1
|
Kruse M, Whitten RJ. Control of Neuronal Excitability by Cell Surface Receptor Density and Phosphoinositide Metabolism. Front Pharmacol 2021; 12:663840. [PMID: 33967808 PMCID: PMC8097148 DOI: 10.3389/fphar.2021.663840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
Phosphoinositides are members of a family of minor phospholipids that make up about 1% of all lipids in most cell types. Despite their low abundance they have been found to be essential regulators of neuronal activities such as action potential firing, release and re-uptake of neurotransmitters, and interaction of cytoskeletal proteins with the plasma membrane. Activation of several different neurotransmitter receptors can deplete phosphoinositide levels by more than 90% in seconds, thereby profoundly altering neuronal behavior; however, despite the physiological importance of this mechanism we still lack a profound quantitative understanding of the connection between phosphoinositide metabolism and neuronal activity. Here, we present a model that describes phosphoinositide metabolism and phosphoinositide-dependent action potential firing in sympathetic neurons. The model allows for a simulation of activation of muscarinic acetylcholine receptors and its effects on phosphoinositide levels and their regulation of action potential firing in these neurons. In this paper, we describe the characteristics of the model, its calibration to experimental data, and use the model to analyze how alterations of surface density of muscarinic acetylcholine receptors or altered activity levels of a key enzyme of phosphoinositide metabolism influence action potential firing of sympathetic neurons. In conclusion, the model provides a comprehensive framework describing the connection between muscarinic acetylcholine signaling, phosphoinositide metabolism, and action potential firing in sympathetic neurons which can be used to study the role of these signaling systems in health and disease.
Collapse
Affiliation(s)
- Martin Kruse
- Department of Biology, Bates College, Lewiston, ME, United States
- Program in Neuroscience, Bates College, Lewiston, ME, United States
| | - Rayne J. Whitten
- Program in Neuroscience, Bates College, Lewiston, ME, United States
| |
Collapse
|
2
|
Fedele L, Brand T. The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2020; 7:jcdd7040054. [PMID: 33255284 PMCID: PMC7712215 DOI: 10.3390/jcdd7040054] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.
Collapse
Affiliation(s)
- Laura Fedele
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| | - Thomas Brand
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| |
Collapse
|
3
|
Di Bona A, Vita V, Costantini I, Zaglia T. Towards a clearer view of sympathetic innervation of cardiac and skeletal muscles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:80-93. [DOI: 10.1016/j.pbiomolbio.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
|
4
|
Zaglia T, Mongillo M. Cardiac sympathetic innervation, from a different point of (re)view. J Physiol 2018; 595:3919-3930. [PMID: 28240352 DOI: 10.1113/jp273120] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
The audience of basic and clinical scientists is familiar with the notion that the sympathetic nervous system controls heart function during stresses. However, evidence indicates that the neurogenic control of the heart spans from the maintenance of housekeeping functions in resting conditions to the recruitment of maximal performance, in the fight-or-flight responses, across a whole range of intermediate states. To perform such sophisticated functions, sympathetic ganglia integrate both peripheral and central inputs, and transmit information to the heart via 'motor' neurons, directly interacting with target cardiomyocytes. To date, the dynamics and mode of communication between these two cell types, which determine how neuronal information is adequately translated into the wide spectrum of cardiac responses, are still blurry. By combining the anatomical and structural information brought to light by recent imaging technologies and the functional evidence in cellular systems, we focus on the interface between neurons and cardiomyocytes, and advocate the existence of a specific 'neuro-cardiac junction', where sympathetic neurotransmission occurs in a 'quasi-synaptic' way. The properties of such junctional-type communication fit well with those of the physiological responses elicited by the cardiac sympathetic nervous system, and explain its ability to tune heart function with precision, specificity and elevated temporal resolution.
Collapse
Affiliation(s)
- Tania Zaglia
- Department of Cardiac, Thoracic and Vascular Sciences, via Giustiniani 2, 35128, University of Padova, Padova, Italy.,Department of Biomedical Sciences, via Ugo Bassi 58/B, 35131, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, via G.Orus, 2, 35129, Padova, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, via Ugo Bassi 58/B, 35131, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, via G.Orus, 2, 35129, Padova, Italy.,CNR institute of Neurosciences, viale Colombo 3, 35133, Padova, Italy
| |
Collapse
|
5
|
Vanhoof-Villalba SL, Gautier NM, Mishra V, Glasscock E. Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy. Epilepsia 2017; 59:358-368. [PMID: 29265344 DOI: 10.1111/epi.13978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Antiseizure drugs are the leading therapeutic choice for treatment of epilepsy, but their efficacy is limited by pharmacoresistance and the occurrence of unwanted side effects. Here, we examined the therapeutic efficacy of KCNQ channel activation by retigabine in preventing seizures and neurocardiac dysfunction in 2 potassium channelopathy mouse models of epilepsy with differing severity that have been associated with increased risk of sudden unexpected death in epilepsy (SUDEP): the Kcna1-/- model of severe epilepsy and the Kcnq1A340E/A340E model of mild epilepsy. METHODS A combination of behavioral, seizure threshold, electrophysiologic, and gene expression analyses was used to determine the effects of KCNQ activation in mice. RESULTS Behaviorally, Kcna1-/- mice exhibited unexpected hyperexcitability instead of the expected sedative-like response. In flurothyl-induced seizure tests, KCNQ activation decreased seizure latency by ≥50% in Kcnq1 strain mice but had no effect in the Kcna1 strain, suggesting the influence of genetic background. However, in simultaneous electroencephalography and electrocardiography recordings, KCNQ activation significantly reduced spontaneous seizure frequency in Kcna1-/- mice by ~60%. In Kcnq1A340E/A340E mice, KCNQ activation produced adverse cardiac effects including profound bradycardia and abnormal increases in heart rate variability and atrioventricular conduction blocks. Analyses of Kcnq2 and Kcnq3 mRNA levels revealed significantly elevated Kcnq2 expression in Kcna1-/- brains, suggesting that drug target alterations may contribute to the altered drug responses. SIGNIFICANCE This study shows that treatment strategies in channelopathy may have unexpected outcomes and that effective rebalancing of channel defects requires improved understanding of channel interactions at the circuit and tissue levels. The efficacy of KCNQ channel activation and manifestation of adverse effects were greatly affected by genetic background, potentially limiting KCNQ modulation as a way to prevent neurocardiac dysfunction in epilepsy and thereby SUDEP risk. Our data also uncover a potential role for KCNQ2-5 channels in autonomic control of chronotropy.
Collapse
Affiliation(s)
- Stephanie L Vanhoof-Villalba
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Nicole M Gautier
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Vikas Mishra
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
6
|
Neethling A, Mouton J, Loos B, Corfield V, de Villiers C, Kinnear C. Filamin C: a novel component of the KCNE2 interactome during hypoxia. Cardiovasc J Afr 2016; 27:4-11. [PMID: 26956495 PMCID: PMC4816932 DOI: 10.5830/cvja-2015-049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 05/17/2015] [Indexed: 12/16/2022] Open
Abstract
Aim KCNE2 encodes for the potassium voltage-gated channel, KCNE2. Mutations in KCNE2 have been associated with long-QT syndrome (LQTS). While KCNE2 has been extensively studied, the functions of its C-terminal domain remain inadequately described. Here, we aimed to elucidate the functions of this domain by identifying its protein interactors using yeast two-hybrid analysis. Methods The C-terminal domain of KCNE2 was used as bait to screen a human cardiac cDNA library for putative interacting proteins. Co-localisation and co-immunoprecipitation analyses were used for verification. Results Filamin C (FLNC) was identified as a putative interactor with KCNE2. FLNC and KCNE2 co-localised within the cell, however, a physical interaction was only observed under hypoxic conditions. Conclusion The identification of FLNC as a novel KCNE2 ligand not only enhances current understanding of ion channel function and regulation, but also provides valuable information about possible pathways likely to be involved in LQTS pathogenesis.
Collapse
Affiliation(s)
- Annika Neethling
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Jomien Mouton
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Valerie Corfield
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Carin de Villiers
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Craig Kinnear
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
7
|
Peña B, Martinelli V, Jeong M, Bosi S, Lapasin R, Taylor MG, Long CS, Shandas R, Park D, Mestroni L. Biomimetic Polymers for Cardiac Tissue Engineering. Biomacromolecules 2016; 17:1593-601. [PMID: 27073119 PMCID: PMC4863197 DOI: 10.1021/acs.biomac.5b01734] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Indexed: 12/26/2022]
Abstract
Heart failure is a morbid disorder characterized by progressive cardiomyocyte (CM) dysfunction and death. Interest in cell-based therapies is growing, but sustainability of injected CMs remains a challenge. To mitigate this, we developed an injectable biomimetic Reverse Thermal Gel (RTG) specifically engineered to support long-term CM survival. This RTG biopolymer provided a solution-based delivery vehicle of CMs, which transitioned to a gel-based matrix shortly after reaching body temperature. In this study we tested the suitability of this biopolymer to sustain CM viability. The RTG was biomolecule-functionalized with poly-l-lysine or laminin. Neonatal rat ventricular myocytes (NRVM) and adult rat ventricular myocytes (ARVM) were cultured in plain-RTG and biomolecule-functionalized-RTG both under 3-dimensional (3D) conditions. Traditional 2D biomolecule-coated dishes were used as controls. We found that the RTG-lysine stimulated NRVM to spread and form heart-like functional syncytia. Regarding cell contraction, in both RTG and RTG-lysine, beating cells were recorded after 21 days. Additionally, more than 50% (p value < 0.05; n = 5) viable ARVMs, characterized by a well-defined cardiac phenotype represented by sarcomeric cross-striations, were found in the RTG-laminin after 8 days. These results exhibit the tremendous potential of a minimally invasive CM transplantation through our designed RTG-cell therapy platform.
Collapse
Affiliation(s)
- Brisa Peña
- Cardiovascular Institute and Bioengineering Department, University of Colorado−Denver, Aurora, Colorado, United States
| | | | - Mark Jeong
- Cardiovascular Institute and Bioengineering Department, University of Colorado−Denver, Aurora, Colorado, United States
| | - Susanna Bosi
- I.C.G.E.B. and University
of Trieste, Trieste Italy
| | | | - Matthew
R. G. Taylor
- Cardiovascular Institute and Bioengineering Department, University of Colorado−Denver, Aurora, Colorado, United States
| | - Carlin S. Long
- Cardiovascular Institute and Bioengineering Department, University of Colorado−Denver, Aurora, Colorado, United States
| | - Robin Shandas
- Cardiovascular Institute and Bioengineering Department, University of Colorado−Denver, Aurora, Colorado, United States
| | - Daewon Park
- Cardiovascular Institute and Bioengineering Department, University of Colorado−Denver, Aurora, Colorado, United States
| | - Luisa Mestroni
- Cardiovascular Institute and Bioengineering Department, University of Colorado−Denver, Aurora, Colorado, United States
| |
Collapse
|
8
|
Fretwell LV, Woolard J. Cardiovascular responses to retigabine in conscious rats--under normotensive and hypertensive conditions. Br J Pharmacol 2014; 169:1279-89. [PMID: 23581476 DOI: 10.1111/bph.12203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 03/08/2013] [Accepted: 03/22/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Retigabine is a recently approved antiepileptic agent which activates Kv7.2-7.5 potassium channels. It is emerging that these channels have an important role in vascular regulation, but the vascular effects of retigabine in the conscious state are unknown. Hence, in the present study we assessed the regional haemodynamic responses to retigabine in conscious rats. EXPERIMENTAL APPROACH Male Sprague Dawley rats were chronically instrumented with pulsed Doppler flow probes to measure regional haemodynamic responses to retigabine under control conditions and during acute hypertension induced by infusion of angiotensin II and arginine vasopressin. Further experiments were performed, using the β-adrenoceptor antagonists CGP 20712A, ICI 118551 and propranolol, to elucidate the roles of β-adrenoceptors in the responses to retigabine in vivo and in vitro. KEY RESULTS Under normotensive conditions, retigabine induced dose-dependent hypotension and hindquarters vasodilatation, with small, transient renal and mesenteric vasodilatations. In the acutely hypertensive state, the renal and mesenteric, but not hindquarters, vasodilatations were enhanced. The response of the hindquarters vascular bed to retigabine was mediated, in part, by β₂-adrenoceptors. However, in vitro experiments confirmed that retigabine did not act as a β-adrenoceptor agonist. CONCLUSIONS AND IMPLICATIONS We demonstrated that retigabine causes regionally specific vasodilatations, which are different under normotensive and hypertensive conditions, and are, in part, mediated by β₂-adrenoceptors in some vascular beds but not in others. These results broadly support previous findings and further indicate that Kv7 channels are a potential therapeutic target for the treatment of vascular diseases associated with inappropriate vasoconstriction.
Collapse
Affiliation(s)
- L V Fretwell
- Institute of Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
9
|
Affiliation(s)
- Geoffrey W Abbott
- 1360 Medical Surge II, Dept. of Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
10
|
Klinger F, Gould G, Boehm S, Shapiro MS. Distribution of M-channel subunits KCNQ2 and KCNQ3 in rat hippocampus. Neuroimage 2011; 58:761-9. [PMID: 21787867 DOI: 10.1016/j.neuroimage.2011.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/17/2011] [Accepted: 07/04/2011] [Indexed: 11/29/2022] Open
Abstract
Neuronal M-channels are low threshold, slowly activating and non-inactivating, voltage dependent K(+) channels that play a crucial role in controlling neuronal excitability. The native M-channel is composed of heteromeric or homomeric assemblies of subunits belonging to the Kv7/KCNQ family, with KCNQ2/3 heteromers being the most abundant form. KCNQ2 and KCNQ3 subunits have been found to be expressed in various neurons in the central and peripheral nervous system of rodents and humans. Previous evidence shows preferential localization of both subunits to axon initial segments, somata and nodes of Ranvier. In this work, we show the distribution and co-localization of KCNQ2 and KCNQ3 subunits throughout the hippocampal formation, via immunostaining experiments on unfixed rat brain slices and confocal microscopy. We find intense localization and colocalization to the axonal initial segment in several regions of the hippocampus, as well as staining for non-neuronal cells in the area of the lateral ventricle. We did not observe colocalization of KCNQ2 or KCNQ3 with the presynaptic protein, synaptophysin.
Collapse
Affiliation(s)
- Felicia Klinger
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
11
|
Michaelevski I, Lotan I. Role of neuronal potassium M-channels in sympathetic regulation of cardiac function. J Physiol 2011; 589:2659-60. [PMID: 21632525 DOI: 10.1113/jphysiol.2011.210161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- I Michaelevski
- Department of Biochemistry and Molecular Biology, G. S. Wise Faculty of Life Sciences,TelAvivUniversity,TelAviv 69978,Israel
| | | |
Collapse
|