in the human motor cortex including calcium-dependent plasticity, spike-timing-dependent plasticity, the role of N-methyl-d-aspartate-related transmission and gamma-aminobutyric-acid interneuronal activity. We also review the putative microcircuits responsible for synaptic plasticity in the human motor cortex. We critically readdress the issue of variability in studies investigating synaptic plasticity and propose available solutions. Finally, we speculate about the utility of future studies with more advanced experimental approaches.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy.
| | | | | |
Collapse
|
25
|
Proessl F, Canino MC, Beckner ME, Conkright WR, LaGoy AD, Sinnott AM, Eagle SR, Martin BJ, Sterczala AJ, Roma PG, Dretsch MN, Mi Q, Ferrarelli F, Germain A, Connaboy C, Nindl BC, Flanagan SD. Use-dependent corticospinal excitability is associated with resilience and physical performance during simulated military operational stress. J Appl Physiol (1985) 2022; 132:187-198. [PMID: 34855522 PMCID: PMC8791840 DOI: 10.1152/japplphysiol.00628.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Simulated military operational stress (SMOS) provides a useful model to better understand resilience in humans as the stress associated with caloric restriction, sleep deficits, and fatiguing exertion degrades physical and cognitive performance. Habitual physical activity may confer resilience against these stressors by promoting favorable use-dependent neuroplasticity, but it is unclear how physical activity, resilience, and corticospinal excitability (CSE) relate during SMOS. To examine associations between corticospinal excitability, physical activity, and physical performance during SMOS. Fifty-three service members (age: 26 ± 5 yr, 13 women) completed a 5-day and -night intervention composed of familiarization, baseline, SMOS (2 nights/days), and recovery days. During SMOS, participants performed rigorous physical and cognitive activities while receiving half of normal sleep (two 2-h blocks) and caloric requirements. Lower and upper limb CSE were determined with transcranial magnetic stimulation (TMS) stimulus-response curves. Self-reported resilience, physical activity, military-specific physical performance (TMT), and endocrine factors were compared in individuals with high (HIGH) and low CSE based on a median split of lower limb CSE at baseline. HIGH had greater physical activity and better TMT performance throughout SMOS. Both groups maintained physical performance despite substantial psychophysiological stress. Physical activity, resilience, and TMT performance were directly associated with lower limb CSE. Individual differences in physical activity coincide with lower (but not upper) limb CSE. Such use-dependent corticospinal excitability directly relates to resilience and physical performance during SMOS. Future studies may use noninvasive neuromodulation to clarify the interplay among CSE, physical activity, and resilience and improve physical and cognitive performance.NEW & NOTEWORTHY We demonstrate that individual differences in physical activity levels coincide with lower limb corticospinal excitability. Such use-dependent corticospinal excitability directly relates to resilience and physical performance during a 5-day simulation of military operational stress with caloric restriction, sleep restriction and disruption, and heavy physical and cognitive exertion.
Collapse
Affiliation(s)
- F. Proessl
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. C. Canino
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. E. Beckner
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - W. R. Conkright
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. D. LaGoy
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania,4Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - A. M. Sinnott
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - S. R. Eagle
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - B. J. Martin
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. J. Sterczala
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - P. G. Roma
- 2Behavioral Health & Performance Laboratory, Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center/KBR, Houston, Texas
| | - M. N. Dretsch
- 3U.S. Army Medical Research Directorate-West, Walter Reed
Army Institute of Research, Joint Base Lewis-McChord, Washington
| | - Qi Mi
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - F. Ferrarelli
- 4Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - A. Germain
- 4Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - C. Connaboy
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - B. C. Nindl
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - S. D. Flanagan
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Muurling M, Lötters FJB, Geelen JE, Schouten AC, Mugge W. A long-term effect of distal radius fracture on the sensorimotor control of the wrist joint in older adults. J Hand Ther 2021; 34:567-576. [PMID: 32893099 DOI: 10.1016/j.jht.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Sensorimotor control can be disturbed because of pain and trauma. There is scarce comprehension about which component of the sensorimotor system would benefit the most from treatment in distal radius fracture (DRF). PURPOSE OF THE STUDY The purpose of this study was to determine whether the sensorimotor control of subjects with a history of DRF impaired compared with healthy subjects. If so, which component of the sensorimotor system is most affected. METHODS Nine healthy participants and 11 participants with a DRF history executed posture and reproduction tasks in interaction with a robotic wrist manipulator. A posture task with force perturbations assess sensorimotor control. Position and force reproduction tasks assessed sensory feedback. Electromyography recorded the muscle activity to study the motor part of the sensorimotor system. STUDY DESIGN Cross-sectional case-control. RESULTS The results showed that the motor responses to the perturbations during the posture task did not differ significantly, whereas the position reproduction did significantly differ between the 2 groups. Moreover, participants with a DRF history did not adapt to the changed dynamics of the environment during the posture task, whereas the controls did. DISCUSSION The results of this study imply that processing of sensory position feedback is impaired in people with a DRF history while sensorimotor control during a posture task is unaffected. A possible explanation for these results is that different neural networks are involved during reproduction and posture tasks. CONCLUSIONS A history of DRF is related to disturbed processing of sensory feedback of the sensorimotor system, especially the Joint Position Sense, which leads to an impairment in detecting a changed environment and adapting to it. Impaired Joint Position Sense and thereby the inability to adapt adequately to a changing environment should be taken into account during the rehabilitation of patients with DRF.
Collapse
Affiliation(s)
- Marijn Muurling
- Department of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Freek J B Lötters
- Hand and Wrist Center, Hand and Wrist Rehabilitation, The Hague, The Netherlands.
| | - Jinne E Geelen
- Department of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Alfred C Schouten
- Department of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Winfred Mugge
- Department of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
27
|
Hand BJ, Opie GM, Sidhu SK, Semmler JG. Motor cortex plasticity and visuomotor skill learning in upper and lower limbs of endurance-trained cyclists. Eur J Appl Physiol 2021; 122:169-184. [DOI: 10.1007/s00421-021-04825-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
|
28
|
Cash RFH, Udupa K, Gunraj CA, Mazzella F, Daskalakis ZJ, Wong AHC, Kennedy JL, Chen R. Influence of BDNF Val66Met polymorphism on excitatory-inhibitory balance and plasticity in human motor cortex. Clin Neurophysiol 2021; 132:2827-2839. [PMID: 34592560 DOI: 10.1016/j.clinph.2021.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE While previous studies showed that the single nucleotide polymorphism (Val66Met) of brain-derived neurotrophic factor (BDNF) can impact neuroplasticity, the influence of BDNF genotype on cortical circuitry and relationship to neuroplasticity remain relatively unexplored in human. METHODS Using individualised transcranial magnetic stimulation (TMS) parameters, we explored the influence of the BDNF Val66Met polymorphism on excitatory and inhibitory neural circuitry, its relation to I-wave TMS (ITMS) plasticity and effect on the excitatory/inhibitory (E/I) balance in 18 healthy individuals. RESULTS Excitatory and inhibitory indexes of neurotransmission were reduced in Met allele carriers. An E/I balance was evident, which was influenced by BDNF with higher E/I ratios in Val/Val homozygotes. Both long-term potentiation (LTP-) and depression (LTD-) like ITMS plasticity were greater in Val/Val homozygotes. LTP- but not LTD-like effects were restored in Met allele carriers by increasing stimulus intensity to compensate for reduced excitatory transmission. CONCLUSIONS The influence of BDNF genotype may extend beyond neuroplasticity to neurotransmission. The E/I balance was evident in human motor cortex, modulated by BDNF and measurable using TMS. Given the limited sample, these preliminary findings warrant further investigation. SIGNIFICANCE These novel findings suggest a broader role of BDNF genotype on neurocircuitry in human motor cortex.
Collapse
Affiliation(s)
- R F H Cash
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada; Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria 3010, Australia; Department of Biomedical Engineering, The University of Melbourne, Victoria 3010, Australia.
| | - K Udupa
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada; Dept of Neurophysiology, NIMHANS, Bengaluru, India
| | - C A Gunraj
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada
| | - F Mazzella
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada
| | - Z J Daskalakis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, UC San Diego Health, San Diego, CA 92093, USA
| | - A H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - J L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - R Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Physical activity, motor performance and skill learning: a focus on primary motor cortex in healthy aging. Exp Brain Res 2021; 239:3431-3438. [PMID: 34499187 DOI: 10.1007/s00221-021-06218-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
Participation in physical activity benefits brain health and function. Cognitive function generally demonstrates a noticeable effect of physical activity, but much less is known about areas responsible for controlling movement, such as primary motor cortex (M1). While more physical activity may support M1 plasticity in older adults, the neural mechanisms underlying this beneficial effect remain poorly understood. Aging is inevitably accompanied by diminished motor performance, and the extent of plasticity may also be less in older adults compared with young. Motor complications with aging may, perhaps unsurprisingly, contribute to reduced physical activity in older adults. While the development of non-invasive brain stimulation techniques have identified that human M1 is a crucial site for learning motor skills and recovery of motor function after injury, a considerable lack of knowledge remains about how physical activity impacts M1 with healthy aging. Reducing impaired neural activity in older adults may have important implications after neurological insult, such as stroke, which is more common with advancing age. Therefore, a better understanding about the effects of physical activity on M1 processes and motor learning in older adults may promote healthy aging, but also allow us to facilitate recovery of motor function after neurological injury. This article will initially provide a brief overview of the neurophysiology of M1 in the context of learning motor skills, with a focus on healthy aging in humans. This information will then be proceeded by a more detailed assessment that focuses on whether physical activity benefits motor function and human M1 processes.
Collapse
|
30
|
Age-related changes in motor cortex plasticity assessed with non-invasive brain stimulation: an update and new perspectives. Exp Brain Res 2021; 239:2661-2678. [PMID: 34269850 DOI: 10.1007/s00221-021-06163-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
It is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain. We find that early studies show clear differences in M1 plasticity between young and older adults, but many recent studies with motor training show no decline in use-dependent M1 plasticity with age. For NIBS-induced plasticity in M1, some protocols show more convincing differences with advancing age than others. Therefore, our view from the NIBS literature is that it should not be automatically assumed that M1 plasticity declines with age. Instead, the effects of age are likely to depend on how M1 plasticity is measured, and the characteristics of the elderly population tested. We also suggest that NIBS performed concurrently with motor training is likely to be most effective at producing improvements in M1 plasticity and motor skill learning in older adults. Proposed NIBS techniques for future studies include combining multiple NIBS protocols in a co-stimulation approach, or NIBS strategies to modulate intracortical inhibitory mechanisms, in an effort to more effectively boost M1 plasticity and improve motor skill learning in older adults.
Collapse
|
31
|
Nicolini C, Michalski B, Toepp SL, Turco CV, D'Hoine T, Harasym D, Gibala MJ, Fahnestock M, Nelson AJ. A Single Bout of High-intensity Interval Exercise Increases Corticospinal Excitability, Brain-derived Neurotrophic Factor, and Uncarboxylated Osteolcalcin in Sedentary, Healthy Males. Neuroscience 2021; 437:242-255. [PMID: 32482330 DOI: 10.1016/j.neuroscience.2020.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Exercise induces neuroplasticity in descending motor pathways facilitating motor learning, and as such it could be utilized as an intervention in neurorehabilitation, for example when re-learning motor skills after stroke. To date, however, the neurophysiological and molecular mechanisms underlying exercise-induced neuroplasticity remain largely unknown impeding the potential utilization of exercise protocols as 'motor learning boosters' in clinical and non-clinical settings. Here, we assessed corticospinal excitability, intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI) using transcranial magnetic stimulation (TMS) and serum biochemical markers including brain-derived neurotrophic factor (BDNF), total and precursor cathepsin B (tCTSB, proCTSB), uncarboxylated and carboxylated osteocalcin (unOCN, cOCN) and irisin using ELISA. Measurements were carried out in sedentary, healthy males before and after a single session of high-intensity interval exercise (HIIE) or in individuals who rested and did not perform exercise (No Exercise). We found that HIIE increased corticospinal excitability, BDNF and unOCN, and decreased cOCN. We also determined that greater increases in BDNF were associated with increases in unOCN and irisin and decreases in cOCN only in participants who underwent HIIE, suggesting that unOCN and irisin may contribute to exercise-induced BDNF increases. Conversely, no changes other than a decrease in serum unOCN/tOCN were found in No Exercise participants. The present findings show that a single session of HIIE is sufficient to modulate corticospinal excitability and to increase BDNF and unOCN in sedentary, healthy males.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Bernadeta Michalski
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Tarra D'Hoine
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Diana Harasym
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
32
|
Popel N, Kennedy KG, Fiksenbaum L, Mitchell RHB, MacIntosh BJ, Goldstein BI. Clinical and neuroimaging correlates of cardiorespiratory fitness in adolescents with bipolar disorder. Bipolar Disord 2021; 23:274-283. [PMID: 32960499 DOI: 10.1111/bdi.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is exceedingly prevalent, and occurs prematurely in individuals with bipolar disorder (BD). Cardiorespiratory fitness (CRF), arguably the most important modifiable CVD risk factor, is also associated with brain structure and function. There is a gap in knowledge regarding CRF in BD, particularly in relation to brain structure. METHODS Adolescents with BD (n = 54) and healthy controls (HC; n = 53) completed semi-structured diagnostic interviews, self-report questionnaires, and 20 minutes of cardiorespiratory exercise at 60-80% of estimated maximum heart rate (HR) on a bicycle ergometer. Average power (watts/kg) within this HR range served as a previously validated proxy for CRF. Brain magnetic resonance imaging (MRI) structural analysis was done using FreeSurfer. Analyses controlled for age and sex. RESULTS CRF was significantly lower in BD vs HC (0.91 ± 0.32 vs 1.01 ± 0.30, p = 0.03, F = 4.66, df=1, η2 =0.04). Within BD, greater depression symptoms were associated with lower CRF (P = .02), and greater physical activity (PA) was associated with greater CRF (P < .001). In multivariable analyses, there were significant main effects of diagnosis (HC>BD; P = .03) and sex (M > F; P < .001) on power. Significant predictors of power within BD included male sex (P = .02) and PA (P = .002) but not depression symptoms (P = .29). Significant diagnosis by CRF interaction effects was found in frontal, parietal, and occipital cortical regions. CONCLUSION CRF was reduced among adolescents with BD, particularly women, related in part to depression symptoms and inactivity and was differentially associated with regional brain structure. Studies seeking to improve CRF as a means of reducing psychiatric symptoms of BD are warranted.
Collapse
Affiliation(s)
- Najla Popel
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Centre for Youth Bipolar Disorder, Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kody G Kennedy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Centre for Youth Bipolar Disorder, Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Lisa Fiksenbaum
- Centre for Youth Bipolar Disorder, Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rachel H B Mitchell
- Centre for Youth Bipolar Disorder, Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Brain Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Benjamin I Goldstein
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Centre for Youth Bipolar Disorder, Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Brain Sciences, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
33
|
Braun RG, Wittenberg GF. Motor Recovery: How Rehabilitation Techniques and Technologies Can Enhance Recovery and Neuroplasticity. Semin Neurol 2021; 41:167-176. [PMID: 33663001 DOI: 10.1055/s-0041-1725138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There are now a large number of technological and methodological approaches to the rehabilitation of motor function after stroke. It is important to employ these approaches in a manner that is tailored to specific patient impairments and desired functional outcomes, while avoiding the hype of overly broad or unsubstantiated claims for efficacy. Here we review the evidence for poststroke plasticity, including therapy-related plasticity and functional imaging data. Early demonstrations of remapping in somatomotor and somatosensory representations have been succeeded by findings of white matter plasticity and a focus on activity-dependent changes in neuronal properties and connections. The methods employed in neurorehabilitation have their roots in early understanding of neuronal circuitry and plasticity, and therapies involving large numbers of repetitions, such as robotic therapy and constraint-induced movement therapy (CIMT), change measurable nervous systems properties. Other methods that involve stimulation of brain and peripheral excitable structures have the potential to harness neuroplastic mechanisms, but remain experimental. Gaps in our understanding of the neural substrates targeted by neurorehabilitation technology and techniques remain, preventing their prescriptive application in individual patients as well as their general refinement. However, with ongoing research-facilitated in part by technologies that can capture quantitative information about motor performance-this gap is narrowing. These research approaches can improve efforts to attain the shared goal of better functional recovery after stroke.
Collapse
Affiliation(s)
- Robynne G Braun
- Department of Neurology, University of Maryland School of Medicine, University of Maryland Rehabilitation & Orthopaedic Institute, Baltimore, Maryland
| | - George F Wittenberg
- Department of Neurology, Rehab Neural Engineering Labs, Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Human Engineering Research Laboratory, Geriatrics Research Education and Clinical Center, VA Pittsburgh HealthCare System, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Farnad L, Ghasemian-Shirvan E, Mosayebi-Samani M, Kuo MF, Nitsche MA. Exploring and optimizing the neuroplastic effects of anodal transcranial direct current stimulation over the primary motor cortex of older humans. Brain Stimul 2021; 14:622-634. [PMID: 33798763 DOI: 10.1016/j.brs.2021.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND tDCS modulates cortical plasticity and has shown potential to improve cognitive/motor functions in healthy young humans. However, age-related alterations of brain structure and functions might require an adaptation of tDCS-parameters to achieve a targeted plasticity effect in older humans and conclusions obtained from young adults might not be directly transferable to older adults. Thus, our study aimed to systematically explore the association between tDCS-parameters and induced aftereffects on motor cortical excitability to determine optimal stimulation protocols for older individuals, as well as to investigate age-related differences of motor cortex plasticity in two different age groups of older adults. METHODS 32 healthy, volunteers from two different age groups of Young-Old (50-65 years, n = 16) and Old-Old (66-80 years, n = 16) participated in this study. Anodal tDCS was applied over the primary motor cortex, with respective combinations of three intensities (1, 2, and 3 mA) and durations (15, 20, and 30 min), in a sham-controlled cross-over design. Cortical excitability alterations were monitored by single-pulse TMS-induced MEPs until the next day morning after stimulation. RESULTS All active stimulation conditions resulted in a significant enhancement of motor cortical excitability in both age groups. The facilitatory aftereffects of anodal tDCS did not significantly differ between age groups. We observed prolonged plasticity in the late-phase range for two protocols with the highest stimulation intensity (i.e., 3 mA-20 min, 3 mA-30 min). CONCLUSIONS Our study highlights the role of stimulation dosage in tDCS-induced neuroplastic aftereffects in the motor cortex of healthy older adults and delivers crucial information about optimized tDCS protocols in the domain of the primary motor cortex. Our findings might set the grounds for the development of optimal stimulation protocols to reinstate neuroplasticity in different cortical areas and induce long-lasting, functionally relevant plasticity in normal aging and in pathological conditions, which would require however systematic tDCS titration studies over respective target areas.
Collapse
Affiliation(s)
- Leila Farnad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Ensiyeh Ghasemian-Shirvan
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany.
| |
Collapse
|
35
|
Andrews SC, Curtin D, Hawi Z, Wongtrakun J, Stout JC, Coxon JP. Intensity Matters: High-intensity Interval Exercise Enhances Motor Cortex Plasticity More Than Moderate Exercise. Cereb Cortex 2021; 30:101-112. [PMID: 31041988 DOI: 10.1093/cercor/bhz075] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
A single bout of cardiovascular exercise can enhance plasticity in human cortex; however, the intensity required for optimal enhancement is debated. We investigated the effect of exercise intensity on motor cortex synaptic plasticity, using transcranial magnetic stimulation. Twenty healthy adults (Mage = 35.10 ± 13.25 years) completed three sessions. Measures of cortico-motor excitability (CME) and inhibition were obtained before and after a 20-min bout of either high-intensity interval exercise, moderate-intensity continuous exercise, or rest, and again after intermittent theta burst stimulation (iTBS). Results showed that high-intensity interval exercise enhanced iTBS plasticity more than rest, evidenced by increased CME and intracortical facilitation, and reduced intracortical inhibition. In comparison, the effect of moderate-intensity exercise was intermediate between high-intensity exercise and rest. Importantly, analysis of each participant's plasticity response profile indicated that high-intensity exercise increased the likelihood of a facilitatory response to iTBS. We also established that the brain-derived neurotrophic factor Val66Met polymorphism attenuated plasticity responses following high-intensity exercise. These findings suggest that high-intensity interval exercise should be considered not only when planning exercise interventions designed to enhance neuroplasticity, but also to maximize the therapeutic potential of non-invasive brain stimulation. Additionally, genetic profiling may enhance efficacy of exercise interventions for brain health.
Collapse
Affiliation(s)
- Sophie C Andrews
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
- Neuroscience Research Australia, Sydney, Australia
- University of New South Wales, School of Psychology, Sydney, Australia
| | - Dylan Curtin
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Ziarih Hawi
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Jaeger Wongtrakun
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Julie C Stout
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - James P Coxon
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
36
|
Hung A, Roig M, Gillen JB, Sabiston CM, Swardfager W, Chen JL. Aerobic exercise and aerobic fitness level do not modify motor learning. Sci Rep 2021; 11:5366. [PMID: 33686100 PMCID: PMC7970889 DOI: 10.1038/s41598-021-84764-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Motor learning may be enhanced when a single session of aerobic exercise is performed immediately before or after motor skill practice. Most research to date has focused on aerobically trained (AT) individuals, but it is unknown if aerobically untrained (AU) individuals would equally benefit. We aimed to: (a) replicate previous studies and determine the effect of rest (REST) versus exercise (EXE) on motor skill retention, and (b) explore the effect of aerobic fitness level (AU, AT), assessed by peak oxygen uptake (VO2peak), on motor skill retention after exercise. Forty-four participants (20-29 years) practiced a visuomotor tracking task (acquisition), immediately followed by 25-min of high-intensity cycling or rest. Twenty-four hours after acquisition, participants completed a motor skill retention test. REST and EXE groups significantly improved motor skill performance during acquisition [F(3.17, 133.22) = 269.13, P = 0.001], but had no group differences in motor skill retention across time. AU-exercise (VO2peak = 31.6 ± 4.2 ml kg-1 min-1) and AT-exercise (VO2peak = 51.5 ± 7.6 ml kg-1 min-1) groups significantly improved motor skill performance during acquisition [F(3.07, 61.44) = 155.95, P = 0.001], but had no group differences in motor skill retention across time. Therefore, exercise or aerobic fitness level did not modify motor skill retention.
Collapse
Affiliation(s)
- Andrea Hung
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Jenna B Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada
| | - Catherine M Sabiston
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Joyce L Chen
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada.
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
37
|
Smith AE, Dumuid D, Goldsworthy MR, Graetz L, Hodyl N, Thornton NLR, Ridding MC. Daily activities are associated with non-invasive measures of neuroplasticity in older adults. Clin Neurophysiol 2021; 132:984-992. [PMID: 33639453 DOI: 10.1016/j.clinph.2021.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We aimed to determine the association between daily activities (sleep, sedentary behavior and physical activities) and neuroplasticity in older adults by measuring motor evoked potential amplitudes (MEPs) elicited after a single and spaced continuous theta burst stimulation (cTBS) paradigm, targeting the primary motor cortex. METHODS MEPs were recorded from the right first dorsal interosseous muscle of 34 older adults (66.9 ± 4.5 years) by delivering single-pulse TMS before, between and at 0, 10, 20, 40 and 60 min after the application of spaced-cTBS separated by 10 min. Habitual activity was assessed by accelerometry for 24 h/day over 7-days. Multiple linear regression models determined if the time-use composition (sleep, sedentary behavior and physical activities) was associated with neuroplasticity response. RESULTS More physical activity at the equal expense of sleep and sedentary behaviors was associated with greater motor cortical neuroplasticity. Associations appeared to be driven by more time spent in light- but not moderate-to-vigorous- physical activities. CONCLUSIONS Engaging in light physical activity at the expense of sleep and sedentary behavior was associated with greater LTD-like motor cortex neuroplasticity (as measured with cTBS) in older adults. SIGNIFICANCE These findings suggest the promotion of physical activity among older adults to support brain neuroplasticity.
Collapse
Affiliation(s)
- Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, City East Campus, Australia.
| | - Dorothea Dumuid
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, City East Campus, Australia
| | - Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Australia; Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Australia
| | - Lynton Graetz
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Australia; Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Australia
| | - Nicolette Hodyl
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Australia
| | - Nicollette L R Thornton
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Australia
| | - Michael C Ridding
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, City East Campus, Australia
| |
Collapse
|
38
|
Alibazi RJ, Pearce AJ, Rostami M, Frazer AK, Brownstein C, Kidgell DJ. Determining the Intracortical Responses After a Single Session of Aerobic Exercise in Young Healthy Individuals: A Systematic Review and Best Evidence Synthesis. J Strength Cond Res 2021; 35:562-575. [PMID: 33201155 DOI: 10.1519/jsc.0000000000003884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Alibazi, RJ, Pearce, AJ, Rostami, M, Frazer, AK, Brownstein, C, and Kidgell, DJ. Determining the intracortical responses after a single session of aerobic exercise in young healthy individuals: a systematic review and best evidence synthesis. J Strength Cond Res 35(2): 562-575, 2021-A single bout of aerobic exercise (AE) may induce changes in the excitability of the intracortical circuits of the primary motor cortex (M1). Similar to noninvasive brain stimulation techniques, such as transcranial direct current stimulation, AE could be used as a priming technique to facilitate motor learning. This review examined the effect of AE on modulating intracortical excitability and inhibition in human subjects. A systematic review, according to PRISMA guidelines, identified studies by database searching, hand searching, and citation tracking between inception and the last week of February 2020. Methodological quality of included studies was determined using the Downs and Black quality index and Cochrane Collaboration of risk of bias tool. Data were synthesized and analyzed using best-evidence synthesis. There was strong evidence for AE not to change corticospinal excitability and conflicting evidence for increasing intracortical facilitation and reducing silent period and long-interval cortical inhibition. Aerobic exercise did reduce short-interval cortical inhibition, which suggests AE modulates the excitability of the short-latency inhibitory circuits within the M1; however, given the small number of included studies, it remains unclear how AE affects all circuits. In light of the above, AE may have important implications during periods of rehabilitation, whereby priming AE could be used to facilitate motor learning.
Collapse
Affiliation(s)
- Razie J Alibazi
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, Australia
| | - Mohamad Rostami
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran; and
| | - Ashlyn K Frazer
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Callum Brownstein
- University of Lyon, University Jean Monnet Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Dawson J Kidgell
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Brüchle W, Schwarzer C, Berns C, Scho S, Schneefeld J, Koester D, Schack T, Schneider U, Rosenkranz K. Physical Activity Reduces Clinical Symptoms and Restores Neuroplasticity in Major Depression. Front Psychiatry 2021; 12:660642. [PMID: 34177647 PMCID: PMC8219854 DOI: 10.3389/fpsyt.2021.660642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
Major depressive disorder (MDD) is the most common mental disorder and deficits in neuroplasticity are discussed as one pathophysiological mechanism. Physical activity (PA) enhances neuroplasticity in healthy subjects and improves clinical symptoms of MDD. However, it is unclear whether this clinical effect of PA is due to restoring deficient neuroplasticity in MDD. We investigated the effect of a 3-week PA program applied on clinical symptoms, motor excitability and plasticity, and on cognition in patients with MDD (N = 23), in comparison to a control intervention (CI; N = 18). Before and after the interventions, the clinical symptom severity was tested using self- (BDI-II) and investigator- (HAMD-17) rated scales, transcranial magnetic stimulation (TMS) protocols were used to test motor excitability and paired-associative stimulation (PAS) to test long-term-potentiation (LTP)-like plasticity. Additionally, cognitive functions such as attention, working memory and executive functions were tested. After the interventions, the BDI-II and HAMD-17 decreased significantly in both groups, but the decrease in HAMD-17 was significantly stronger in the PA group. Cognition did not change notably in either group. Motor excitability did not differ between the groups and remained unchanged by either intervention. Baseline levels of LTP-like plasticity in the motor cortex were low in both groups (PA: 113.40 ± 2.55%; CI: 116.83 ± 3.70%) and increased significantly after PA (155.06 ± 10.48%) but not after CI (122.01 ± 4.1%). Higher baseline BDI-II scores were correlated with lower levels of neuroplasticity. Importantly, the more the BDI-II score decreased during the interventions, the stronger did neuroplasticity increase. The latter effect was particularly strong after PA (r = -0.835; p < 0.001). The level of neuroplasticity related specifically to the psychological/affective items, which are tested predominantly in the BDI-II. However, the significant clinical difference in the intervention effects was shown in the HAMD-17 which focuses more on somatic/neurovegetative items known to improve earlier in the course of MDD. In summary, PA improved symptoms of MDD and restored the deficient neuroplasticity. Importantly, both changes were strongly related on the individual patients' level, highlighting the key role of neuroplasticity in the pathophysiology and the clinical relevance of neuroplasticity-enhancing interventions for the treatment of MDD.
Collapse
Affiliation(s)
- Wanja Brüchle
- Faculty of Medicine, University Clinic of Psychiatry and Psychotherapie Luebbecke, Ruhr University Bochum, Bochum, Germany
| | - Caroline Schwarzer
- Neurocognition and Action Group, Faculty of Psychology and Sports Sciences, Bielefeld University, Bielefeld, Germany
| | - Christina Berns
- Faculty of Medicine, University Clinic of Psychiatry and Psychotherapie Luebbecke, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Scho
- Faculty of Medicine, University Clinic of Psychiatry and Psychotherapie Luebbecke, Ruhr University Bochum, Bochum, Germany
| | - Jessica Schneefeld
- Faculty of Medicine, University Clinic of Psychiatry and Psychotherapie Luebbecke, Ruhr University Bochum, Bochum, Germany
| | - Dirk Koester
- Neurocognition and Action Group, Faculty of Psychology and Sports Sciences, Bielefeld University, Bielefeld, Germany.,Department of Business Psychology, Faculty Business and Management, BSP Business School Berlin, Berlin, Germany
| | - Thomas Schack
- Neurocognition and Action Group, Faculty of Psychology and Sports Sciences, Bielefeld University, Bielefeld, Germany
| | - Udo Schneider
- Faculty of Medicine, University Clinic of Psychiatry and Psychotherapie Luebbecke, Ruhr University Bochum, Bochum, Germany
| | - Karin Rosenkranz
- Faculty of Medicine, University Clinic of Psychiatry and Psychotherapie Luebbecke, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
40
|
Tiksnadi A, Murakami T, Wiratman W, Matsumoto H, Ugawa Y. Direct comparison of efficacy of the motor cortical plasticity induction and the interindividual variability between TBS and QPS. Brain Stimul 2020; 13:1824-1833. [PMID: 33144269 DOI: 10.1016/j.brs.2020.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Theta burst stimulation (TBS) and quadripulse stimulation (QPS) are known to induce synaptic plasticity in humans. There have been no head-to-head comparisons of the efficacy and variability between TBS and QPS. OBJECTIVE To compare the efficacy and interindividual variability between the original TBS and QPS protocols. We hypothesized that QPS would be more effective and less variable than TBS. METHODS Forty-six healthy subjects participated in this study. Thirty subjects participated in the main comparison experiment, and the other sixteen subjects participated in the experiment to obtain natural variation in motor-evoked potentials. The facilitatory effects were compared between intermittent TBS (iTBS) and QPS5, and the inhibitory effects were compared between continuous TBS (cTBS) and QPS50. The motor-evoked potential amplitudes elicited by transcranial magnetic stimulation over the primary motor cortex were measured before the intervention and every 5 min after the intervention for 1 h. To investigate the interindividual variability, the responder/nonresponder/opposite-responder rates were also analyzed. RESULTS The facilitatory effects of QPS5 were greater than those of iTBS, and the inhibitory effects of QPS50 were much stronger than those of cTBS. The responder rate of QPS was significantly higher than that of TBS. QPS had a smaller number of opposite responders than TBS. CONCLUSION QPS is more effective and stable for synaptic plasticity induction than TBS.
Collapse
Affiliation(s)
- Amanda Tiksnadi
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Department of Neurology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Takenobu Murakami
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Department of Neurology, Tottori Prefectural Kousei Hospital, Tottori, Japan
| | - Winnugroho Wiratman
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Department of Neurology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
41
|
Pellegrini M, Zoghi M, Jaberzadeh S. A Checklist to Reduce Response Variability in Studies Using Transcranial Magnetic Stimulation for Assessment of Corticospinal Excitability: A Systematic Review of the Literature. Brain Connect 2020; 10:53-71. [PMID: 32093486 DOI: 10.1089/brain.2019.0715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Response variability between individuals (interindividual variability) and within individuals (intraindividual variability) is an important issue in the transcranial magnetic stimulation (TMS) literature. This has raised questions of the validity of TMS to assess changes in corticospinal excitability (CSE) in a predictable and reliable manner. Several participant-specific factors contribute to this observed response variability with a current lack of consensus on the degree each factor contributes. This highlights a need for consistency and structure in reporting study designs and methodologies. Currently, there is no summarized review of the participant-specific factors that can be controlled and may contribute to response variability. This systematic review aimed to develop a checklist of methodological measures taken by previously published research to increase the homogeneity of participant selection criteria, preparation of participants before experimental testing, participant scheduling, and the instructions given to participants throughout experimental testing to minimize their effect on response variability. Seven databases were searched in full. Studies were included if CSE was measured via TMS and included methodological measures to increase the homogeneity of the participants. Eighty-four studies were included. Twenty-three included measures to increase participant selection homogeneity, 21 included measures to increase participant preparation homogeneity, while 61 included measures to increase participant scheduling and instructions during experimental testing homogeneity. These methodological measures were summarized into a user-friendly checklist with considerations, suggestions, and rationale/justification for their inclusion. This may provide the framework for further insights into ways to reduce response variability in TMS research.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, Discipline of Physiotherapy, School of Allied Health, La Trobe University, Melbourne, Victoria, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Bojsen-Møller E, Ekblom MM, Tarassova O, Dunstan DW, Ekblom O. The effect of breaking up prolonged sitting on paired associative stimulation-induced plasticity. Exp Brain Res 2020; 238:2497-2506. [PMID: 32860117 PMCID: PMC7541377 DOI: 10.1007/s00221-020-05866-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/01/2020] [Indexed: 01/22/2023]
Abstract
Paired associative stimulation (PAS) can induce plasticity in the motor cortex, as measured by changes in corticospinal excitability (CSE). This effect is attenuated in older and less active individuals. Although a single bout of exercise enhances PAS-induced plasticity in young, physically inactive adults, it is not yet known if physical activity interventions affect PAS-induced neuroplasticity in middle-aged inactive individuals. Sixteen inactive middle-aged office workers participated in a randomized cross-over design investigating how CSE and short-interval intracortical inhibition (SICI) were affected by PAS preceded by 3 h of sitting (SIT), 3 h of sitting interrupted every 30 min by 3 min of frequent short bouts of physical activity (FPA) and 2.5 h of sitting followed by 25 min of moderate-intensity exercise (EXE). Transcranial magnetic stimulation was applied over the primary motor cortex (M1) of the dominant abductor pollicis brevis to induce recruitment curves before and 5 min and 30 min post-PAS. Linear mixed models were used to compare changes in CSE using time and condition as fixed effects and subjects as random effects. There was a main effect of time on CSE and planned within-condition comparisons showed that CSE was significantly increased from baseline to 5 min and 30 min post-PAS, in the FPA condition, with no significant changes in the SIT or EXE conditions. SICI decreased from baseline to 5 min post-PAS, but this was not related to changes in CSE. Our findings suggest that in middle-aged inactive adults, FPAs may promote corticospinal neuroplasticity. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- E Bojsen-Møller
- The Swedish School of Sport and Health Sciences, GIH, 11486, Stockholm, Sweden.
| | - M M Ekblom
- The Swedish School of Sport and Health Sciences, GIH, 11486, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - O Tarassova
- The Swedish School of Sport and Health Sciences, GIH, 11486, Stockholm, Sweden
| | - D W Dunstan
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - O Ekblom
- The Swedish School of Sport and Health Sciences, GIH, 11486, Stockholm, Sweden
| |
Collapse
|
43
|
Moscatelli F, Messina G, Valenzano A, Triggiani AI, Sessa F, Carotenuto M, Tartaglia N, Ambrosi A, Cibelli G, Monda V. Effects of twelve weeks' aerobic training on motor cortex excitability. J Sports Med Phys Fitness 2020; 60:1383-1389. [PMID: 32536109 DOI: 10.23736/s0022-4707.20.10677-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Regular physical activity or aerobic exercise is well known to increase brain plasticity. Recent studies have reported that aerobic exercise enhances neuroplasticity and motor learning. The aim of this study was to investigate if 12 weeks' aerobic training can modify cortical excitability and motor evoked potential (MEP) responses. METHODS Fifteen untrained males were recruited. Cortical excitability was investigated using TMS. VO2<inf>max</inf> was estimated using Cooper's test. Aerobic intervention lasted 12 weeks. The subjects performed a 6-week supervised aerobic workout, 3 times a week, at 60-75% of their maximum heart rate (HR<inf>max</inf>). Over the following 6 weeks, they performed a supervised aerobic workout 3 times a week at 70-75% of FC<inf>max</inf>. RESULTS After 8 weeks of aerobic training there was a significant increase of distance covered during Cooper's test (P<0.001) and a significant increase of VO2<inf>max</inf> (P<0.001); there was also an improvement in resting motor threshold (rMT decreased from 60.5±6.6% [T0] to 55.8±5.9% [T2]; P<0.001), motor evoked potential latency decreased (from 25.3±0.8 ms [T0] to 24.1±0.8 ms [T2]; P<0.001), and motor evoked potential amplitude increased (from 0.58±0.09 mV [T0] to 0.65±0.08 mV [T2]; P<0.001). Furthermore, after 12 weeks' aerobic training there were improvements in all parameters. CONCLUSIONS This study shows that aerobic activity seems to induce changes in cortical excitability if performed for a period longer than 4 weeks, in addition to typical cardiorespiratory benefits in previously untrained males.
Collapse
Affiliation(s)
- Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy -
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio I Triggiani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco Carotenuto
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonio Ambrosi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Unit of Dietetic and Sport Medicine, Section of Human Physiology, Department of Experimental Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| |
Collapse
|
44
|
Chaves AR, Devasahayam AJ, Riemenschneider M, Pretty RW, Ploughman M. Walking Training Enhances Corticospinal Excitability in Progressive Multiple Sclerosis-A Pilot Study. Front Neurol 2020; 11:422. [PMID: 32581998 PMCID: PMC7287174 DOI: 10.3389/fneur.2020.00422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Inflammatory lesions and neurodegeneration lead to motor, cognitive, and sensory impairments in people with multiple sclerosis (MS). Accumulation of disability is at least partially due to diminished capacity for neuroplasticity within the central nervous system. Aerobic exercise is a potentially important intervention to enhance neuroplasticity since it causes upregulation of neurotrophins and enhances corticospinal excitability, which can be probed using single-pulse transcranial magnetic stimulation (TMS). Whether people with progressive MS who have accumulated substantial disability could benefit from walking rehabilitative training to enhance neuroplasticity is not known. Objective: We aimed to determine whether 10 weeks of task-specific walking training would affect corticospinal excitability over time (pre, post, and 3-month follow-up) among people with progressive MS who required walking aids. Results: Eight people with progressive MS (seven female; 29–74 years old) with an Expanded Disability Status Scale of 6–6.5 underwent harness-supported treadmill walking training in a temperature controlled room at 16°C (10 weeks; three times/week; 40 min at 40–65% heart rate reserve). After training, there was significantly higher corticospinal excitability in both brain hemispheres, reductions in TMS active motor thresholds, and increases in motor-evoked potential amplitudes and slope of the recruitment curve (REC). Decreased intracortical inhibition (shorter cortical silent period) after training was noted in the hemisphere corresponding to the stronger hand only. These effects were not sustained at follow-up. There was a significant relationship between increases in corticospinal excitability (REC, area under the curve) in the hemisphere corresponding to the stronger hand and lessening of both intensity and impact of fatigue on activities of daily living (Fatigue Severity Scale and Modified Fatigue Impact Scale, respectively). Conclusion: Our pilot results support that vigorous treadmill training can potentially improve neuroplastic potential and mitigate symptoms of the disease even among people who have accumulated substantial disability due to MS.
Collapse
Affiliation(s)
- Arthur R Chaves
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Augustine J Devasahayam
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Morten Riemenschneider
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ryan W Pretty
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
45
|
Harasym D, Turco CV, Nicolini C, Toepp SL, Jenkins EM, Gibala MJ, Noseworthy MD, Nelson AJ. Fitness Level Influences White Matter Microstructure in Postmenopausal Women. Front Aging Neurosci 2020; 12:129. [PMID: 32547386 PMCID: PMC7273967 DOI: 10.3389/fnagi.2020.00129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Aerobic exercise has both neuroprotective and neurorehabilitative benefits. However, the underlying mechanisms are not fully understood and need to be investigated, especially in postmenopausal women, who are at increased risk of age-related disorders such as Alzheimer’s disease and stroke. To advance our understanding of the potential neurological benefits of aerobic exercise in aging women, we examined anatomical and functional responses that may differentiate women of varying cardiorespiratory fitness using neuroimaging and neurophysiology. A total of 35 healthy postmenopausal women were recruited (59 ± 3 years) and cardiorespiratory fitness estimated (22–70 mL/kg/min). Transcranial magnetic stimulation was used to assess -aminobutyric acid (GABA) and glutamate (Glu) receptor function in the primary motor cortex (M1), and magnetic resonance spectroscopy (MRS) was used to quantify GABA and Glu concentrations in M1. Magnetic resonance imaging was used to assess mean cortical thickness (MCT) of sensorimotor and frontal regions, while the microstructure of sensorimotor and other white matter tracts was evaluated through diffusion tensor imaging. Regression analysis revealed that higher fitness levels were associated with improved microstructure in pre-motor and sensory tracts, and the hippocampal cingulum. Fitness level was not associated with MCT, MRS, or neurophysiology measures. These data indicate that, in postmenopausal women, higher cardiorespiratory fitness is linked with preserved selective white matter microstructure, particularly in areas that influence sensorimotor control and memory.
Collapse
Affiliation(s)
- Diana Harasym
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.,Imaging Research Center, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - E Madison Jenkins
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.,Imaging Research Center, St. Joseph's Healthcare, Hamilton, ON, Canada.,Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada.,Department of Radiology, McMaster University, Hamilton, ON, Canada
| | - Aimee J Nelson
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.,Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
46
|
Exercise-Induced Brain Excitability Changes in Progressive Multiple Sclerosis: A Pilot Study. J Neurol Phys Ther 2020; 44:132-144. [DOI: 10.1097/npt.0000000000000308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Walsh JA, Stapley PJ, Shemmell JBH, Lepers R, McAndrew DJ. Global Corticospinal Excitability as Assessed in A Non-Exercised Upper Limb Muscle Compared Between Concentric and Eccentric Modes of Leg Cycling. Sci Rep 2019; 9:19212. [PMID: 31844115 PMCID: PMC6915732 DOI: 10.1038/s41598-019-55858-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/03/2019] [Indexed: 02/04/2023] Open
Abstract
This study investigated the effects of eccentric (ECC) and concentric (CON) semi-recumbent leg cycling on global corticospinal excitability (CSE), assessed through the activity of a non-exercised hand muscle. Thirteen healthy male adults completed two 30-min bouts of moderate intensity ECC and CON recumbent cycling on separate days. Power output (POutput), heart rate (HR) and cadence were monitored during cycling. Global CSE was assessed using transcranial magnetic stimulation to elicit motor-evoked potentials (MEP) in the right first dorsal interosseous muscle before (‘Pre’), interleaved (at 10 and 20 mins, t10 and t20, respectively), immediately after (post, P0), and 30-min post exercise (P30). Participants briefly stopped pedalling (no more than 60 s) while stimulation was applied at the t10 and t20 time-points of cycling. Mean POutput, and rate of perceived exertion (RPE) did not differ between ECC and CON cycling and HR was significantly lower during ECC cycling (P = 0.01). Group mean MEP amplitudes were not significantly different between ECC and CON cycling at P0, t10, t20, and P30 and CON (at P > 0.05). Individual participant ratios of POutput and MEP amplitude showed large variability across the two modes of cycling, as did changes in slope of stimulus-response curves. These results suggest that compared to ‘Pre’ values, group mean CSE is not significantly affected by low-moderate intensity leg cycling in both modes. However, POutput and CSE show wide inter-participant variability which has implications for individual neural responses to CON and ECC cycling and rates of adaptation to a novel (ECC) mode. The study of CSE should therefore be analysed for each participant individually in relation to relevant physiological variables and account for familiarisation to semi-recumbent ECC leg cycling.
Collapse
Affiliation(s)
- Joel A Walsh
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia. .,Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong, New South Wales, Australia.
| | - Paul J Stapley
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia.,Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong, New South Wales, Australia
| | - Jonathan B H Shemmell
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia.,Neuromotor Adaptation Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia.,Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong, New South Wales, Australia
| | - Romuald Lepers
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Darryl J McAndrew
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia.,Discipline of Graduate Medicine, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia.,Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong, New South Wales, Australia
| |
Collapse
|
48
|
Yamazaki Y, Sato D, Yamashiro K, Nakano S, Onishi H, Maruyama A. Acute Low-Intensity Aerobic Exercise Modulates Intracortical Inhibitory and Excitatory Circuits in an Exercised and a Non-exercised Muscle in the Primary Motor Cortex. Front Physiol 2019; 10:1361. [PMID: 31787901 PMCID: PMC6853900 DOI: 10.3389/fphys.2019.01361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
Recent studies have reported that acute aerobic exercise modulates intracortical excitability in the primary motor cortex (M1). However, whether acute low-intensity aerobic exercise can also modulate M1 intracortical excitability, particularly intracortical excitatory circuits, remains unclear. In addition, no previous studies have investigated the effect of acute aerobic exercise on short-latency afferent inhibition (SAI). The aim of this study was to investigate whether acute low-intensity aerobic exercise modulates intracortical circuits in the M1 hand and leg areas. Intracortical excitability of M1 (Experiments 1, 2) and spinal excitability (Experiment 3) were measured before and after acute low-intensity aerobic exercise. In Experiment 3, skin temperature was also measured throughout the experiment. Transcranial magnetic stimulation was applied over the M1 non-exercised hand and exercised leg areas in Experiments 1, 2, respectively. Participants performed 30 min of low-intensity pedaling exercise or rested while sitting on the ergometer. Short- and long-interval intracortical inhibition (SICI and LICI), and SAI were measured to assess M1 inhibitory circuits. Intracortical facilitation (ICF) and short-interval intracortical facilitation (SICF) were measured to assess M1 excitatory circuits. We found that acute low-intensity aerobic exercise decreased SICI and SAI in the M1 hand and leg areas. After exercise, ICF in the M1 hand area was lower than in the control experiment, but was not significantly different to baseline. The single motor-evoked potential, resting motor threshold, LICI, SICF, and spinal excitability did not change following exercise. In conclusion, acute low-intensity pedaling modulates M1 intracortical circuits of both exercised and non-exercised areas, without affecting corticospinal and spinal excitability.
Collapse
Affiliation(s)
- Yudai Yamazaki
- Major in Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Saki Nakano
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Field of Health and Sports, Major in Health and Science, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Atsuo Maruyama
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
49
|
Maurus I, Hasan A, Röh A, Takahashi S, Rauchmann B, Keeser D, Malchow B, Schmitt A, Falkai P. Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2019; 269:499-515. [PMID: 31115660 DOI: 10.1007/s00406-019-01025-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a severe neuropsychiatric disease that is associated with neurobiological alterations in multiple brain regions and peripheral organs. Negative symptoms and cognitive deficits are present in about half of patients and are difficult to treat, leading to an unfavorable functional outcome. To investigate the impact of aerobic exercise on various neurobiological parameters, we conducted a narrative review. Add-on aerobic exercise was shown to be effective in improving negative and general symptoms, cognition, global functioning, and quality of life in schizophrenia patients. Based on findings in healthy individuals and animal models, this qualitative review gives an overview of different lines of evidence on how aerobic exercise impacts brain structure and function and molecular mechanisms in patients with schizophrenia and how its effects could be related to clinical and functional outcomes. Structural magnetic resonance imaging studies showed a volume increase in the hippocampus and cortical regions in schizophrenia patients and healthy controls after endurance training. However, results are inconsistent and individual risk factors may influence neuroplastic processes. Animal studies indicate that alterations in epigenetic mechanisms and synaptic plasticity are possible underlying mechanisms, but that differentiation of glial cells, angiogenesis, and possibly neurogenesis may also be involved. Clinical and animal studies also revealed effects of aerobic exercise on the hypothalamus-pituitary-adrenal axis, growth factors, and immune-related mechanisms. Some findings indicate effects on neurotransmitters and the endocannabinoid system. Further research is required to clarify how individual risk factors in schizophrenia patients mediate or moderate the neurobiological effects of exercise on brain and cognition. Altogether, aerobic exercise is a promising candidate in the search for pathophysiology-based add-on interventions in schizophrenia.
Collapse
Affiliation(s)
- Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Astrid Röh
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| |
Collapse
|
50
|
Roeh A, Bunse T, Lembeck M, Handrack M, Pross B, Schoenfeld J, Keeser D, Ertl-Wagner B, Pogarell O, Halle M, Falkai P, Hasan A, Scherr J. Running effects on cognition and plasticity (ReCaP): study protocol of a longitudinal examination of multimodal adaptations of marathon running. Res Sports Med 2019; 28:241-255. [PMID: 31345073 DOI: 10.1080/15438627.2019.1647205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regular moderate physical activity (PA) has been linked to beneficial adaptations in various somatic diseases (e.g. cancer, endocrinological disorders) and a reduction in all-cause mortality from several cardiovascular and neuropsychiatric diseases. This study was designed to investigate acute and prolonged exercise-induced cardio- and neurophysiological responses in endurance runners competing in the Munich Marathon. ReCaP (Running effects on Cognition and Plasticity) is a multimodal and longitudinal experimental study. This study included 100 participants (20-60 years). Six laboratory visits were included during the 3-month period before and the 3-month period after the Munich marathon. The multimodal assessment included laboratory measurements, cardiac and cranial imaging (MRI scans, ultrasound/echocardiography) and neurophysiological methods (EEG and TMS/tDCS), and vessel-analysis (e.g. retinal vessels and wave-reflection analyses) and neurocognitive measurements. The ReCaP study was designed to examine novel exercise-induced cardio- and neurophysiological responses to marathon running at the behavioral, functional and morphological levels. This study will expand our understanding of exercise-induced adaptations and will lead to more individually tailored therapeutic options.
Collapse
Affiliation(s)
- A Roeh
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - T Bunse
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - M Lembeck
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - M Handrack
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - B Pross
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - J Schoenfeld
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - D Keeser
- Department of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - B Ertl-Wagner
- Department of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - O Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - M Halle
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich Heart Alliance, Munich, Germany
| | - P Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - A Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - J Scherr
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| |
Collapse
|