1
|
Lin M, Calabrese GB, Incognito AV, Moore MT, Agarwal A, Wilson RJA, Zagoraiou L, Sharples SA, Miles GB, Philippidou P. A cholinergic spinal pathway for the adaptive control of breathing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633641. [PMID: 39896653 PMCID: PMC11785070 DOI: 10.1101/2025.01.20.633641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The ability to amplify motor neuron (MN) output is essential for generating high intensity motor actions. This is critical for breathing that must be rapidly adjusted to accommodate changing metabolic demands. While brainstem circuits generate the breathing rhythm, the pathways that directly augment respiratory MN output are not well understood. Here, we mapped first-order inputs to phrenic motor neurons (PMNs), a key respiratory MN population that initiates diaphragm contraction to drive breathing. We identified a predominant spinal input from a distinct subset of genetically-defined V0 C cholinergic interneurons. We found that these interneurons receive phasic excitation from brainstem respiratory centers, augment phrenic output through M2 muscarinic receptors, and are highly activated under a hypercapnia challenge. Specifically silencing cholinergic interneuron neurotransmission impairs the breathing response to hypercapnia. Collectively, our findings identify a novel spinal pathway that amplifies breathing, presenting a potential target for promoting recovery of breathing following spinal cord injury.
Collapse
|
2
|
Antonucci S, Caron G, Dikwella N, Krishnamurty SS, Harster A, Zarrin H, Tahanis A, Heuvel FO, Danner SM, Ludolph AC, Grycz K, Bączyk M, Zytnicki D, Roselli F. Spinal motoneuron excitability is homeostatically-regulated through β-adrenergic neuromodulation in wild-type and presymptomatic SOD1 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586570. [PMID: 38585891 PMCID: PMC10996613 DOI: 10.1101/2024.03.25.586570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Homeostatic feedback loops are essential to stabilize the activity of neurons and neuronal networks. It has been hypothesized that, in the context of Amyotrophic Lateral Sclerosis (ALS), an excessive gain in feedback loops might hyper- or hypo-excite motoneurons (MNs) and contribute to the pathogenesis. Here, we investigated how the neuromodulation of MN intrinsic properties is homeostatically controlled in presymptomatic adult SOD1(G93A) mice and in the age-matched control WT mice. First, we determined that β2 and β3- adrenergic receptors, which are Gs-coupled receptors and subject to tight and robust feedback loops, are specifically expressed in spinal MNs of both SOD1 and WT mice at P45. We then demonstrated that these receptors elicit a so-far overlooked neuromodulation of the firing and excitability properties of MNs. These electrical properties are homeostatically regulated following receptor engagement, which triggers ion channel transcriptional changes and downregulates those receptors. These homeostatic feedbacks are not dysregulated in presymptomatic SOD1 mice, and they set the MN excitability upon β-adrenergic neuromodulation.
Collapse
Affiliation(s)
| | - Guillaume Caron
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | | | - Anthony Harster
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | | | | | - Simon M. Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, United States
| | - Albert C. Ludolph
- Dept. of Neurology, Ulm University, Ulm, DE
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, DE
| | - Kamil Grycz
- Dept. of Neurobiology, Poznań University of Physical Education, Poland
| | - Marcin Bączyk
- Dept. of Neurobiology, Poznań University of Physical Education, Poland
| | - Daniel Zytnicki
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Francesco Roselli
- Dept. of Neurology, Ulm University, Ulm, DE
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, DE
| |
Collapse
|
3
|
Avrillon S, Hug F, Enoka RM, Caillet AHD, Farina D. The identification of extensive samples of motor units in human muscles reveals diverse effects of neuromodulatory inputs on the rate coding. eLife 2024; 13:RP97085. [PMID: 39651956 PMCID: PMC11627553 DOI: 10.7554/elife.97085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Movements are performed by motoneurons transforming synaptic inputs into an activation signal that controls muscle force. The control signal emerges from interactions between ionotropic and neuromodulatory inputs to motoneurons. Critically, these interactions vary across motoneuron pools and differ between muscles. To provide the most comprehensive framework to date of motor unit activity during isometric contractions, we identified the firing activity of extensive samples of motor units in the tibialis anterior (129 ± 44 per participant; n=8) and the vastus lateralis (130 ± 63 per participant; n=8) muscles during isometric contractions of up to 80% of maximal force. From this unique dataset, the rate coding of each motor unit was characterised as the relation between its instantaneous firing rate and the applied force, with the assumption that the linear increase in isometric force reflects a proportional increase in the net synaptic excitatory inputs received by the motoneuron. This relation was characterised with a natural logarithm function that comprised two stages. The initial stage was marked by a steep acceleration of firing rate, which was greater for low- than medium- and high-threshold motor units. The second stage comprised a linear increase in firing rate, which was greater for high- than medium- and low-threshold motor units. Changes in firing rate were largely non-linear during the ramp-up and ramp-down phases of the task, but with significant prolonged firing activity only evident for medium-threshold motor units. Contrary to what is usually assumed, our results demonstrate that the firing rate of each motor unit can follow a large variety of trends with force across the pool. From a neural control perspective, these findings indicate how motor unit pools use gain control to transform inputs with limited bandwidths into an intended muscle force.
Collapse
Affiliation(s)
- Simon Avrillon
- Department of Bioengineering, Faculty of Engineering, Imperial College LondonLondonUnited Kingdom
- Nantes Université, Laboratory 'Movement, Interactions, Performance'NantesFrance
| | - François Hug
- Université Côte d'Azur, LAMHESSNiceFrance
- The University of Queensland, School of Biomedical SciencesBrisbaneAustralia
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado BoulderBoulderUnited States
| | - Arnault HD Caillet
- Department of Bioengineering, Faculty of Engineering, Imperial College LondonLondonUnited Kingdom
| | - Dario Farina
- Department of Bioengineering, Faculty of Engineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
4
|
Kratsios P, Zampieri N, Carrillo R, Mizumoto K, Sweeney LB, Philippidou P. Molecular and Cellular Mechanisms of Motor Circuit Development. J Neurosci 2024; 44:e1238242024. [PMID: 39358025 PMCID: PMC11450535 DOI: 10.1523/jneurosci.1238-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Motor circuits represent the main output of the central nervous system and produce dynamic behaviors ranging from relatively simple rhythmic activities like swimming in fish and breathing in mammals to highly sophisticated dexterous movements in humans. Despite decades of research, the development and function of motor circuits remain poorly understood. Breakthroughs in the field recently provided new tools and tractable model systems that set the stage to discover the molecular mechanisms and circuit logic underlying motor control. Here, we describe recent advances from both vertebrate (mouse, frog) and invertebrate (nematode, fruit fly) systems on cellular and molecular mechanisms that enable motor circuits to develop and function and highlight conserved and divergent mechanisms necessary for motor circuit development.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
| | - Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Robert Carrillo
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lora B Sweeney
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
5
|
Singh S, Yao L, Shevtsova NA, Rybak IA, Dougherty KJ. Properties of rhythmogenic currents in spinal Shox2 interneurons across postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.612677. [PMID: 39386611 PMCID: PMC11463365 DOI: 10.1101/2024.09.26.612677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Locomotor behaviors are performed by organisms throughout life, despite developmental changes in cellular properties, neural connectivity, and biomechanics. The basic rhythmic activity in the central nervous system that underlies locomotion is thought to be generated via a complex balance between network and intrinsic cellular properties. Within mature mammalian spinal locomotor circuitry, we have yet to determine which properties of spinal interneurons (INs) are critical to rhythmogenesis and how they change during development. Here, we combined whole cell patch clamp recordings, immunohistochemistry, and RNAscope targeting lumbar Shox2 INs in mice, which are known to be involved in locomotor rhythm generation. We focused on the properties of putatively rhythmogenic ionic currents and the expression of corresponding ion channels across postnatal time points in mice. We show that subsets of Shox2 INs display voltage-sensitive conductances, in addition to respective ion channels, which may contribute to or shape rhythmic bursting. Persistent inward currents, M-type potassium currents, slow afterhyperpolarization, and T-type calcium currents are enhanced with age. In contrast, the hyperpolarization-activated and A-type potassium currents were either found with low prevalence in subsets of neonatal, juvenile, and adult Shox2 INs or did not developmentally change. We show that Shox2 INs become more electrophysiologically diverse by juvenile and adult ages, when locomotor behavior is weight-bearing. These results suggest a developmental shift in the magnitude of rhythmogenic ionic currents and the expression of corresponding ion channels that may be important for mature, weight-bearing locomotor behavior.
Collapse
|
6
|
Smith CC, Nascimento F, Özyurt MG, Beato M, Brownstone RM. Kv2 channels do not function as canonical delayed rectifiers in spinal motoneurons. iScience 2024; 27:110444. [PMID: 39148717 PMCID: PMC11325356 DOI: 10.1016/j.isci.2024.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
The increased muscular force output required for some behaviors is achieved via amplification of motoneuron output via cholinergic C-bouton synapses. Work in neonatal mouse motoneurons suggested that modulation of currents mediated by post-synaptically clustered KV2.1 channels is crucial to C-bouton amplification. By focusing on more mature motoneurons, we show that conditional knockout of KV2.1 channels minimally affects either excitability or response to exogenously applied muscarine. Similarly, unlike in neonatal motoneurons or cortical pyramidal neurons, pharmacological blockade of KV2 currents has minimal effect on mature motoneuron firing in vitro. Furthermore, in vivo amplification of electromyography activity and high-force task performance was unchanged following KV2.1 knockout. Finally, we show that KV2.2 is also expressed by spinal motoneurons, colocalizing with KV2.1 opposite C-boutons. We suggest that the primary function of KV2 proteins in motoneurons is non-conducting and that KV2.2 can function in this role in the absence of KV2.1.
Collapse
Affiliation(s)
- Calvin C. Smith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Filipe Nascimento
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - M. Görkem Özyurt
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marco Beato
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Robert M. Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
7
|
Romer SH, Miller KM, Sonner MJ, Ethridge VT, Gargas NM, Rohan JG. Changes in motor behavior and lumbar motoneuron morphology following repeated chlorpyrifos exposure in rats. PLoS One 2024; 19:e0305173. [PMID: 38875300 PMCID: PMC11178230 DOI: 10.1371/journal.pone.0305173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024] Open
Abstract
Chlorpyrifos is an organophosphate pesticide associated with numerous health effects including motor performance decrements. While many studies have focused on the health effects following acute chlorpyrifos poisonings, almost no studies have examined the effects on motoneurons following occupational-like exposures. The main objective of this study was to examine the broad effects of repeated occupational-like chlorpyrifos exposures on spinal motoneuron soma size relative to motor activity. To execute our objective, adult rats were exposed to chlorpyrifos via oral gavage once a day, five days a week for two weeks. Chlorpyrifos exposure effects were assessed either three days or two months following the last exposure. Three days following the last repeated chlorpyrifos exposure, there were transient effects in open-field motor activity and plasma cholinesterase activity levels. Two months following the chlorpyrifos exposures, there were delayed effects in sensorimotor gating, pro-inflammatory cytokines and spinal lumbar motoneuron soma morphology. Overall, these results offer support that subacute repeated occupational-like chlorpyrifos exposures have both short-term and longer-term effects in motor activity, inflammation, and central nervous system mechanisms.
Collapse
Affiliation(s)
- Shannon H Romer
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
- Leidos, Reston, VA, United States of America
| | - Kaitlyn M Miller
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, United States of America
| | - Martha J Sonner
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
- Leidos, Reston, VA, United States of America
| | - Victoria T Ethridge
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
- Leidos, Reston, VA, United States of America
| | - Nathan M Gargas
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
| | - Joyce G Rohan
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
| |
Collapse
|
8
|
Sharples SA, Broadhead MJ, Gray JA, Miles GB. M-type potassium currents differentially affect activation of motoneuron subtypes and tune recruitment gain. J Physiol 2023; 601:5751-5775. [PMID: 37988235 DOI: 10.1113/jp285348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Abstract
The size principle is a key mechanism governing the orderly recruitment of motor units and is believed to be dependent on passive properties of the constituent motoneurons. However, motoneurons are endowed with voltage-sensitive ion channels that create non-linearities in their input-output functions. Here we describe a role for the M-type potassium current, conducted by KCNQ channels, in the control of motoneuron recruitment in mice. Motoneurons were studied with whole-cell patch clamp electrophysiology in transverse spinal slices and identified based on delayed (fast) and immediate (slow) onsets of repetitive firing. M-currents were larger in delayed compared to immediate firing motoneurons, which was not reflected by variations in the presence of Kv7.2 or Kv7.3 subunits. Instead, a more depolarized spike threshold in delayed-firing motoneurons afforded a greater proportion of the total M-current to become activated within the subthreshold voltage range, which translated to a greater influence on their recruitment with little influence on their firing rates. Pharmacological activation of M-currents also influenced motoneuron recruitment at the population level, producing a rightward shift in the recruitment curve of monosynaptic reflexes within isolated mouse spinal cords. These results demonstrate a prominent role for M-type potassium currents in regulating the function of motor units, which occurs primarily through the differential control of motoneuron subtype recruitment. More generally, these findings highlight the importance of active properties mediated by voltage-sensitive ion channels in the differential control of motoneuron recruitment, which is a key mechanism for the gradation of muscle force. KEY POINTS: M-currents exert an inhibitory influence on spinal motor output. This inhibitory influence is exerted by controlling the recruitment, but not the firing rate, of high-threshold fast-like motoneurons, with limited influence on low-threshold slow-like motoneurons. Preferential control of fast motoneurons may be linked to a larger M-current that is activated within the subthreshold voltage range compared to slow motoneurons. Larger M-currents in fast compared to slow motoneurons are not accounted for by differences in Kv7.2 or Kv7.3 channel composition. The orderly recruitment of motoneuron subtypes is shaped by differences in the contribution of voltage-gated ion channels, including KCNQ channels. KCNQ channels may provide a target to dynamically modulate the recruitment gain across the motor pool and readily adjust movement vigour.
Collapse
Affiliation(s)
- Simon A Sharples
- School of Psychology and Neuroscience, University of St Andrews, Fife, UK
| | | | - James A Gray
- School of Psychology and Neuroscience, University of St Andrews, Fife, UK
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, Fife, UK
| |
Collapse
|
9
|
Eleftheriadis PE, Pothakos K, Sharples SA, Apostolou PE, Mina M, Tetringa E, Tsape E, Miles GB, Zagoraiou L. Peptidergic modulation of motor neuron output via CART signaling at C bouton synapses. Proc Natl Acad Sci U S A 2023; 120:e2300348120. [PMID: 37733738 PMCID: PMC10523464 DOI: 10.1073/pnas.2300348120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
The intensity of muscle contraction, and therefore movement vigor, needs to be adaptable to enable complex motor behaviors. This can be achieved by adjusting the properties of motor neurons, which form the final common pathway for all motor output from the central nervous system. Here, we identify roles for a neuropeptide, cocaine- and amphetamine-regulated transcript (CART), in the control of movement vigor. We reveal distinct but parallel mechanisms by which CART and acetylcholine, both released at C bouton synapses on motor neurons, selectively amplify the output of subtypes of motor neurons that are recruited during intense movement. We find that mice with broad genetic deletion of CART or selective elimination of acetylcholine from C boutons exhibit deficits in behavioral tasks that require higher levels of motor output. Overall, these data uncover spinal modulatory mechanisms that control movement vigor to support movements that require a high degree of muscle force.
Collapse
Affiliation(s)
| | - Konstantinos Pothakos
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Simon A. Sharples
- School of Psychology and Neuroscience, University of St. Andrews, St. AndrewsKY16 9JP, United Kingdom
| | - Panagiota E. Apostolou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Maria Mina
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Efstathia Tetringa
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Eirini Tsape
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Gareth B. Miles
- School of Psychology and Neuroscience, University of St. Andrews, St. AndrewsKY16 9JP, United Kingdom
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| |
Collapse
|
10
|
Kant S, Xing H, Liu Y, Harrington EO, Sellke FW, Feng J. Acute protein kinase C beta inhibition preserves coronary endothelial function after cardioplegic hypoxia/reoxygenation. JTCVS OPEN 2023; 15:242-251. [PMID: 37808045 PMCID: PMC10556935 DOI: 10.1016/j.xjon.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 10/10/2023]
Abstract
Objective Protein kinase C (PKC) influences myocardial contractility and susceptibility to long-term cardiac dysfunction after ischemia-reperfusion injury. In diabetes, PKC inhibition has a protective effect in terms of microvascular dysfunction. SK-channel dysfunction also influences endothelial dysfunction in cardioplegic hypoxia-reoxygenation (CP-H/R). Here, we examine whether acute inhibition of PKC beta protects against CP-H/R-induced coronary endothelial and SK channel dysfunction. Methods Isolated mouse coronary arterioles, half pretreated with selective PKC inhibitor ruboxistaurin (RBX), were subjected to hyperkalemic, cardioplegic hypoxia (1 hour), and reoxygenation (1 hour) with Krebs buffer. Sham control vessels were continuously perfused with oxygenated Krebs buffer without CP-H/R. After 1 hour of reoxygenation, responses to the endothelium-dependent vasodilator adenosine-diphosphate (ADP) and the SK-channel activator NS309 were examined. Endothelial SK-specific potassium currents from mouse heart endothelial cells were examined using whole-cell path clamp configurations in response to NS309 and SK channel blockers apamin and TRAM34. Results CP-H/R significantly decreased coronary relaxation responses to ADP (P = .006) and NS309 (P = .0001) compared with the sham control group. Treatment with selective PKC beta inhibitor RBX significantly increased recovery of coronary relaxation responses to ADP (P = .031) and NS309 (P = .004) after CP-H/R. Treatment with RBX significantly increased NS309-mediated potassium currents following CP-H/R (P = .0415). Apamin and TRAM34 sensitive currents were significantly greater in CP-H/R + RBX versus CP-H/R mouse heart endothelial cells (P = .0027). Conclusions Acute inhibition of PKC beta significantly protected mouse coronary endothelial function after CP-H/R injury. This suggests that acute PKC beta inhibition may be a novel approach for preventing microvascular dysfunction during CP-H/R.
Collapse
Affiliation(s)
- Shawn Kant
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Hang Xing
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Yuhong Liu
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Elizabeth O. Harrington
- Vascular Research Laboratory, Department of Medicine, Providence VA Medical Center, Alpert Medical School of Brown University, Providence, RI
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Jun Feng
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
11
|
Singhal P, Senecal JMM, Senecal JEM, Silwal P, Lynn BD, Nagy JI. Characteristics of Electrical Synapses, C-terminals and Small-conductance Ca 2+ activated Potassium Channels in the Sexually Dimorphic Cremaster Motor Nucleus in Spinal Cord of Mouse and Rat. Neuroscience 2023; 521:58-76. [PMID: 37100373 DOI: 10.1016/j.neuroscience.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Sexually dimorphic motoneurons (MNs) located in lower lumbar spinal cord are involved in mating and reproductive behaviours and are known to be coupled by electrical synapses. The cremaster motor nucleus in upper lumbar spinal cord has also been suggested to support physiological processes associated with sexual behaviours in addition to its thermoregulatory and protective role in maintaining testes integrity. Using immunofluorescence approaches, we investigated whether cremaster MNs also exhibit features reflecting their potential for electrical synaptic communication and examined some of their other synaptic characteristics. Both mice and rats displayed punctate immunolabelling of Cx36 associated with cremaster MNs, indicative of gap junction formation. Transgenic mice with enhanced green fluorescent protein (eGFP) reporter for connexin36 expression showed that subpopulations of cremaster MNs in both male and female mice express eGFP, with greater proportions of those in male mice. The eGFP+ MNs within the cremaster nucleus vs. eGFP- MNs inside and outside this nucleus displayed a 5-fold greater density of serotonergic innervation and exhibited a paucity of innervation by C-terminals arising from cholinergic V0c interneurons. All MNs within the cremaster motor nucleus displayed prominent patches of immunolabelling for SK3 (K+) channels around their periphery, suggestive of their identity as slow MNs, many though not all of which were in apposition to C-terminals. The results provide evidence for electrical coupling of a large proportion of cremaster MNs and suggest the existence of two populations of these MNs with possibly differential innervation of their peripheral target muscles serving different functions.
Collapse
Affiliation(s)
- P Singhal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J E M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - P Silwal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - B D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada.
| |
Collapse
|
12
|
Ji B, Wojtaś B, Skup M. Molecular Identification of Pro-Excitogenic Receptor and Channel Phenotypes of the Deafferented Lumbar Motoneurons in the Early Phase after SCT in Rats. Int J Mol Sci 2022; 23:ijms231911133. [PMID: 36232433 PMCID: PMC9569670 DOI: 10.3390/ijms231911133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Spasticity impacts the quality of life of patients suffering spinal cord injury and impedes the recovery of locomotion. At the cellular level, spasticity is considered to be primarily caused by the hyperexcitability of spinal α-motoneurons (MNs) within the spinal stretch reflex circuit. Here, we hypothesized that after a complete spinal cord transection in rats, fast adaptive molecular responses of lumbar MNs develop in return for the loss of inputs. We assumed that early loss of glutamatergic afferents changes the expression of glutamatergic AMPA and NMDA receptor subunits, which may be the forerunners of the developing spasticity of hindlimb muscles. To better understand its molecular underpinnings, concomitant expression of GABA and Glycinergic receptors and serotoninergic and noradrenergic receptors, which regulate the persistent inward currents crucial for sustained discharges in MNs, were examined together with voltage-gated ion channels and cation-chloride cotransporters. Using quantitative real-time PCR, we showed in the tracer-identified MNs innervating extensor and flexor muscles of the ankle joint multiple increases in transcripts coding for AMPAR and 5-HTR subunits, along with a profound decrease in GABAAR, GlyR subunits, and KCC2. Our study demonstrated that both MNs groups similarly adapt to a more excitable state, which may increase the occurrence of extensor and flexor muscle spasms.
Collapse
Affiliation(s)
- Benjun Ji
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Bartosz Wojtaś
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Małgorzata Skup
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
13
|
Hur SK, Hunter M, Dominique MA, Farag M, Cotton-Samuel D, Khan T, Trojanowski JQ, Spiller KJ, Lee VMY. Slow motor neurons resist pathological TDP-43 and mediate motor recovery in the rNLS8 model of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2022; 10:75. [PMID: 35568882 PMCID: PMC9107273 DOI: 10.1186/s40478-022-01373-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/22/2023] Open
Abstract
In the intermediate stages of amyotrophic lateral sclerosis (ALS), surviving motor neurons (MNs) that show intrinsic resistance to TDP-43 proteinopathy can partially compensate for the loss of their more disease-susceptible counterparts. Elucidating the mechanisms of this compensation may reveal approaches for attenuating motor impairment in ALS patients. In the rNLS8 mouse model of ALS-like pathology driven by doxycycline-regulated neuronal expression of human TDP-43 lacking a nuclear localization signal (hTDP-43ΔNLS), slow MNs are more resistant to disease than fast-fatigable (FF) MNs and can mediate recovery following transgene suppression. In the present study, we used a viral tracing strategy to show that these disease-resistant slow MNs sprout to reinnervate motor endplates of adjacent muscle fibers vacated by degenerated FF MNs. Moreover, we found that neuromuscular junctions within fast-twitch skeletal muscle (tibialis anterior, TA) reinnervated by SK3-positive slow MNs acquire resistance to axonal dieback when challenged with a second course of hTDP-43ΔNLS pathology. The selective resistance of reinnervated neuromuscular junctions was specifically induced by the unique pattern of reinnervation following TDP-43-induced neurodegeneration, as recovery from unilateral sciatic nerve crush did not produce motor units resistant to subsequent hTDP-43ΔNLS. Using cross-reinnervation and self-reinnervation surgery in which motor axons are disconnected from their target muscle and reconnected to a new muscle, we show that FF MNs remain hTDP-43ΔNLS-susceptible and slow MNs remain resistant, regardless of which muscle fibers they control. Collectively, these findings demonstrate that MN identity dictates the susceptibility of neuromuscular junctions to TDP-43 pathology and slow MNs can drive recovery of motor systems due to their remarkable resilience to TDP-43-driven degeneration. This study highlights a potential pathway for regaining motor function with ALS pathology in the advent of therapies that halt the underlying neurodegenerative process.
Collapse
Affiliation(s)
- Seong Kwon Hur
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Mandana Hunter
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Myrna A. Dominique
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Madona Farag
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Dejania Cotton-Samuel
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Tahiyana Khan
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - John Q. Trojanowski
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Krista J. Spiller
- grid.497530.c0000 0004 0389 4927Janssen Research and Development, Neuroscience Therapeutic Area, 1400 McKean Rd, Spring House, PA 19002 USA
| | - Virginia M.-Y. Lee
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|
14
|
Recabal-Beyer AJ, Senecal JMM, Senecal JEM, Lynn BD, Nagy JI. On the Organization of Connexin36 Expression in Electrically Coupled Cholinergic V0c Neurons (Partition Cells) in the Spinal Cord and Their C-terminal Innervation of Motoneurons. Neuroscience 2022; 485:91-115. [PMID: 35090881 DOI: 10.1016/j.neuroscience.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Large cholinergic neurons (V0c neurons; aka, partition cells) in the spinal cord project profusely to motoneurons on which they form C-terminal contacts distinguished by their specialized postsynaptic subsurface cisterns (SSCs). The V0c neurons are known to be rhythmically active during locomotion and release of acetylcholine (ACh) from their terminals is known to modulate the excitability of motoneurons in what appears to be a task-dependent manner. Here, we present evidence that a subpopulation of V0c neurons express the gap junction forming protein connexin36 (Cx36), indicating that they are coupled by electrical synapses. Based on immunofluorescence imaging and the use of Cx36BAC-enhanced green fluorescent protein (eGFP) mice in which C-terminals immunolabelled for their marker vesicular acetylcholine transporter (vAChT) are also labelled for eGFP, we found a heterogeneous distribution of eGFP+ C-terminals on motoneurons at cervical, thoracic and lumber spinal levels. The density of C-terminals on motoneurons varied as did the proportion of those that were eGFP+ vs. eGFP-. We present evidence that fast vs. slow motoneurons have a greater abundance of these terminals and fast motoneurons also have the highest density that were eGFP+. Thus, our results indicate that a subpopulation of V0c neurons projects preferentially to fast motoneurons, suggesting that the capacity for synchronous activity conferred by electrical synapses among networks of coupled V0c neurons enhances their dynamic capabilities for synchronous regulation of motoneuron excitability during high muscle force generation. The eGFP+ vs. eGFP- V0c neurons were more richly innervated by serotonergic terminals, suggesting their greater propensity for regulation by descending serotonergic systems.
Collapse
Affiliation(s)
- A J Recabal-Beyer
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J E M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - B D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
15
|
Abstract
Motoneurons are the 'final common path' between the central nervous system (that intends, selects, commands, and organises movement) and muscles (that produce the behaviour). Motoneurons are not passive relays, but rather integrate synaptic activity to appropriately tune output (spike trains) and therefore the production of muscle force. In this chapter, we focus on studies of mammalian motoneurons, describing their heterogeneity whilst providing a brief historical account of motoneuron recording techniques. Next, we describe adult motoneurons in terms of their passive, transition, and active (repetitive firing) properties. We then discuss modulation of these properties by somatic (C-boutons) and dendritic (persistent inward currents) mechanisms. Finally, we briefly describe select studies of human motor unit physiology and relate them to findings from animal preparations discussed earlier in the chapter. This interphyletic approach to the study of motoneuron physiology is crucial to progress understanding of how these diverse neurons translate intention into behaviour.
Collapse
|
16
|
Kissane RWP, Chakrabarty S, Askew GN, Egginton S. Heterogeneity in form and function of the rat extensor digitorum longus motor unit. J Anat 2021; 240:700-710. [PMID: 34761377 PMCID: PMC8930811 DOI: 10.1111/joa.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
The motor unit comprises a variable number of muscle fibres that connect through myelinated nerve fibres to a motoneuron (MN), the central drivers of activity. At the simplest level of organisation there exist phenotypically distinct MNs that activate corresponding muscle fibre types, but within an individual motor pool there typically exists a mixed population of fast and slow firing MNs, innervating groups of Type II and Type I fibres, respectively. Characterising the heterogeneity across multiple levels of motor unit organisation is critical to understanding changes that occur in response to physiological and pathological perturbations. Through a comprehensive assessment of muscle histology and ex vivo function, mathematical modelling and neuronal tracing, we demonstrate regional heterogeneities at the level of the MN, muscle fibre type composition and oxygen delivery kinetics of the rat extensor digitorum longus (EDL) muscle. Specifically, the EDL contains two phenotypically distinct regions: a relatively oxidative medial and a more glycolytic lateral compartment. Smaller muscle fibres in the medial compartment, in combination with a greater local capillary density, preserve tissue O2 partial pressure (PO2) during modelled activity. Conversely, capillary supply to the lateral compartment is calculated to be insufficient to defend active muscle PO2 but is likely optimised to facilitate metabolite removal. Simulation of in vivo muscle length change and phasic activation suggest that both compartments are able to generate similar net power. However, retrograde tracing demonstrates (counter to previous observations) that a negative relationship between soma size and C‐bouton density exists. Finally, we confirm a lack of specificity of SK3 expression to slow MNs. Together, these data provide a reference for heterogeneities across the rat EDL motor unit and re‐emphasise the importance of sampling technique.
Collapse
Affiliation(s)
- Roger W P Kissane
- Department of Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, UK
| | | | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
17
|
Zubov T, Silika S, Dukkipati SS, Hartzler LK, Santin JM. Characterization of laryngeal motor neuron properties in the American bullfrog, Lithobates catesbieanus. Respir Physiol Neurobiol 2021; 294:103745. [PMID: 34298168 DOI: 10.1016/j.resp.2021.103745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/01/2021] [Accepted: 07/18/2021] [Indexed: 11/29/2022]
Abstract
Motor neurons represent the final output from the central respiratory network. American bullfrogs, Lithobates catesbieanus, have provided insight into development and plasticity of the breathing control system, yet cellular aspects of bullfrog motor neurons are not well-described. In this study, we characterized properties of laryngeal motor neurons that produce motor outflow to the glottal dilator, a muscle that gates airflow to the lungs of anurans. To this end, we measured several intrinsic membrane properties of labeled laryngeal motor neurons in brain slices. Using unsupervised clustering analyses, we identified two broad classes of motor neurons: those with high firing rates and strong adaptation (∼70 %), and those with lower firing rates and less adaptation (∼30 %). These results suggest that two neuronal cell types innervate the glottal dilator, roughly aligning with the composition of fast and slower twitch fibers of this muscle. In sum, these data reinforce the need to consider cell-type when assessing motor neuron function in the respiratory network.
Collapse
Affiliation(s)
- Tanya Zubov
- The University of North Carolina at Greensboro, Department of Biology, United States
| | - Sara Silika
- The University of North Carolina at Greensboro, Department of Biology, United States
| | | | - Lynn K Hartzler
- Wright State University of Department of Biological Sciences, United States
| | - Joseph M Santin
- The University of North Carolina at Greensboro, Department of Biology, United States.
| |
Collapse
|
18
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
19
|
Kissane RWP, Ghaffari-Rafi A, Tickle PG, Chakrabarty S, Egginton S, Brownstone RM, Smith CC. C-bouton components on rat extensor digitorum longus motoneurons are resistant to chronic functional overload. J Anat 2021; 241:1157-1168. [PMID: 33939175 PMCID: PMC9558151 DOI: 10.1111/joa.13439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Mammalian motor systems adapt to the demands of their environment. For example, muscle fibre types change in response to increased load or endurance demands. However, for adaptations to be effective, motoneurons must adapt such that their properties match those of the innervated muscle fibres. We used a rat model of chronic functional overload to assess adaptations to both motoneuron size and a key modulatory synapse responsible for amplification of motor output, C‐boutons. Overload of extensor digitorum longus (EDL) muscles was induced by removal of their synergists, tibialis anterior muscles. Following 21 days survival, EDL muscles showed an increase in fatigue resistance and a decrease in force output, indicating a shift to a slower phenotype. These changes were reflected by a decrease in motoneuron size. However, C‐bouton complexes remained largely unaffected by overload. The C‐boutons themselves, quantified by expression of vesicular acetylcholine transporter, were similar in size and density in the control and overload conditions. Expression of the post‐synaptic voltage‐gated potassium channel (KV2.1) was also unchanged. Small conductance calcium‐activated potassium channels (SK3) were expressed in most EDL motoneurons, despite this being an almost exclusively fast motor pool. Overload induced a decrease in the proportion of SK3+ cells, however, there was no change in density or size of clusters. We propose that reductions in motoneuron size may promote early recruitment of EDL motoneurons, but that C‐bouton plasticity is not necessary to increase the force output required in response to muscle overload.
Collapse
Affiliation(s)
- Roger W P Kissane
- Institute of Ageing & Chronic Disease, University of Liverpool, Liverpool, UK.,School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Arash Ghaffari-Rafi
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Peter G Tickle
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Robert M Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Calvin C Smith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
20
|
Mille T, Quilgars C, Cazalets J, Bertrand SS. Acetylcholine and spinal locomotor networks: The insider. Physiol Rep 2021; 9:e14736. [PMID: 33527727 PMCID: PMC7851432 DOI: 10.14814/phy2.14736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
This article aims to review studies that have investigated the role of neurons that use the transmitter acetylcholine (ACh) in controlling the operation of locomotor neural networks within the spinal cord. This cholinergic system has the particularity of being completely intraspinal. We describe the different effects exerted by spinal cholinergic neurons on locomotor circuitry by the pharmacological activation or blockade of this propriospinal system, as well as describing its different cellular and subcellular targets. Through the activation of one ionotropic receptor, the nicotinic receptor, and five metabotropic receptors, the M1 to M5 muscarinic receptors, the cholinergic system exerts a powerful control both on synaptic transmission and locomotor network neuron excitability. Although tremendous advances have been made in our understanding of the spinal cholinergic system's involvement in the physiology and pathophysiology of locomotor networks, gaps still remain, including the precise role of the different subtypes of cholinergic neurons as well as their pre- and postsynaptic partners. Improving our knowledge of the propriospinal cholinergic system is of major relevance to finding new cellular targets and therapeutics in countering the debilitating effects of neurodegenerative diseases and restoring motor functions after spinal cord injury.
Collapse
Affiliation(s)
- Théo Mille
- Université de BordeauxCNRS UMR 5287INCIABordeauxFrance
| | | | | | | |
Collapse
|
21
|
Deardorff AS, Romer SH, Fyffe RE. Location, location, location: the organization and roles of potassium channels in mammalian motoneurons. J Physiol 2021; 599:1391-1420. [DOI: 10.1113/jp278675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Adam S. Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
- Department of Neurology and Internal Medicine, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| | - Shannon H. Romer
- Odyssey Systems Environmental Health Effects Laboratory, Navy Medical Research Unit‐Dayton Wright‐Patterson Air Force Base OH 45433 USA
| | - Robert E.W. Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| |
Collapse
|
22
|
Konsolaki E, Koropouli E, Tsape E, Pothakos K, Zagoraiou L. Genetic Inactivation of Cholinergic C Bouton Output Improves Motor Performance but not Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. Neuroscience 2020; 450:71-80. [DOI: 10.1016/j.neuroscience.2020.07.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
|
23
|
Smith CC, Brownstone RM. Spinal motoneuron firing properties mature from rostral to caudal during postnatal development of the mouse. J Physiol 2020; 598:5467-5485. [PMID: 32851667 PMCID: PMC8436765 DOI: 10.1113/jp280274] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Key points Many mammals are born with immature motor systems that develop through a critical period of postnatal development. In rodents, postnatal maturation of movement occurs from rostral to caudal, correlating with maturation of descending supraspinal and local spinal circuits. We asked whether development of fundamental electrophysiological properties of spinal motoneurons follows the same rostro‐caudal sequence. We show that in both regions, repetitive firing parameters increase and excitability decreases with development; however, these characteristics mature earlier in cervical motoneurons. We suggest that in addition to autonomous mechanisms, motoneuron development depends on activity resulting from their circuit milieu.
Abstract Altricial mammals are born with immature nervous systems comprised of circuits that do not yet have the neuronal properties and connectivity required to produce future behaviours. During the critical period of postnatal development, neuronal properties are tuned to participate in functional circuits. In rodents, cervical motoneurons are born prior to lumbar motoneurons, and spinal cord development follows a sequential rostro‐caudal pattern. Here we asked whether birth order is reflected in the postnatal development of electrophysiological properties. We show that motoneurons of both regions have similar properties at birth and follow the same developmental profile, with maximal firing increasing and excitability decreasing into the third postnatal week. However, these maturative processes occur in cervical motoneurons prior to lumbar motoneurons, correlating with the maturation of premotor descending and local spinal systems. These results suggest that motoneuron properties do not mature by cell autonomous mechanisms alone, but also depend on developing premotor circuits. Many mammals are born with immature motor systems that develop through a critical period of postnatal development. In rodents, postnatal maturation of movement occurs from rostral to caudal, correlating with maturation of descending supraspinal and local spinal circuits. We asked whether development of fundamental electrophysiological properties of spinal motoneurons follows the same rostro‐caudal sequence. We show that in both regions, repetitive firing parameters increase and excitability decreases with development; however, these characteristics mature earlier in cervical motoneurons. We suggest that in addition to autonomous mechanisms, motoneuron development depends on activity resulting from their circuit milieu.
Collapse
Affiliation(s)
- Calvin C Smith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Robert M Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
24
|
Herrando-Grabulosa M, Gaja-Capdevila N, Vela JM, Navarro X. Sigma 1 receptor as a therapeutic target for amyotrophic lateral sclerosis. Br J Pharmacol 2020; 178:1336-1352. [PMID: 32761823 DOI: 10.1111/bph.15224] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult disease causing a progressive loss of upper and lower motoneurons, muscle paralysis and early death. ALS has a poor prognosis of 3-5 years after diagnosis with no effective cure. The aetiopathogenic mechanisms involved include glutamate excitotoxicity, oxidative stress, protein misfolding, mitochondrial alterations, disrupted axonal transport and inflammation. Sigma non-opioid intracellular receptor 1 (sigma 1 receptor) is a protein expressed in motoneurons, mainly found in the endoplasmic reticulum (ER) on the mitochondria-associated ER membrane (MAM) or in close contact with cholinergic postsynaptic sites. MAMs are sites that allow the assembly of several complexes implicated in essential survival cell functions. The sigma 1 receptor modulates essential mechanisms for motoneuron survival including excitotoxicity, calcium homeostasis, ER stress and mitochondrial dysfunction. This review updates sigma 1 receptor mechanisms and its alterations in ALS, focusing on MAM modulation, which may constitute a novel target for therapeutic strategies. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Mireia Herrando-Grabulosa
- Institute of Neurosciences, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Núria Gaja-Capdevila
- Institute of Neurosciences, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José M Vela
- Esteve Pharmaceuticals S.A., Drug Discovery and Preclinical Development, Barcelona, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Institut Guttmann de Neurorehabilitació, Badalona, Spain
| |
Collapse
|
25
|
Nascimento F, Broadhead MJ, Tetringa E, Tsape E, Zagoraiou L, Miles GB. Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons. eLife 2020; 9:e54170. [PMID: 32081133 PMCID: PMC7062467 DOI: 10.7554/elife.54170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/20/2020] [Indexed: 01/15/2023] Open
Abstract
Spinal motor networks are formed by diverse populations of interneurons that set the strength and rhythmicity of behaviors such as locomotion. A small cluster of cholinergic interneurons, expressing the transcription factor Pitx2, modulates the intensity of muscle activation via 'C-bouton' inputs to motoneurons. However, the synaptic mechanisms underlying this neuromodulation remain unclear. Here, we confirm in mice that Pitx2+ interneurons are active during fictive locomotion and that their chemogenetic inhibition reduces the amplitude of motor output. Furthermore, after genetic ablation of cholinergic Pitx2+ interneurons, M2 receptor-dependent regulation of the intensity of locomotor output is lost. Conversely, chemogenetic stimulation of Pitx2+ interneurons leads to activation of M2 receptors on motoneurons, regulation of Kv2.1 channels and greater motoneuron output due to an increase in the inter-spike afterhyperpolarization and a reduction in spike half-width. Our findings elucidate synaptic mechanisms by which cholinergic spinal interneurons modulate the final common pathway for motor output.
Collapse
Affiliation(s)
- Filipe Nascimento
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| | | | - Efstathia Tetringa
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Eirini Tsape
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Gareth Brian Miles
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
26
|
Highlander MM, Allen JM, Elbasiouny SM. Meta-analysis of biological variables' impact on spinal motoneuron electrophysiology data. J Neurophysiol 2020; 123:1380-1391. [PMID: 32073942 DOI: 10.1152/jn.00378.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Experimental, methodological, and biological variables must be accounted for statistically to maximize accuracy and comparability of published neuroscience data. However, accounting for all variables is nigh impossible. Thus we aimed to identify particularly influential variables within published neurological data, from cat, rat, and mouse studies, via a robust statistical process. Our goal was to develop tools to improve rigor in the collection and analysis of data. We strictly constrained experimental and methodological variables and then assessed four key biological variables within motoneuron research: species, age, sex, and cell type. We quantified intraexperimental and interexperimental variances in 11 commonly reported electrophysiological properties of spinal motoneurons. We first assessed variances without accounting for biological variables and then reassessed them while accounting for all four variables. We next assessed variances with all possible combinations of these four variables. We concluded that some motoneuron properties have low intraexperimental, but high interexperimental, variance; that individual motoneuron properties are impacted differently by biological variables; and that some unexplained variances still remain. We report here the optimal combinations of biological variables to reduce interexperimental variance for all 11 parameters. We also rank each parameter by intra- and interexperimental consistency. We expect these results to assist with design of experimental and analytical methods, and to support accuracy in simulations. Furthermore, although demonstrated on spinal motoneuron electrophysiology literature, our approach is applicable to biological data from all fields of neuroscience. This approach represents an important aid to experimental design, comparison of reported data, and reduction of unexplained variance in neuroscience data.NEW & NOTEWORTHY Our meta-analysis shows the impact of species, age, sex, and cell type on lumbosacral motoneuron electrophysiological properties by thoroughly quantifying variances across literature for the first time. We quantify the variances of 11 motoneuron properties with consideration of biological variables, thus providing specific insights for motoneuron modelers and experimenters, and providing a general methodological template for the quantification of variance in neurological data with the consideration of any experimental, methodological, or biological variables of interest.
Collapse
Affiliation(s)
- Morgan M Highlander
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| | - John M Allen
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio.,Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| |
Collapse
|
27
|
Gatius A, Tarabal O, Cayuela P, Casanovas A, Piedrafita L, Salvany S, Hernández S, Soler RM, Esquerda JE, Calderó J. The Y172 Monoclonal Antibody Against p-c-Jun (Ser63) Is a Marker of the Postsynaptic Compartment of C-Type Cholinergic Afferent Synapses on Motoneurons. Front Cell Neurosci 2020; 13:582. [PMID: 32038174 PMCID: PMC6992659 DOI: 10.3389/fncel.2019.00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
C-bouton-type cholinergic afferents exert an important function in controlling motoneuron (MN) excitability. During the immunocytochemical analysis of the role of c-Jun in MNs with a monoclonal (clone Y172) antibody against phospho (p)-c-Jun (serine [Ser]63), unexpected labeling was identified in the cell body cytoplasm. As predicted for c-Jun in adult spinal cord, very few, if any MNs exhibited nuclear immunoreactivity with the Y172 antibody; conversely, virtually all MNs displayed strong Y172 immunostaining in cytoplasmic structures scattered throughout the soma and proximal dendrites. The majority of these cytoplasmic Y172-positive profiles was closely associated with VAChT-positive C-boutons, but not with other types of nerve afferents contacting MNs. Ultrastructural analysis revealed that cytoplasmic Y172 immunostaining was selectively located at the subsurface cistern (SSC) of C-boutons and also in the inner areas of the endoplasmic reticulum (ER). We also described changes in cytoplasmic Y172 immunoreactivity in injured and degenerating MNs. Moreover, we noticed that MNs from NRG1 type III-overexpressing transgenic mice, which show abnormally expanded SSCs, exhibited an increase in the density and size of peripherally located Y172-positive profiles. A similar immunocytochemical pattern to that of the Y172 antibody in MNs was found with a polyclonal antibody against p-c-Jun (Ser63) but not with another polyclonal antibody that recognizes c-Jun phosphorylated at a different site. No differential band patterns were found by western blotting with any of the antibodies against c-Jun or p-c-Jun used in our study. In cultured MNs, Y172-positive oval profiles were distributed in the cell body and proximal dendrites. The in vitro lentiviral-based knockdown of c-Jun resulted in a dramatic decrease in nuclear Y172 immunostaining in MNs without any reduction in the density of cytoplasmic Y172-positive profiles, suggesting that the synaptic antigen recognized by the antibody corresponds to a C-bouton-specific protein other than p-c-Jun. Our results lay the foundation for further studies aimed at identifying this protein and determining its role in this particular type of synapse.
Collapse
Affiliation(s)
- Alaó Gatius
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Paula Cayuela
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Sara Salvany
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Sara Hernández
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Rosa M Soler
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
28
|
Jensen DB, Klingenberg S, Dimintiyanova KP, Wienecke J, Meehan CF. Intramuscular Botulinum toxin A injections induce central changes to axon initial segments and cholinergic boutons on spinal motoneurones in rats. Sci Rep 2020; 10:893. [PMID: 31964988 PMCID: PMC6972769 DOI: 10.1038/s41598-020-57699-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 01/29/2023] Open
Abstract
Intramuscular injections of botulinum toxin block pre-synaptic cholinergic release at neuromuscular junctions producing a temporary paralysis of affected motor units. There is increasing evidence, however, that the effects are not restricted to the periphery and can alter the central excitability of the motoneurones at the spinal level. This includes increases in input resistance, decreases in rheobase currents for action potentials and prolongations of the post-spike after-hyperpolarization. The aim of our experiments was to investigate possible anatomical explanations for these changes. Unilateral injections of Botulinum toxin A mixed with a tracer were made into the gastrocnemius muscle of adult rats and contralateral tracer only injections provided controls. Immunohistochemistry for Ankyrin G and the vesicular acetylcholine transporter labelled axon initial segments and cholinergic C-boutons on traced motoneurones at 2 weeks post-injection. Soma size was not affected by the toxin; however, axon initial segments were 5.1% longer and 13.6% further from the soma which could explain reductions in rheobase. Finally, there was a reduction in surface area (18.6%) and volume (12.8%) but not frequency of C-boutons on treated motoneurones potentially explaining prolongations of the after-hyperpolarization. Botulinum Toxin A therefore affects central anatomical structures controlling or modulating motoneurone excitability explaining previously observed excitability changes.
Collapse
Affiliation(s)
- D B Jensen
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - S Klingenberg
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - K P Dimintiyanova
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - J Wienecke
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Allé 51, DK-2200, Copenhagen, Denmark
| | - C F Meehan
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
29
|
Cholinergic modulation of motor neurons through the C-boutons are necessary for the locomotor compensation for severe motor neuron loss during amyotrophic lateral sclerosis disease progression. Behav Brain Res 2019; 369:111914. [DOI: 10.1016/j.bbr.2019.111914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
|
30
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Romer SH, Deardorff AS, Fyffe REW. A molecular rheostat: Kv2.1 currents maintain or suppress repetitive firing in motoneurons. J Physiol 2019; 597:3769-3786. [DOI: 10.1113/jp277833] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/29/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shannon H. Romer
- Neuroscience, Cell Biology & PhysiologyBoonshoft School of MedicineWright State University Fairborn OH 45435 USA
- Oak Ridge Institute for Science and EducationEnvironmental Health Effects LaboratoryNavy Medical Research Unit‐DaytonWright‐Patterson Air Force Base OH 45433 USA
| | - Adam S. Deardorff
- Neuroscience, Cell Biology & PhysiologyBoonshoft School of MedicineWright State University Fairborn OH 45435 USA
- Neurology, Boonshoft School of MedicineWright State University Dayton OH 45409 USA
| | - Robert E. W. Fyffe
- Neuroscience, Cell Biology & PhysiologyBoonshoft School of MedicineWright State University Fairborn OH 45435 USA
| |
Collapse
|
32
|
Salvany S, Casanovas A, Tarabal O, Piedrafita L, Hernández S, Santafé M, Soto-Bernardini MC, Calderó J, Schwab MH, Esquerda JE. Localization and dynamic changes of neuregulin-1 at C-type synaptic boutons in association with motor neuron injury and repair. FASEB J 2019; 33:7833-7851. [PMID: 30912977 DOI: 10.1096/fj.201802329r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C-type synaptic boutons (C-boutons) provide cholinergic afferent input to spinal cord motor neurons (MNs), which display an endoplasmic reticulum (ER)-related subsurface cistern (SSC) adjacent to their postsynaptic membrane. A constellation of postsynaptic proteins is clustered at C-boutons, including M2 muscarinic receptors, potassium channels, and σ-1 receptors. In addition, we previously found that neuregulin (NRG)1 is associated with C-boutons at postsynaptic SSCs, whereas its ErbB receptors are located in the presynaptic compartment. C-bouton-mediated regulation of MN excitability has been implicated in MN disease, but NRG1-mediated functions and the impact of various pathologic conditions on C-bouton integrity have not been studied in detail. Here, we investigated changes in C-boutons after electrical stimulation, pharmacological treatment, and peripheral nerve axotomy. SSC-linked NRG1 clusters were severely disrupted in acutely stressed MNs and after tunicamycin-induced ER stress. In axotomized MNs, C-bouton loss occurred in concomitance with microglial recruitment and was prevented by the ER stress inhibitor salubrinal. Activated microglia displayed a positive chemotaxis to C-boutons. Analysis of transgenic mice overexpressing NRG1 type I and type III isoforms in MNs indicated that NRG1 type III acts as an organizer of SSC-like structures, whereas NRG1 type I promotes synaptogenesis of presynaptic cholinergic terminals. Moreover, MN-derived NRG1 signals may regulate the activity of perineuronal microglial cells. Together, these data provide new insights into the molecular and cellular pathology of C-boutons in MN injury and suggest that distinct NRG1 isoform-mediated signaling functions regulate the complex matching between pre- and postsynaptic C-bouton elements.-Salvany, S., Casanovas, A., Tarabal, O., Piedrafita, L., Hernández, S., Santafé, M., Soto-Bernardini, M. C., Calderó, J., Schwab, M. H., Esquerda, J. E. Localization and dynamic changes of neuregulin-1 at C-type synaptic boutons in association with motor neuron injury and repair.
Collapse
Affiliation(s)
- Sara Salvany
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Sara Hernández
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Manuel Santafé
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - María Clara Soto-Bernardini
- Instituto Tecnológico de Costa Rica (TEC), Centro de Investigación en Biotecnología (CIB), Escuela de Biología, Cartago, Costa Rica
| | - Jordi Calderó
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Markus H Schwab
- Institute of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Josep E Esquerda
- Unitat de Neurobiologia Cellular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| |
Collapse
|
33
|
Rozani I, Tsapara G, Witts EC, Deaville SJ, Miles GB, Zagoraiou L. Pitx2 cholinergic interneurons are the source of C bouton synapses on brainstem motor neurons. Sci Rep 2019; 9:4936. [PMID: 30894556 PMCID: PMC6426951 DOI: 10.1038/s41598-019-39996-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/15/2019] [Indexed: 11/29/2022] Open
Abstract
Cholinergic neuromodulation has been described throughout the brain and has been implicated in various functions including attention, food intake and response to stress. Cholinergic modulation is also thought to be important for regulating motor systems, as revealed by studies of large cholinergic synapses on spinal motor neurons, called C boutons, which seem to control motor neuron excitability in a task-dependent manner. C boutons on spinal motor neurons stem from spinal interneurons that express the transcription factor Pitx2. C boutons have also been identified on the motor neurons of specific cranial nuclei. However, the source and roles of cranial C boutons are less clear. Previous studies suggest that they originate from Pitx2+ and Pitx2- neurons, in contrast to spinal cord C boutons that originate solely from Pitx2 neurons. Here, we address this controversy using mouse genetics, and demonstrate that brainstem C boutons are Pitx2+ derived. We also identify new Pitx2 populations and map the cholinergic Pitx2 neurons of the mouse brain. Taken together, our data present important new information about the anatomical organization of cholinergic systems which impact motor systems of the brainstem. These findings will enable further analyses of the specific roles of cholinergic modulation in motor control.
Collapse
Affiliation(s)
- Ismini Rozani
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527, Athens, Greece
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| | - Georgia Tsapara
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527, Athens, Greece
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Emily C Witts
- Sainsbury Wellcome Centre, 25 Howland Street, London, W1T 4JG, UK
- School of Psychology & Neuroscience, University of St Andrews, Fife, KY169JP, UK
| | - S James Deaville
- School of Psychology & Neuroscience, University of St Andrews, Fife, KY169JP, UK
| | - Gareth B Miles
- School of Psychology & Neuroscience, University of St Andrews, Fife, KY169JP, UK
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527, Athens, Greece.
| |
Collapse
|
34
|
Manuel M, Zytnicki D. Molecular and electrophysiological properties of mouse motoneuron and motor unit subtypes. CURRENT OPINION IN PHYSIOLOGY 2018; 8:23-29. [PMID: 32551406 DOI: 10.1016/j.cophys.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The field of motoneuron and motor unit physiology in mammals has deeply evolved the last decade thanks to the parallel development of mouse genetics and transcriptomic analysis and of in vivo mouse preparations that allow intracellular electrophysiological recordings of motoneurons. We review the efforts made to investigate the electrophysiological properties of the different functional subtypes of mouse motoneurons, to decipher the mosaic of molecular markers specifically expressed in each subtype, and to elucidate which of those factors drive the identity of motoneurons.
Collapse
Affiliation(s)
- Marin Manuel
- Center for Neurophysics, Physiology and Pathology, Paris Descartes University, CNRS UMR 8119, Paris, France
| | - Daniel Zytnicki
- Center for Neurophysics, Physiology and Pathology, Paris Descartes University, CNRS UMR 8119, Paris, France
| |
Collapse
|
35
|
Więckowska A, Gajewska-Woźniak O, Głowacka A, Ji B, Grycz K, Czarkowska-Bauch J, Skup M. Spinalization and locomotor training differentially affect muscarinic acetylcholine receptor type 2 abutting on α-motoneurons innervating the ankle extensor and flexor muscles. J Neurochem 2018; 147:361-379. [DOI: 10.1111/jnc.14567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Anna Głowacka
- Nencki Institute of Experimental Biology; Warsaw Poland
| | - Benjun Ji
- Nencki Institute of Experimental Biology; Warsaw Poland
| | - Kamil Grycz
- Nencki Institute of Experimental Biology; Warsaw Poland
| | | | | |
Collapse
|
36
|
A V-to-F substitution in SK2 channels causes Ca 2+ hypersensitivity and improves locomotion in a C. elegans ALS model. Sci Rep 2018; 8:10749. [PMID: 30013223 PMCID: PMC6048120 DOI: 10.1038/s41598-018-28783-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/29/2018] [Indexed: 11/09/2022] Open
Abstract
Small-conductance Ca2+-activated K+ (SK) channels mediate medium afterhyperpolarization in the neurons and play a key role in the regulation of neuronal excitability. SK channels are potential drug targets for ataxia and Amyotrophic Lateral Sclerosis (ALS). SK channels are activated exclusively by the Ca2+-bound calmodulin. Previously, we identified an intrinsically disordered fragment that is essential for the mechanical coupling between Ca2+/calmodulin binding and channel opening. Here, we report that substitution of a valine to phenylalanine (V407F) in the intrinsically disordered fragment caused a ~6 fold increase in the Ca2+ sensitivity of SK2-a channels. This substitution resulted in a novel interaction between the ectopic phenylalanine and M411, which stabilized PIP2-interacting residue K405, and subsequently enhanced Ca2+ sensitivity. Also, equivalent valine to phenylalanine substitutions in SK1 or SK3 channels conferred Ca2+ hypersensitivity. An equivalent phenylalanine substitution in the Caenorhabditis elegans (C. elegans) SK2 ortholog kcnl-2 partially rescued locomotion defects in an existing C. elegans ALS model, in which human SOD1G85R is expressed at high levels in neurons, confirming that this phenylalanine substitution impacts channel function in vivo. This work for the first time provides a critical reagent for future studies: an SK channel that is hypersensitive to Ca2+ with increased activity in vivo.
Collapse
|
37
|
Cerveró C, Blasco A, Tarabal O, Casanovas A, Piedrafita L, Navarro X, Esquerda JE, Calderó J. Glial Activation and Central Synapse Loss, but Not Motoneuron Degeneration, Are Prevented by the Sigma-1 Receptor Agonist PRE-084 in the Smn2B/- Mouse Model of Spinal Muscular Atrophy. J Neuropathol Exp Neurol 2018; 77:577-597. [PMID: 29767748 DOI: 10.1093/jnen/nly033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by the loss of α-motoneurons (MNs) with concomitant muscle denervation. MN excitability and vulnerability to disease are particularly regulated by cholinergic synaptic afferents (C-boutons), in which Sigma-1 receptor (Sig1R) is concentrated. Alterations in Sig1R have been associated with MN degeneration. Here, we investigated whether a chronic treatment with the Sig1R agonist PRE-084 was able to exert beneficial effects on SMA. We used a model of intermediate SMA, the Smn2B/- mouse, in which we performed a detailed characterization of the histopathological changes that occur throughout the disease. We report that Smn2B/- mice exhibited qualitative differences in major alterations found in mouse models of severe SMA: Smn2B/- animals showed more prominent MN degeneration, early motor axon alterations, marked changes in sensory neurons, and later MN deafferentation that correlated with conspicuous reactive gliosis and altered neuroinflammatory M1/M2 microglial balance. PRE-084 attenuated reactive gliosis, mitigated M1/M2 imbalance, and prevented MN deafferentation in Smn2B/- mice. These effects were also observed in a severe SMA model, the SMNΔ7 mouse. However, the prevention of gliosis and MN deafferentation promoted by PRE-084 were not accompanied by any improvements in clinical outcome or other major pathological changes found in SMA mice.
Collapse
Affiliation(s)
- Clàudia Cerveró
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Alba Blasco
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Catalonia, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| |
Collapse
|
38
|
Dukkipati SS, Garrett TL, Elbasiouny SM. The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis. J Physiol 2018; 596:1723-1745. [PMID: 29502344 DOI: 10.1113/jp275498] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Motoneuron soma size is a largely plastic property that is altered during amyotrophic lateral sclerosis (ALS) progression. We report evidence of systematic spinal motoneuron soma size plasticity in mutant SOD1-G93A mice at various disease stages and across sexes, spinal regions and motoneuron types. We show that disease-vulnerable motoneurons exhibit early increased soma sizes. We show via computer simulations that the measured changes in soma size have a profound impact on the excitability of disease-vulnerable motoneurons. This study reveals a novel form of plasticity in ALS and suggests a potential target for altering motoneuron function and survival. ABSTRACT α-Motoneuron soma size is correlated with the cell's excitability and function, and has been posited as a plastic property that changes during cellular maturation, injury and disease. This study examined whether α-motoneuron somas change in size over disease progression in the G93A mouse model of amyotrophic lateral sclerosis (ALS), a disease characterized by progressive motoneuron death. We used 2D- and 3D-morphometric analysis of motoneuron size and measures of cell density at four key disease stages: neonatal (P10 - with earliest known disease changes); young adult (P30 - presymptomatic with early motoneuron death); symptom onset (P90 - with death of 70-80% of motoneurons); and end-stage (P120+ - with full paralysis of hindlimbs). We additionally examined differences in lumbar vs. sacral vs. cervical motoneurons; in motoneurons from male vs. female mice; and in fast vs. slow motoneurons. We present the first evidence of plastic changes in the soma size of spinal α-motoneurons occurring throughout different stages of ALS with profound effects on motoneuron excitability. Somatic changes are time dependent and are characterized by early-stage enlargement (P10 and P30); no change around symptom onset; and shrinkage at end-stage. A key finding in the study indicates that disease-vulnerable motoneurons exhibit increased soma sizes (P10 and P30). This pattern was confirmed across spinal cord regions, genders and motoneuron types. This extends the theory of motoneuron size-based vulnerability in ALS: not only are larger motoneurons more vulnerable to death in ALS, but are also enlarged further in the disease. Such information is valuable for identifying ALS pathogenesis mechanisms.
Collapse
Affiliation(s)
- S Shekar Dukkipati
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Teresa L Garrett
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA.,Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
39
|
Guseva D, Jakovcevski I, Irintchev A, Leshchyns’ka I, Sytnyk V, Ponimaskin E, Schachner M. Cell Adhesion Molecule Close Homolog of L1 (CHL1) Guides the Regrowth of Regenerating Motor Axons and Regulates Synaptic Coverage of Motor Neurons. Front Mol Neurosci 2018; 11:174. [PMID: 29881335 PMCID: PMC5976800 DOI: 10.3389/fnmol.2018.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
The close homolog of L1 (CHL1) is a cell adhesion molecule involved in regulation of neuronal differentiation and survival, neurite outgrowth and axon guidance during development. In the mature nervous system, CHL1 regulates synaptic activity and plasticity. The aim of the present study was to evaluate the influence of CHL1 on peripheral nerve regeneration after trauma. Using the established model of mouse femoral nerve regeneration, CHL1 knock-out mice were investigated in comparison to the wild type littermates. First, non-injured mice of both genotypes were compared regarding the synaptic phenotypes in the corresponding spinal cord segment. While no differences in phenotypes were detectable in the femoral nerve, corresponding segments in the spinal cord were observed to differ in that inhibitory perisomatic innervation of motor neurons was increased in CHL1-deficient mice, and numbers of perisomatic cholinergic synapses on motor neuronal somata were reduced. Regarding the femoral nerve after injury, CHL1-deficient mice demonstrated preferential motor axon regrowth into the saphenous vs. quadriceps branch after nerve transection upstream of the nerve bifurcation by 8 weeks after transection, indicating decreased preferential motor re-innervation. Furthermore, in injured wild-type mice, enhanced CHL1 expression was observed in regenerating axons in the proximal nerve stump upstream of the bifurcation at days 1, 3, 5, 7 and 14, and in the distal stump at days 7 and 14 after injury, when compared to non-injured mice. Injury-related upregulation of CHL1 expression was more pronounced in axons than in Schwann cells. Despite a more pronounced capacity for preferential motor axon regrowth in wild-type vs. mutant mice, only a tendency for difference in recovery of motor functions was observed between genotypes, without statistical significance Taken together, these results indicate that CHL1 is involved in peripheral nerve regeneration, because it guides regrowing axons into the appropriate nerve branch and regulates synaptic coverage in the spinal cord.
Collapse
Affiliation(s)
- Daria Guseva
- Zentrum für Molekulare Neurobiologie Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Experimental Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Andrey Irintchev
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Iryna Leshchyns’ka
- School of Biotechnology and Biomolecular Sciences, South Western Sydney Clinical School, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, South Western Sydney Clinical School, The University of New South Wales, Sydney, NSW, Australia
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, United States
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- *Correspondence: Melitta Schachner
| |
Collapse
|
40
|
Mahrous AA, Elbasiouny SM. Modulation of SK channels regulates locomotor alternating bursting activity in the functionally-mature spinal cord. Channels (Austin) 2017; 12:9-14. [PMID: 28991505 PMCID: PMC5972800 DOI: 10.1080/19336950.2017.1389825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The spinal cord contains specialized groups of cells called pattern generators, which are capable of orchestrating rhythmic firing activity in an isolated preparation. Different patterns of activity could be generated in vitro including right-left alternating bursting and bursting in which both sides are synchronized. The cellular and network mechanisms that enable these behaviors are not fully understood. We have recently shown that Ca2+-activated K+ channels (SK channels) control the initiation and amplitude of synchronized bursting in the spinal cord. It is unclear, however, whether SK channels play a similar role in the alternating rhythmic pattern. In the current study, we used a spinal cord preparation from functionally mature mice capable of weight bearing and walking. The present results extend our previous work and show that SK channel inhibition initiates and modulates the amplitude of alternating bursting. We also show that addition of methoxamine, an α1-adrenergic agonist, to a cocktail of serotonin, dopamine, and NMDA evokes robust and consistent alternating bursting throughout the cord.
Collapse
Affiliation(s)
- Amr A Mahrous
- a Department of Neuroscience , Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University , Dayton , Ohio , USA
| | - Sherif M Elbasiouny
- a Department of Neuroscience , Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University , Dayton , Ohio , USA.,b Department of Biomedical , Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University , Dayton , Ohio , USA
| |
Collapse
|
41
|
Mahrous AA, Elbasiouny SM. SK channel inhibition mediates the initiation and amplitude modulation of synchronized burst firing in the spinal cord. J Neurophysiol 2017; 118:161-175. [PMID: 28356481 DOI: 10.1152/jn.00929.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/06/2017] [Accepted: 03/25/2017] [Indexed: 11/22/2022] Open
Abstract
Burst firing in motoneurons represents the basis for generating meaningful movements. Neuromodulators and inhibitory receptor blocker cocktails have been used for years to induce burst firing in vitro; however, the ionic mechanisms in the motoneuron membrane that contribute to burst initiation and amplitude modulation are not fully understood. Small conductance Ca2+-activated potassium (SK) channels regulate excitatory inputs and firing output of motoneurons and interneurons and therefore, are a candidate for mediating bursting behavior. The present study examines the role of SK channels in the generation of synchronized bursting using an in vitro spinal cord preparation from adult mice. Our results show that SK channel inhibition is required for both initiation and amplitude modulation of burst firing. Specifically, administration of the synaptic inhibition blockers strychnine and picrotoxin amplified the spinal circuit excitatory drive but not enough to evoke bursting. However, when SK channels were inhibited using various approaches, the excitatory drive was further amplified, and synchronized bursting was always evoked. Furthermore, graded SK channel inhibition modulated the amplitude of the burst in a dose-dependent manner, which was reversed using SK channel activators. Importantly, modulation of neuronal excitability using multiple approaches failed to mimic the effects of SK modulators, suggesting a specific role for SK channel inhibition in generating bursting. Both NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptors were found to drive the synchronized bursts. The blocking of gap junctions did not disturb the burst synchrony. These results demonstrate a novel mechanistic role for SK channels in initiating and modulating burst firing of spinal motoneurons.NEW & NOTEWORTHY This study demonstrates that cholinergic inhibition or direct blockade of small conductance Ca2+-activated potassium (SK) channels facilitates burst firing in spinal motoneurons. The data provide a novel mechanistic explanation for synchronized bursting initiation and amplitude modulation through SK channel inhibition. Evidence also shows that synchronized bursting is driven by NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptors and that gap junctions do not mediate motoneuron synchronization in this behavior.
Collapse
Affiliation(s)
- Amr A Mahrous
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio; and
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio; and .,Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| |
Collapse
|
42
|
Experimental Design and Data Analysis Issues Contribute to Inconsistent Results of C-Bouton Changes in Amyotrophic Lateral Sclerosis. eNeuro 2017; 4:eN-FTR-0281-16. [PMID: 28101533 PMCID: PMC5241941 DOI: 10.1523/eneuro.0281-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/23/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022] Open
Abstract
The possible presence of pathological changes in cholinergic synaptic inputs [cholinergic boutons (C-boutons)] is a contentious topic within the ALS field. Conflicting data reported on this issue makes it difficult to assess the roles of these synaptic inputs in ALS. Our objective was to determine whether the reported changes are truly statistically and biologically significant and why replication is problematic. This is an urgent question, as C-boutons are an important regulator of spinal motoneuron excitability, and pathological changes in motoneuron excitability are present throughout disease progression. Using male mice of the SOD1-G93A high-expresser transgenic (G93A) mouse model of ALS, we examined C-boutons on spinal motoneurons. We performed histological analysis at high statistical power, which showed no difference in C-bouton size in G93A versus wild-type motoneurons throughout disease progression. In an attempt to examine the underlying reasons for our failure to replicate reported changes, we performed further histological analyses using several variations on experimental design and data analysis that were reported in the ALS literature. This analysis showed that factors related to experimental design, such as grouping unit, sampling strategy, and blinding status, potentially contribute to the discrepancy in published data on C-bouton size changes. Next, we systematically analyzed the impact of study design variability and potential bias on reported results from experimental and preclinical studies of ALS. Strikingly, we found that practices such as blinding and power analysis are not systematically reported in the ALS field. Protocols to standardize experimental design and minimize bias are thus critical to advancing the ALS field.
Collapse
|
43
|
Casanovas A, Salvany S, Lahoz V, Tarabal O, Piedrafita L, Sabater R, Hernández S, Calderó J, Esquerda JE. Neuregulin 1-ErbB module in C-bouton synapses on somatic motor neurons: molecular compartmentation and response to peripheral nerve injury. Sci Rep 2017; 7:40155. [PMID: 28065942 PMCID: PMC5220293 DOI: 10.1038/srep40155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022] Open
Abstract
The electric activity of lower motor neurons (MNs) appears to play a role in determining cell-vulnerability in MN diseases. MN excitability is modulated by cholinergic inputs through C-type synaptic boutons, which display an endoplasmic reticulum-related subsurface cistern (SSC) adjacent to the postsynaptic membrane. Besides cholinergic molecules, a constellation of proteins involved in different signal-transduction pathways are clustered at C-type synaptic sites (M2 muscarinic receptors, Kv2.1 potassium channels, Ca2+ activated K+ [SK] channels, and sigma-1 receptors [S1R]), but their collective functional significance so far remains unknown. We have previously suggested that neuregulin-1 (NRG1)/ErbBs-based retrograde signalling occurs at this synapse. To better understand signalling through C-boutons, we performed an analysis of the distribution of C-bouton-associated signalling proteins. We show that within SSC, S1R, Kv2.1 and NRG1 are clustered in highly specific, non-overlapping, microdomains, whereas ErbB2 and ErbB4 are present in the adjacent presynaptic compartment. This organization may define highly ordered and spatially restricted sites for different signal-transduction pathways. SSC associated proteins are disrupted in axotomised MNs together with the activation of microglia, which display a positive chemotactism to C-bouton sites. This indicates that C-bouton associated molecules are also involved in neuroinflammatory signalling in diseased MNs, emerging as new potential therapeutic targets.
Collapse
Affiliation(s)
- Anna Casanovas
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Sara Salvany
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Víctor Lahoz
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Olga Tarabal
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Raimundo Sabater
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Sara Hernández
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Jordi Calderó
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Josep E. Esquerda
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| |
Collapse
|
44
|
Mavlyutov TA, Baker EM, Losenegger TM, Kim JR, Torres B, Epstein ML, Ruoho AE. The Sigma-1 Receptor-A Therapeutic Target for the Treatment of ALS? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:255-265. [PMID: 28315276 DOI: 10.1007/978-3-319-50174-1_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The membrane bound 223 amino acid Sigma-1 Receptor (S1R) serves as a molecular chaperone and functional regulator of many signaling proteins. Spinal cord motor neuron activation occurs, in part, via large ventral horn cholinergic synapses called C-boutons/C-terminals. Chronic excitation of motor neurons and alterations in C-terminals has been associated with Amyotrophic Lateral Sclerosis (ALS ). The S1R has an important role in regulating motor neuron function. High levels of the S1R are localized in postsynaptic endoplasmic reticulum (ER) subsurface cisternae within 10-20 nm of the plasma membrane that contain muscarinic type 2 acetylcholine receptors (M2AChR), calcium activated potassium channels (Kv2.1) and slow potassium (SK) channels. An increase in action potentials in the S1R KO mouse motor neurons indicates a critical role for the S1R as a "brake" on motor neuron function possibly via calcium dependent hyperpolarization mechanisms involving the aforementioned potassium channels. The longevity of SOD-1/S1R KO ALS mice is significantly reduced compared to SOD-1/WT ALS controls. The S1R colocalizes in C-terminals with Indole(ethyl)amine-N-methyl transferase (INMT ), the enzyme that produces the S1R agonist , N,N'- dimethyltryptamine (DMT). INMT methylation can additionally neutralize endogenous toxic sulfur and selenium derivatives thus providing functional synergism with DMT to reduce oxidative stress in motor neurons . Small molecule activation of the S1R and INMT thus provides a possible therapeutic strategy to treat ALS .
Collapse
Affiliation(s)
- Timur A Mavlyutov
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Erin M Baker
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Tasher M Losenegger
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jaimie R Kim
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Brian Torres
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Miles L Epstein
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Arnold E Ruoho
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
45
|
Mancuso R, Navarro X. Sigma-1 Receptor in Motoneuron Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:235-254. [PMID: 28315275 DOI: 10.1007/978-3-319-50174-1_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS ) is a neurodegenerative disease affecting spinal cord and brain motoneurons , leading to paralysis and early death. Multiple etiopathogenic mechanisms appear to contribute in the development of ALS , including glutamate excitotoxicity, oxidative stress , protein misfolding, mitochondrial defects, impaired axonal transport, inflammation and glial cell alterations. The Sigma-1 receptor is highly expressed in motoneurons of the spinal cord, particularly enriched in the endoplasmic reticulum (ER) at postsynaptic cisternae of cholinergic C-terminals. Several evidences point to participation of Sigma-1R alterations in motoneuron degeneration. Thus, mutations of the transmembrane domain of the Sigma-1R have been described in familial ALS cases. Interestingly, Sigma-1R KO mice display muscle weakness and motoneuron loss. On the other hand, Sigma-1R agonists promote neuroprotection and neurite elongation through activation of protein kinase C on motoneurons in vitro and in vivo after ventral root avulsion. Remarkably, treatment of SOD1 mice, the most usual animal model of ALS , with Sigma-1R agonists resulted in significantly enhanced motoneuron function and preservation, and increased animal survival. Sigma-1R activation also reduced microglial reactivity and increased the glial expression of neurotrophic factors. Two main interconnected mechanisms seem to underlie the effects of Sigma-1R manipulation on motoneurons: modulation of neuronal excitability and regulation of calcium homeostasis. In addition, Sigma-1R also contributes to regulating protein degradation, and reducing oxidative stress. Therefore, the multi-functional nature of the Sigma-1R represents an attractive target for treating aspects of ALS and other motoneuron diseases .
Collapse
Affiliation(s)
- Renzo Mancuso
- Center for Biological Sciences, University of Southampton, Southampton General Hospital, SO16 6YD, Southampton, UK
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
46
|
Romer SH, Deardorff AS, Fyffe REW. Activity-dependent redistribution of Kv2.1 ion channels on rat spinal motoneurons. Physiol Rep 2016; 4:e13039. [PMID: 27884958 PMCID: PMC5358001 DOI: 10.14814/phy2.13039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/24/2022] Open
Abstract
Homeostatic plasticity occurs through diverse cellular and synaptic mechanisms, and extensive investigations over the preceding decade have established Kv2.1 ion channels as key homeostatic regulatory elements in several central neuronal systems. As in these cellular systems, Kv2.1 channels in spinal motoneurons (MNs) localize within large somatic membrane clusters. However, their role in regulating motoneuron activity is not fully established in vivo. We have previously demonstrated marked Kv2.1 channel redistribution in MNs following in vitro glutamate application and in vivo peripheral nerve injury (Romer et al., 2014, Brain Research, 1547:1-15). Here, we extend these findings through the novel use of a fully intact, in vivo rat preparation to show that Kv2.1 ion channels in lumbar MNs rapidly and reversibly redistribute throughout the somatic membrane following 10 min of electrophysiological sensory and/or motor nerve stimulation. These data establish that Kv2.1 channels are remarkably responsive in vivo to electrically evoked and synaptically driven action potentials in MNs, and strongly implicate motoneuron Kv2.1 channels in the rapid homeostatic response to altered neuronal activity.
Collapse
Affiliation(s)
- Shannon H Romer
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Adam S Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Robert E W Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| |
Collapse
|
47
|
In vivo activation of the SK channel in the spinal cord reduces the NMDA receptor antagonist dose needed to produce antinociception in an inflammatory pain model. Pain 2016; 156:849-858. [PMID: 25734988 DOI: 10.1097/j.pain.0000000000000124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N-methyl-D-aspartate receptor (NMDAR) antagonists have been shown to reduce mechanical hypersensitivity in animal models of inflammatory pain. However, their clinical use is associated with significant dose-limiting side effects. Small-conductance Ca-activated K channels (SK) have been shown to modulate NMDAR activity in the brain. We demonstrate that in vivo activation of SK channels in the spinal cord can alleviate mechanical hypersensitivity in a rat model of inflammatory pain. Intrathecal (i.t.) administration of the SK channel activator, 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309), attenuates complete Freund adjuvant (CFA)-induced mechanical hypersensitivity in a dose-dependent manner. Postsynaptic expression of the SK channel subunit, SK3, and apamin-sensitive SK channel-mediated currents recorded from superficial laminae are significantly reduced in the dorsal horn (DH) after CFA. Complete Freund adjuvant-induced decrease in SK-mediated currents can be reversed in vitro by bath application of NS309. In addition, immunostaining for the SK3 subunit indicates that SK3-containing channels within DH neurons can have both somatic and dendritic localization. Double immunostaining shows coexpression of SK3 and NMDAR subunit, NR1, compatible with functional interaction. Moreover, we demonstrate that i.t. coadministration of NS309 with an NMDAR antagonist reduces the dose of NMDAR antagonist, DL-2-amino-5-phosphonopentanoic acid (DL-AP5), required to produce antinociceptive effects in the CFA model. This reduction could attenuate the unwanted side effects associated with NMDAR antagonists, giving this combination potential clinical implications.
Collapse
|
48
|
Milan L, Courtand G, Cardoit L, Masmejean F, Barrière G, Cazalets JR, Garret M, Bertrand SS. Age-Related Changes in Pre- and Postsynaptic Partners of the Cholinergic C-Boutons in Wild-Type and SOD1G93A Lumbar Motoneurons. PLoS One 2015; 10:e0135525. [PMID: 26305672 PMCID: PMC4549056 DOI: 10.1371/journal.pone.0135525] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022] Open
Abstract
Large cholinergic synaptic terminals known as C-boutons densely innervate the soma and proximal dendrites of motoneurons that are prone to neurodegeneration in amyotrophic lateral sclerosis (ALS). Studies using the Cu/Zn-superoxide dismutase (SOD1) mouse model of ALS have generated conflicting data regarding C-bouton alterations exhibited during ALS pathogenesis. In the present work, a longitudinal study combining immunohistochemistry, biochemical approaches and extra- and intra-cellular electrophysiological recordings revealed that the whole spinal cholinergic system is modified in the SOD1 mouse model of ALS compared to wild type (WT) mice as early as the second postnatal week. In WT motoneurons, both C-bouton terminals and associated M2 postsynaptic receptors presented a complex age-related dynamic that appeared completely disrupted in SOD1 motoneurons. Indeed, parallel to C-bouton morphological alterations, analysis of confocal images revealed a clustering process of M2 receptors during WT motoneuron development and maturation that was absent in SOD1 motoneurons. Our data demonstrated for the first time that the lamina X cholinergic interneurons, the neuronal source of C-boutons, are over-abundant in high lumbar segments in SOD1 mice and are subject to neurodegeneration in the SOD1 animal model. Finally, we showed that early C-bouton system alterations have no physiological impact on the cholinergic neuromodulation of newborn motoneurons. Altogether, these data suggest a complete reconfiguration of the spinal cholinergic system in SOD1 spinal networks that could be part of the compensatory mechanisms established during spinal development.
Collapse
Affiliation(s)
- Léa Milan
- INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | - Gilles Courtand
- INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | - Laura Cardoit
- INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | | | | | | | - Maurice Garret
- INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | | |
Collapse
|
49
|
Mancuso R, Navarro X. Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Prog Neurobiol 2015; 133:1-26. [PMID: 26253783 DOI: 10.1016/j.pneurobio.2015.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motoneurons, leading to muscle weakness and paralysis, and finally death. Considerable recent advances have been made in basic research and preclinical therapeutic attempts using experimental models, leading to increasing clinical and translational research in the context of this disease. In this review we aim to summarize the most relevant findings from a variety of aspects about ALS, including evaluation methods, animal models, pathophysiology, and clinical findings, with particular emphasis in understanding the role of every contributing mechanism to the disease for elucidating the causes underlying degeneration of motoneurons and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
50
|
Roselli F, Caroni P. From Intrinsic Firing Properties to Selective Neuronal Vulnerability in Neurodegenerative Diseases. Neuron 2015; 85:901-10. [DOI: 10.1016/j.neuron.2014.12.063] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|