1
|
Holmberg SR, Sakamoto Y, Kato A, Romero MF. The role of Na +-coupled bicarbonate transporters (NCBT) in health and disease. Pflugers Arch 2024; 476:479-503. [PMID: 38536494 PMCID: PMC11338471 DOI: 10.1007/s00424-024-02937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.
Collapse
Affiliation(s)
- Shannon R Holmberg
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA
| | - Yohei Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA.
- Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA.
| |
Collapse
|
2
|
Cazorla-Vázquez S, Kösters P, Bertz S, Pfister F, Daniel C, Dedden M, Zundler S, Jobst-Schwan T, Amann K, Engel FB. Adhesion GPCR Gpr126 (Adgrg6) Expression Profiling in Zebrafish, Mouse, and Human Kidney. Cells 2023; 12:1988. [PMID: 37566066 PMCID: PMC10417176 DOI: 10.3390/cells12151988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) comprise the second-largest class of GPCRs, the most common target for approved pharmacological therapies. aGPCRs play an important role in development and disease and have recently been associated with the kidney. Several aGPCRs are expressed in the kidney and some aGPCRs are either required for kidney development or their expression level is altered in diseased kidneys. Yet, general aGPCR function and their physiological role in the kidney are poorly understood. Here, we characterize in detail Gpr126 (Adgrg6) expression based on RNAscope® technology in zebrafish, mice, and humans during kidney development in adults. Gpr126 expression is enriched in the epithelial linage during nephrogenesis and persists in the adult kidney in parietal epithelial cells, collecting ducts, and urothelium. Single-cell RNAseq analysis shows that gpr126 expression is detected in zebrafish in a distinct ionocyte sub-population. It is co-detected selectively with slc9a3.2, slc4a4a, and trpv6, known to be involved in apical acid secretion, buffering blood or intracellular pH, and to maintain high cytoplasmic Ca2+ concentration, respectively. Furthermore, gpr126-expressing cells were enriched in the expression of potassium transporter kcnj1a.1 and gcm2, which regulate the expression of a calcium sensor receptor. Notably, the expression patterns of Trpv6, Kcnj1a.1, and Gpr126 in mouse kidneys are highly similar. Collectively, our approach permits a detailed insight into the spatio-temporal expression of Gpr126 and provides a basis to elucidate a possible role of Gpr126 in kidney physiology.
Collapse
Affiliation(s)
- Salvador Cazorla-Vázquez
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| | - Peter Kösters
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Frederick Pfister
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.D.); (S.Z.)
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.D.); (S.Z.)
| | - Tilman Jobst-Schwan
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| |
Collapse
|
3
|
Brady CT, Marshall A, Zhang C, Parker MD. NBCe1-B/C-knockout mice exhibit an impaired respiratory response and an enhanced renal response to metabolic acidosis. Front Physiol 2023; 14:1201034. [PMID: 37405134 PMCID: PMC10315466 DOI: 10.3389/fphys.2023.1201034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
The sodium-bicarbonate cotransporter (NBCe1) has three primary variants: NBCe1-A, -B and -C. NBCe1-A is expressed in renal proximal tubules in the cortical labyrinth, where it is essential for reclaiming filtered bicarbonate, such that NBCe1-A knockout mice are congenitally acidemic. NBCe1-B and -C variants are expressed in chemosensitive regions of the brainstem, while NBCe1-B is also expressed in renal proximal tubules located in the outer medulla. Although mice lacking NBCe1-B/C (KOb/c) exhibit a normal plasma pH at baseline, the distribution of NBCe1-B/C indicates that these variants could play a role in both the rapid respiratory and slower renal responses to metabolic acidosis (MAc). Therefore, in this study we used an integrative physiologic approach to investigate the response of KOb/c mice to MAc. By means of unanesthetized whole-body plethysmography and blood-gas analysis, we demonstrate that the respiratory response to MAc (increase in minute volume, decrease in pCO2) is impaired in KOb/c mice leading to a greater severity of acidemia after 1 day of MAc. Despite this respiratory impairment, the recovery of plasma pH after 3-days of MAc remained intact in KOb/c mice. Using data gathered from mice housed in metabolic cages we demonstrate a greater elevation of renal ammonium excretion and greater downregulation of the ammonia recycling enzyme glutamine synthetase in KOb/c mice on day 2 of MAc, consistent with greater renal acid-excretion. We conclude that KOb/c mice are ultimately able to defend plasma pH during MAc, but that the integrated response is disturbed such that the burden of work shifts from the respiratory system to the kidneys, delaying the recovery of pH.
Collapse
Affiliation(s)
- Clayton T. Brady
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Aniko Marshall
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Chen Zhang
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
- Department of Biological Sciences, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Mark D. Parker
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
- Jacobs School of Medicine and Biomedical Sciences, Department of Ophthalmology, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
4
|
Nazli S, Zimmerman KD, Riojas AM, Cox LA, Olivier M. An Isobaric Labeling Approach to Enhance Detection and Quantification of Tissue-Derived Plasma Proteins as Potential Early Disease Biomarkers. Biomolecules 2023; 13:215. [PMID: 36830584 PMCID: PMC9952993 DOI: 10.3390/biom13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The proteomic analysis of plasma holds great promise to advance precision medicine and identify biomarkers of disease. However, it is likely that many potential biomarkers circulating in plasma originate from other tissues and are only present in low abundances in the plasma. Accurate detection and quantification of low abundance proteins by standard mass spectrometry approaches remain challenging. In addition, it is difficult to link low abundance plasma proteins back to their specific tissues or organs of origin with confidence. To address these challenges, we developed a mass spectrometry approach based on the use of tandem mass tags (TMT) and a tissue reference sample. By applying this approach to nonhuman primate plasma samples, we were able to identify and quantify 820 proteins by using a kidney tissue homogenate as reference. On average, 643 ± 16 proteins were identified per plasma sample. About 58% of proteins identified in replicate experiments were identified both times. A ratio of 50 μg kidney protein to 10 μg plasma protein, and the use of the TMT label with the highest molecular weight (131) for the kidney reference yielded the largest number of proteins in the analysis, and identified low abundance proteins in plasma that are prominently found in the kidney. Overall, this methodology promises efficient quantification of plasma proteins potentially released from specific tissues, thereby increasing the number of putative disease biomarkers for future study.
Collapse
Affiliation(s)
- Sumaiya Nazli
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Angelica M. Riojas
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
5
|
Aref M, Ranjbari E, García-Guzmán JJ, Hu K, Lork A, Crespo GA, Ewing AG, Cuartero M. Potentiometric pH Nanosensor for Intracellular Measurements: Real-Time and Continuous Assessment of Local Gradients. Anal Chem 2021; 93:15744-15751. [PMID: 34783529 PMCID: PMC8637545 DOI: 10.1021/acs.analchem.1c03874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
We present a pH nanosensor
conceived for single intracellular measurements.
The sensing architecture consisted of a two-electrode system evaluated
in the potentiometric mode. We used solid-contact carbon nanopipette
electrodes tailored to produce both the indicator (pH nanosensor)
and reference electrodes. The indicator electrode was a membrane-based
ion-selective electrode containing a receptor for hydrogen ions that
provided a favorable selectivity for intracellular measurements. The
analytical features of the pH nanosensor revealed a Nernstian response
(slope of −59.5 mV/pH unit) with appropriate repeatability
and reproducibility (variation coefficients of <2% for the calibration
parameters), a fast response time (<5 s), adequate medium-term
drift (0.7 mV h–1), and a linear range of response
including physiological and abnormal cell pH levels (6.0–8.5).
In addition, the position and configuration of the reference electrode
were investigated in cell-based experiments to provide unbiased pH
measurements, in which both the indicator and reference electrodes
were located inside the same cell, each of them inside two neighboring
cells, or the indicator electrode inside the cell and the reference
electrode outside of (but nearby) the studied cell. Finally, the pH
nanosensor was applied to two cases: (i) the tracing of the pH gradient
from extra-to intracellular media over insertion into a single PC12
cell and (ii) the monitoring of variations in intracellular pH in
response to exogenous administration of pharmaceuticals. It is anticipated
that the developed pH nanosensor, which is a label-free analytical
tool, has high potential to aid in the investigation of pathological
states that manifest in cell pH misregulation, with no restriction
in the type of targeted cells.
Collapse
Affiliation(s)
- Mohaddeseh Aref
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Juan José García-Guzmán
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Alicia Lork
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| |
Collapse
|
6
|
Revisiting the Role of Ser982 Phosphorylation in Stoichiometry Shift of the Electrogenic Na +/ qHCO 3- Cotransporter NBCe1. Int J Mol Sci 2021; 22:ijms222312817. [PMID: 34884619 PMCID: PMC8657473 DOI: 10.3390/ijms222312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
In most cell types and heterologous expression systems, the electrogenic sodium-bicarbonate cotransporter NBCe1 operates with a 1Na+-2HCO3- stoichiometry that, given typical transmembrane electrochemical gradients, promotes Na+ and HCO3- influx. However, NBCe1 in the kidney mediates HCO3- efflux (HCO3- reabsorption), a direction that has been predicted to be favored only if NBCe1 operates with a 1:3 stoichiometry. The phosphorylation state of Ser982 in the cytosolic carboxy-terminal domain of NBCe1 has been reported to be a key determinant of the transporter stoichiometry, with non-phosphorylated Ser982 favoring a 1:3 stoichiometry. Conversely, phosphoproteomic data from renal cortical preparations have revealed the presence of NBCe1 peptides including phosphoserine982 (pSer982) and/or pSer985 although it was not known what proportion of NBCe1 molecules were phosphorylated. In the present study, we report the generation, characterization, and application of a novel phosphospecific antibody raised against NBCe1/pSer982 and show that, contrary to expectations, Ser982 is more prevalently phosphorylated in murine kidneys (in which NBCe1 mediates HCO3- efflux) than in murine colons (in which NBCe1 mediates HCO3- influx). Using phosphomimetic mutants of murine NBCe1 expressed in Xenopus oocytes, we found no evidence that the phosphorylation state of Ser982 or Ser985 alone influences the transport stoichiometry or conductance. Furthermore, we found that the phosphorylation of NBCe1/Ser982 is enhanced in murine kidneys following a 24 h induction of metabolic acidosis. We conclude that the phosphorylation status of Ser982 is not a key determinant of NBCe1 stoichiometry but correlates with presumed NBCe1 activity.
Collapse
|
7
|
Moss FJ, Boron WF. Carbonic anhydrases enhance activity of endogenous Na-H exchangers and not the electrogenic Na/HCO 3 cotransporter NBCe1-A, expressed in Xenopus oocytes. J Physiol 2020; 598:5821-5856. [PMID: 32969493 PMCID: PMC7747792 DOI: 10.1113/jp280143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS According to the HCO 3 - metabolon hypothesis, direct association of cytosolic carbonic anhydrases (CAs) with the electrogenic Na/HCO3 cotransporter NBCe1-A speeds transport by regenerating/consuming HCO 3 - . The present work addresses published discrepancies as to whether cytosolic CAs stimulate NBCe1-A, heterologously expressed in Xenopus oocytes. We confirm the essential elements of the previous experimental observations, taken as support for the HCO 3 - metabolon hypothesis. However, using our own experimental protocols or those of others, we find that NBCe1-A function is unaffected by cytosolic CAs. Previous conclusions that cytosolic CAs do stimulate NBCe1-A can be explained by an unanticipated stimulatory effect of the CAs on an endogenous Na-H exchanger. Theoretical analyses show that, although CAs could stimulate non- HCO 3 - transporters (e.g. Na-H exchangers) by accelerating CO2 / HCO 3 - -mediated buffering of acid-base equivalents, they could not appreciably affect transport rates of NBCe1 or other transporters carrying HCO 3 - , CO 3 = , or NaCO 3 - ion pairs. ABSTRACT The HCO 3 - metabolon hypothesis predicts that cytosolic carbonic anhydrase (CA) binds to NBCe1-A, promotes HCO 3 - replenishment/consumption, and enhances transport. Using a short step-duration current-voltage (I-V) protocol with Xenopus oocytes expressing eGFP-tagged NBCe1-A, our group reported that neither injecting human CA II (hCA II) nor fusing hCA II to the NBCe1-A carboxy terminus affects background-subtracted NBCe1 slope conductance (GNBC ), which is a direct measure of NBCe1-A activity. Others - using bovine CA (bCA), untagged NBCe1-A, and protocols keeping holding potential (Vh ) far from NBCe1-A's reversal potential (Erev ) for prolonged periods - found that bCA increases total membrane current (ΔIm ), which apparently supports the metabolon hypothesis. We systematically investigated differences in the two protocols. In oocytes expressing untagged NBCe1-A, injected with bCA and clamped to -40 mV, CO2 / HCO 3 - exposures markedly decrease Erev , producing large transient outward currents persisting for >10 min and rapid increases in [Na+ ]i . Although the CA inhibitor ethoxzolamide (EZA) reduces both ΔIm and d[Na+ ]i /dt, it does not reduce GNBC . In oocytes not expressing NBCe1-A, CO2 / HCO 3 - triggers rapid increases in [Na+ ]i that both hCA II and bCA enhance in concentration-dependent manners. These d[Na+ ]i /dt increases are inhibited by EZA and blocked by EIPA, a Na-H exchanger (NHE) inhibitor. In oocytes expressing untagged NBCe1-A and injected with bCA, EIPA abolishes the EZA-dependent decreases in ΔIm and d[Na+ ]i /dt. Thus, CAs/EZA produce their ΔIm and d[Na+ ]i /dt effects not through NBCe1-A, but endogenous NHEs. Theoretical considerations argue against a CA stimulation of HCO 3 - transport, supporting the conclusion that an NBCe1-A- HCO 3 - metabolon does not exist in oocytes.
Collapse
Affiliation(s)
- Fraser J. Moss
- Department of Physiology and Biophysics, Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Walter F. Boron
- Department of Physiology and Biophysics, Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine and Department of Biochemistry Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Myers EJ, Marshall A, Parker MD. The role of disease-linked residue glutamine-913 in support of the structure and function of the human electrogenic sodium/bicarbonate cotransporter NBCe1-A. Sci Rep 2018; 8:3066. [PMID: 29449648 PMCID: PMC5814396 DOI: 10.1038/s41598-018-20488-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 11/09/2022] Open
Abstract
Mutations in the sodium bicarbonate cotransporter NBCe1 (SLC4A4) cause proximal renal tubular acidosis (pRTA). We recently described a novel pRTA mutation p.Gln913Arg (Q913R), inherited in compound heterozygous form with p.Arg510His (R510H). Q913R causes intracellular retention of NBCe1 and a 'gain of function' Cl- leak. To learn more about the importance of glutamine at position 913, we substituted a variety of alternative amino-acid residues (Cys, Glu, Lys, Leu, Ser) at position 913. Studying cRNA-injected Xenopus oocytes by voltage clamp, we find that most de novo mutants exhibit close-to-normal NBCe1 activity; only Q913K expresses a Cl- leak. Studying transiently-transfected, polarised kidney cells by fluorescence microscopy we find that most de novo mutants (except Q913E) are intracellularly retained. A 3D homology model predicts that Gln913 is located in the gating domain of NBCe1 and neighbours the 3D space occupied by another pRTA-associated residue (Arg881), highlighting an important and conformationally-sensitive region of NBCe1. We conclude that the intracellular retention of Q913R is caused by the loss of Gln at position 913, but that the manifestation of the Cl- leak is related to the introduction of Arg at position 913. Our findings will inform future studies to elucidate the nature and the consequences of the leak.
Collapse
Affiliation(s)
- Evan J Myers
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York, USA
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Aniko Marshall
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York, USA.
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York, USA.
- State University of New York Eye Institute, University at Buffalo: The State University of New York, Buffalo, New York, USA.
| |
Collapse
|
9
|
Myers EJ, Yuan L, Felmlee MA, Lin YY, Jiang Y, Pei Y, Wang O, Li M, Xing XP, Marshall A, Xia WB, Parker MD. A novel mutant Na + /HCO3 - cotransporter NBCe1 in a case of compound-heterozygous inheritance of proximal renal tubular acidosis. J Physiol 2016; 594:6267-6286. [PMID: 27338124 DOI: 10.1113/jp272252] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/08/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The inheritance of two defective alleles of SLC4A4, the gene that encodes the widely-expressed electrogenic sodium bicarbonate cotransporter NBCe1, results in the bicarbonate-wasting disease proximal renal tubular acidosis (pRTA). In the present study, we report the first case of compound-heterozygous inheritance of pRTA (p.Arg510His/p.Gln913Arg) in an individual with low blood pH, blindness and neurological signs that resemble transient ischaemic attacks. We employ fluorescence microscopy on non-polarized (human embryonic kidney) and polarized (Madin-Darby canine kidney) renal cell lines and electrophysiology on Xenopus oocytes to characterize the mutant transporters (R510H and Q913R). Both mutant transporters exhibit enhanced intracellular retention in renal cells, an observation that probably explains the HCO3- transport deficit in the individual. Both mutants retain a close-to-normal per molecule Na+ /HCO3- cotransport activity in Xenopus oocytes, suggesting that they are suitable candidates for folding-correction therapy. However, Q913R expression is uniquely associated with a depolarizing, HCO3- independent, Cl- -conductance in oocytes that could have pathological consequences if expressed in the cells of patients. ABSTRACT Proximal renal tubular acidosis (pRTA) is a rare, recessively-inherited disease characterized by abnormally acidic blood, blindness, as well as below average height and weight. pRTA is typically associated with homozygous mutation of the solute carrier 4 family gene SLC4A4. SLC4A4 encodes the electrogenic sodium bicarbonate cotransporter NBCe1, a membrane protein that acts to maintain intracellular and plasma pH. We present the first description of a case of compound-heterozygous inheritance of pRTA. The individual has inherited two mutations in NBCe1: p.Arg510His (R510H) and p.Gln913Arg (Q913R), one from each parent. In addition to the usual features of pRTA, the patient exhibits unusual signs, such as muscle spasms and fever. We have recreated these mutant transporters for expression in model systems. We find that both of the mutant proteins exhibit substantial intracellular retention when expressed in mammalian renal cell lines. When expressed in Xenopus oocytes, we find that the R510H and Q913R-mutant NBCe1 molecules exhibit apparently normal Na+ /HCO3- cotransport activity but that Q913R is associated with an unusual HCO3- independent anion-leak. We conclude that a reduced accumulation of NBCe1 protein in the basolateral membrane of proximal-tubule epithelia is the most probable cause of pRTA in this case. We further note that the Q913R-associated anion-leak could itself be pathogenic if expressed in the plasma membrane of mammalian cells, compromising the benefit of strategies aiming to enhance mutant NBCe1 accumulation in the plasma membrane.
Collapse
Affiliation(s)
- Evan J Myers
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York, NY, USA
| | - Lu Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Melanie A Felmlee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo: The State University of New York, Buffalo, New York, NY, USA.,Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California, USA
| | - Yuan-Yuan Lin
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Pei
- Department of Endocrinology, Chinese People's Army General Hospital, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Ping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Aniko Marshall
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York, NY, USA
| | - Wei-Bo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Mark D Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York, NY, USA. .,Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York, NY, USA. .,State University of New York Eye Institutes, University at Buffalo: The State University of New York, Buffalo, New York, NY, USA.
| |
Collapse
|
10
|
Abstract
Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.
Collapse
Affiliation(s)
- Christian Aalkjaer
- Department of Biomedicine, and the Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Department of Physiology, Emory University School of Medicine, Atlanta, USA
| | | | | | | |
Collapse
|
11
|
Gill HS, Choi KY, Kammili L, Popratiloff A. Rescue of the temperature-sensitive, autosomal-recessive mutation R298S in the sodium-bicarbonate cotransporter NBCe1-A characterized by a weakened dimer and abnormal aggregation. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:1286-96. [PMID: 25743102 PMCID: PMC4424423 DOI: 10.1016/j.bbagen.2015.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Band keratopathy, an ocular disease that is characterized by hypercalcemia and opaque bands across the cornea, has been associated with kidney disease. Type-II renal tubular acidosis (RTA), a condition in which the kidneys fail to recover bicarbonate (HCO3-) in the proximal tubule of the nephron, results in HCO3- wastage in the urine and low blood pH. The development of these diseases is associated with autosomal-recessive mutations in the Na+-coupled HCO3- cotransporter NBCe1-A located at the basolateral membranes of either cell type. METHODS We provide insight into the devastating R298S mutation found in type-II RTA-afflicted individuals using confocal-microscopy imaging of fluorescently-tagged NBCe1-A and NBCe1-A-R298S molecules expressed in human corneal endothelial and proximal tubule cells and from in-depth biophysical studies of their cytoplasmic N-terminal domains (Nt and Nt-R298S), including Nt crystal structure, melting-temperature, and homodimer dissociation constant (KD) analyses. RESULTS We illuminate and rescue trafficking defects of the R298S mutation of NBCe1-A. The KD for Nt monomer-dimer equilibrium is established. The KD for Nt-R298S is significantly higher, but immeasurable due to environmental factors (pH, temperature, concentration) that result in dimer instability leading to precipitation. The crystal structure of Nt-dimer shows that R298 is part of a putative substrate conduit and resides near the dimer interface held together by hydrogen-bond networks. CONCLUSIONS The R298S is a temperature-sensitive mutation in Nt that results in instability of the colloidal system leading to abnormal aggregation. GENERAL SIGNIFICANCE Our findings provide new perspectives to the aberrant mechanism of certain ocular pathologies and type-II RTA associated with the R298S mutation.
Collapse
Affiliation(s)
- Harindarpal S Gill
- Department of Medicine, The George Washington University; Division of Renal & Hypertension, The GW Medical Faculty Associates, 2300 I (eye) Street NW, Ross Hall Room 436B, Washington D.C. 20052, United States.
| | - Kun-Young Choi
- Department of Medicine, The George Washington University; Division of Renal & Hypertension, The GW Medical Faculty Associates, 2300 I (eye) Street NW, Ross Hall Room 436B, Washington D.C. 20052, United States
| | - Lakshmi Kammili
- Department of Medicine, The George Washington University; Division of Renal & Hypertension, The GW Medical Faculty Associates, 2300 I (eye) Street NW, Ross Hall Room 436B, Washington D.C. 20052, United States
| | - Anastas Popratiloff
- Department of Medicine, The George Washington University; Division of Renal & Hypertension, The GW Medical Faculty Associates, 2300 I (eye) Street NW, Ross Hall Room 436B, Washington D.C. 20052, United States
| |
Collapse
|
12
|
Abstract
The construction and prediction of cell fate maps at the whole embryo level require the establishment of an accurate atlas of gene expression patterns throughout development and the identification of the corresponding cis-regulatory sequences. However, while the expression and regulation of genes encoding upstream developmental regulators such as transcription factors or signaling pathway components have been analyzed in detail, up to date the number of cis-regulatory sequences identified for downstream effector genes, like ion channels, pumps and exchangers, is very low. The control and regulation of ion homeostasis in each cell, including at blastoderm stages, are essential for normal embryonic development. In this study, we analyzed in detail the embryonic expression pattern and cis-regulatory modules of the Drosophila Na+-driven anion exchanger 1 (Ndae1) gene, involved in the regulation of pH homeostasis. We show that Ndae1 is expressed in a tight and complex spatial-temporal pattern. In particular, we report that this downstream effector gene is under the control of the canonical dorsal-ventral patterning cascade through dorsal, Toll, twist and snail at early embryogenesis. Moreover, we identify several cis-regulatory modules, some of which control discrete and non-overlapping aspects of endogenous gene expression throughout development.
Collapse
|
13
|
Structure, function, and regulation of the SLC4 NBCe1 transporter and its role in causing proximal renal tubular acidosis. Curr Opin Nephrol Hypertens 2014; 22:572-83. [PMID: 23917030 DOI: 10.1097/mnh.0b013e328363ff43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW There has been significant progress in our understanding of the structural and functional properties and regulation of the electrogenic sodium bicarbonate cotansporter NBCe1, a membrane transporter that plays a key role in renal acid-base physiology. The NBCe1 variant NBCe1-A mediates basolateral electrogenic sodium-base transport in the proximal tubule and is critically required for transepithelial bicarbonate absorption. Mutations in NBCe1 cause autosomal recessive proximal renal tubular acidosis (pRTA). The review summarizes recent advances in this area. RECENT FINDINGS A topological model of NBCe1 has been established that provides a foundation for future structure-functional studies of the transporter. Critical residues and regions have been identified in NBCe1 that play key roles in its structure, function (substrate transport, electrogenicity) and regulation. The mechanisms of how NBCe1 mutations cause pRTA have also recently been elucidated. SUMMARY Given the important role of proximal tubule transepithelial bicarbonate absorption in systemic acid-base balance, a clear understanding of the structure-functional properties of NBCe1 is a prerequisite for elucidating the mechanisms of defective transepithelial bicarbonate transport in pRTA.
Collapse
|
14
|
Kurtz I. NBCe1 as a model carrier for understanding the structure-function properties of Na⁺ -coupled SLC4 transporters in health and disease. Pflugers Arch 2014; 466:1501-16. [PMID: 24515290 DOI: 10.1007/s00424-014-1448-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/17/2023]
Abstract
SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na(+) and/or Cl(-), in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein-protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na(+) and/or Cl(-), and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate anion exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na(+)-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized the important structure-function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl(-)-HCO3 (-) exchanger AE1 whose structural properties have been well-studied. In this review, the structure-function properties and regulation of NBCe1 will be highlighted, and its role in health and disease will be reviewed in detail.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA, USA,
| |
Collapse
|
15
|
Cordat E, Reithmeier RA. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. CURRENT TOPICS IN MEMBRANES 2014; 73:1-67. [DOI: 10.1016/b978-0-12-800223-0.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Kurtz I, Zhu Q. Proximal renal tubular acidosis mediated by mutations in NBCe1-A: unraveling the transporter's structure-functional properties. Front Physiol 2013; 4:350. [PMID: 24391589 PMCID: PMC3867943 DOI: 10.3389/fphys.2013.00350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
NBCe1 belongs to the SLC4 family of base transporting membrane proteins that plays a significant role in renal, extrarenal, and systemic acid-base homeostasis. Recent progress has been made in characterizing the structure-function properties of NBCe1 (encoded by the SLC4A4 gene), and those factors that regulate its function. In the kidney, the NBCe1-A variant that is expressed on the basolateral membrane of proximal tubule is the key transporter responsible for overall transepithelial bicarbonate absorption in this nephron segment. NBCe1 mutations impair transepithelial bicarbonate absorption causing the syndrome of proximal renal tubular acidosis (pRTA). Studies of naturally occurring NBCe1 mutant proteins in heterologous expression systems have been very helpful in elucidation the structure-functional properties of the transporter. NBCe1 mutations are now known to cause pRTA by various mechanisms including the alteration of the transporter function (substrate ion interaction, electrogenicity), abnormal processing to the plasma membrane, and a perturbation in its structural properties. The elucidation of how NBCe1 mutations cause pRTA in addition to the recent studies which have provided further insight into the topology of the transporter have played an important role in uncovering its critically important structural-function properties.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, UCLA Los Angeles, CA, USA ; Brain Research Institute, UCLA Los Angeles, CA, USA
| | - Quansheng Zhu
- Division of Nephrology, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| |
Collapse
|
17
|
Qin X, Boron WF. Mutation of a single amino acid converts the human water channel aquaporin 5 into an anion channel. Am J Physiol Cell Physiol 2013; 305:C663-72. [DOI: 10.1152/ajpcell.00129.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aquaporin 6 (AQP6) is unique among mammalian AQPs in being an anion channel with negligible water permeability. However, the point mutation Asn60Gly converts AQP6 from an anion channel into a water channel. In the present study of human AQP5, we mutated Leu51 (corresponding to residue 61 in AQP6), the side chain of which faces the central pore. We evaluated function in Xenopus oocytes by two-electrode voltage clamp, video measurements of osmotic H2O permeability ( Pf), microelectrode measurements of surface pH (pHS) to assess CO2 permeability, and surface biotinylation. We found that AQP5-L51R does not exhibit the H2O or CO2 permeability of the wild-type protein but instead has a novel p-chloromercuribenzene sulfonate (pCMBS)-sensitive current. The double mutant AQP5-L51R/C182S renders the conductance insensitive to pCMBS, demonstrating that the current is intrinsic to AQP5. AQP5-L51R has the anion permeability sequence I− > NO3− ≅ NO2− > Br− > Cl− > HCO3− > gluconate. Of the other L51 mutants, L51T (polar uncharged) and L51V (nonpolar) retain H2O and CO2 permeability and do not exhibit anion conductance. L51D and L51E (negatively charged) have no H2O or CO2 permeability. L51K (positively charged) has an intermediate H2O and CO2 permeability and anion conductance. L51H is unusual in having a relatively low CO2 permeability and anion conductance, but a moderate Pf. Thus, positively charged mutations of L51 can convert AQP5 from a H2O/CO2 channel into an anion channel. However, the paradoxical effect of L51H is consistent with the hypothesis that CO2, in part, takes a pathway different from H2O through AQP5.
Collapse
Affiliation(s)
- Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
18
|
Romero MF, Chen AP, Parker MD, Boron WF. The SLC4 family of bicarbonate (HCO₃⁻) transporters. Mol Aspects Med 2013; 34:159-82. [PMID: 23506864 DOI: 10.1016/j.mam.2012.10.008] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023]
Abstract
The SLC4 family consists of 10 genes (SLC4A1-5; SLC4A7-11). All encode integral membrane proteins with very similar hydropathy plots-consistent with 10-14 transmembrane segments. Nine SLC4 members encode proteins that transport HCO3(-) (or a related species, such as CO3(2-)) across the plasma membrane. Functionally, eight of these proteins fall into two major groups: three Cl-HCO3 exchangers (AE1-3) and five Na(+)-coupled HCO3(-) transporters (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE). Two of the Na(+)-coupled transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO3(-) transporters and all three AEs are electroneutral. In addition, two other SLC4 members (AE4, SLC4A9 and BTR1, SLC4A11) do not yet have a firmly established function. Most, though not all, SLC4 members are functionally inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 proteins play important roles many modes of acid-base homeostasis: the carriage of CO2 by erythrocytes, the transport of H(+) or HCO3(-) by several epithelia, as well as the regulation of cell volume and intracellular pH.
Collapse
Affiliation(s)
- Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
19
|
Zhu Q, Shao XM, Kao L, Azimov R, Weinstein AM, Newman D, Liu W, Kurtz I. Missense mutation T485S alters NBCe1-A electrogenicity causing proximal renal tubular acidosis. Am J Physiol Cell Physiol 2013; 305:C392-405. [PMID: 23636456 DOI: 10.1152/ajpcell.00044.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in SLC4A4, the gene encoding the electrogenic Na(+)-HCO3(-) cotransporter NBCe1, cause severe proximal renal tubular acidosis (pRTA), growth retardation, decreased IQ, and eye and teeth abnormalities. Among the known NBCe1 mutations, the disease-causing mechanism of the T485S (NBCe1-A numbering) mutation is intriguing because the substituted amino acid, serine, is structurally and chemically similar to threonine. In this study, we performed intracellular pH and whole cell patch-clamp measurements to investigate the base transport and electrogenic properties of NBCe1-A-T485S in mammalian HEK 293 cells. Our results demonstrated that Ser substitution of Thr485 decreased base transport by ~50%, and importantly, converted NBCe1-A from an electrogenic to an electroneutral transporter. Aqueous accessibility analysis using sulfhydryl reactive reagents indicated that Thr485 likely resides in an NBCe1-A ion interaction site. This critical location is also supported by the finding that G486R (a pRTA causing mutation) alters the position of Thr485 in NBCe1-A thereby impairing its transport function. By using NO3(-) as a surrogate ion for CO3(2-), our result indicated that NBCe1-A mediates electrogenic Na(+)-CO3(2-) cotransport when functioning with a 1:2 charge transport stoichiometry. In contrast, electroneutral NBCe1-T485S is unable to transport NO3(-), compatible with the hypothesis that it mediates Na(+)-HCO3(-) cotransport. In patients, NBCe1-A-T485S is predicted to transport Na(+)-HCO3(-) in the reverse direction from blood into proximal tubule cells thereby impairing transepithelial HCO3(-) absorption, possibly representing a new pathogenic mechanism for generating human pRTA.
Collapse
Affiliation(s)
- Quansheng Zhu
- Division of Nephrology, Department of Medicine, University of California, Los Angeles, CA 90095-1689, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee SK, Boron WF, Parker MD. Substrate specificity of the electrogenic sodium/bicarbonate cotransporter NBCe1-A (SLC4A4, variant A) from humans and rabbits. Am J Physiol Renal Physiol 2013; 304:F883-99. [PMID: 23324180 PMCID: PMC3625843 DOI: 10.1152/ajprenal.00612.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/10/2013] [Indexed: 11/22/2022] Open
Abstract
In the basolateral membrane of proximal-tubule cells, NBCe1-A (SLC4A4, variant A), operating with an apparent Na(+):HCO(3)(-) stoichiometry of 1:3, contributes to the reclamation of HCO(3)(-) from the glomerular filtrate, thereby preventing whole body acidosis. Others have reported that NBCe1-like activity in human, rabbit, and rat renal preparations is substantially influenced by lithium, sulfite, oxalate, and harmaline. These data were taken as evidence for the presence of distinct Na(+) and CO(3)(2-) binding sites in NBCe1-A, favoring a model of 1 Na(+):1 HCO(3)(-):1 CO(3)(2-). Here, we reexamine these findings by expressing human or rabbit NBCe1-A clones in Xenopus oocytes. In oocytes, NBCe1-A exhibits a 1:2 stoichiometry and could operate in one of five thermodynamically equivalent transport modes: 1) cotransport of Na(+) + 2 HCO(3)(-), 2) cotransport of Na(+) + CO(3)(2-), 3) transport of NaCO(3)(-), 4) exchange of Na(+) + HCO(3)(-) for H(+), or 5) HCO(3)(-)-activated exchange of Na(+) for 2 H(+). In contrast to the behavior of NBCe1-like activity in renal preparations, we find that cloned NBCe1-A is only slightly stimulated by Li(+), not at all influenced by sulfite or oxalate, and only weakly inhibited by harmaline. These negative data do not uniquely support any of the five models above. In addition, we find that NBCe1-A mediates a small amount of Na(+)-independent NO(3)(-) transport and that NBCe1-A is somewhat inhibited by extracellular benzamil. We suggest that the features of NBCe1-like activity in renal preparations are influenced by yet-to-be-identified renal factors. Thus the actual ionic substrates of NBCe1 remain to be identified.
Collapse
Affiliation(s)
- Seong-Ki Lee
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
21
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
22
|
Monitoring ion activities in and around cells using ion-selective liquid-membrane microelectrodes. SENSORS 2013; 13:984-1003. [PMID: 23322102 PMCID: PMC3574717 DOI: 10.3390/s130100984] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/31/2012] [Accepted: 01/02/2013] [Indexed: 11/24/2022]
Abstract
Determining the effective concentration (i.e., activity) of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study.
Collapse
|