1
|
Kang KW, Sharma K, Park SH, Lee JK, Lee JC, Yi E. NKCC1 in Neonatal Cochlear Support Cells Reloads Ions Necessary for Cochlear Spontaneous Activity. Exp Neurobiol 2024; 33:68-76. [PMID: 38724477 PMCID: PMC11089404 DOI: 10.5607/en24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 05/15/2024] Open
Abstract
In the auditory system, the spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from inner supporting cells (ISCs). This ATP release sets off a cascade, activating purinergic autoreceptors, opening of Ca2+-activated Cl- channel TMEM16A, Cl- efflux and osmotic cell shrinkage. Then, the shrunken ISCs efficiently regain their original volume, suggesting the existence of mechanisms for refilling Cland K+, priming them for subsequent activity. This study explores the potential involvement of NKCCs (Na+-K+-Cl- cotransporters) and KCCs (K+-Cl- cotransporters) in ISC spontaneous activity, considering their capability to transport both Cl- and K+ ions across the cell membrane. Employing a combination of immunohistochemistry, pharmacological interventions, and shRNA experiment, we unveiled the pivotal role of NKCC1 in cochlear spontaneous activity. Immunohistochemistry revealed robust NKCC1 expression in ISCs, persisting until the 2nd postnatal week. Intriguingly, we observed a developmental shift in NKCC1 expression from ISCs to synaptophysin-positive efferent terminals at postnatal day 18, hinting at its potential involvement in modulating synaptic transmission during the post-hearing period. Experiments using bumetanide, a well-known NKCC inhibitor, supported the functional significance of NKCC1 in ISC spontaneous activity. Bumetanide significantly reduced the frequency of spontaneous extracellular potentials (sEP) and spontaneous optical changes (sOCs) in ISCs. NKCC1-shRNA experiments conducted in cultured cochlear tissues further supported these findings, demonstrating a substantial decrease in event frequency and area. Taken together, we revealed the role of NKCC1 in shaping the ISC spontaneous activity that govern auditory pathway development.
Collapse
Affiliation(s)
- Kwon-Woo Kang
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Shi-Hyun Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Jae Kwang Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Korea
| | - Justin C. Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| |
Collapse
|
2
|
Pol E, Côme E, Merlaud Z, Gouhier J, Russeau M, Scotto-Lomassese S, Moutkine I, Marques X, Lévi S. NKCC1 and KCC2 Chloride Transporters Have Different Membrane Dynamics on the Surface of Hippocampal Neurons. Cells 2023; 12:2363. [PMID: 37830575 PMCID: PMC10571912 DOI: 10.3390/cells12192363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Na-K-2Cl cotransporter 1 (NKCC1) regulates chloride influx in neurons and thereby GABAA receptor activity in normal and pathological conditions. Here, we characterized in hippocampal neurons the membrane expression, distribution and dynamics of exogenous NKCC1a and NKCC1b isoforms and compared them to those of the chloride extruder K-Cl cotransporter 2 (KCC2). We found that NKCC1a and NKCC1b behave quite similarly. NKCC1a/1b but not KCC2 are present along the axon initial segment where they are confined. Moreover, NKCC1a/1b are detected in the somato-dendritic compartment at a lower level than KCC2, where they form fewer, smaller and less compact clusters at perisynaptic and extrasynaptic sites. Interestingly, ~60% of dendritic clusters of NKCC1a/1b are colocalized with KCC2. They are larger and brighter than those devoid of KCC2, suggesting a particular NKCC1a/1b-KCC2 relationship. In agreement with the reduced dendritic clustering of NKCC1a/1b compared with that of KCC2, NKCC1a/1b are more mobile on the dendrite than KCC2, suggesting weaker cytoskeletal interaction. NKCC1a/b are confined to endocytic zones, where they spend more time than KCC2. However, they spend less time in these compartments than at the synapses, suggesting that they can rapidly leave endocytic zones to increase the membrane pool, which can happen in pathological conditions. Thus, NKCC1a/b have different membrane dynamics and clustering from KCC2, which helps to explain their low level in the neuronal membrane, while allowing a rapid increase in the membrane pool under pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sabine Lévi
- Institut du Fer à Moulin, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR-S 1270, Sorbonne Université, 75005 Paris, France; (E.P.); (E.C.); (Z.M.); (J.G.); (M.R.); (S.S.-L.); (I.M.); (X.M.)
| |
Collapse
|
3
|
Mukherjee A, Katiyar R, Dembla E, Dembla M, Kumar P, Belkacemi A, Jung M, Beck A, Flockerzi V, Schwarz K, Schmitz F. Disturbed Presynaptic Ca 2+ Signaling in Photoreceptors in the EAE Mouse Model of Multiple Sclerosis. iScience 2020; 23:101830. [PMID: 33305185 PMCID: PMC7711289 DOI: 10.1016/j.isci.2020.101830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease caused by an auto-reactive immune system. Recent studies also demonstrated synapse dysfunctions in MS patients and MS mouse models. We previously observed decreased synaptic vesicle exocytosis in photoreceptor synapses in the EAE mouse model of MS at an early, preclinical stage. In the present study, we analyzed whether synaptic defects are associated with altered presynaptic Ca2+ signaling. Using high-resolution immunolabeling, we found a reduced signal intensity of Cav-channels and RIM2 at active zones in early, preclinical EAE. In line with these morphological alterations, depolarization-evoked increases of presynaptic Ca2+ were significantly smaller. In contrast, basal presynaptic Ca2+ was elevated. We observed a decreased expression of Na+/K+-ATPase and plasma membrane Ca2+ ATPase 2 (PMCA2), but not PMCA1, in photoreceptor terminals of EAE mice that could contribute to elevated basal Ca2+. Thus, complex Ca2+ signaling alterations contribute to synaptic dysfunctions in photoreceptors in early EAE. Less Cav-channels and RIM2 at the active zones of EAE photoreceptor synapses Decreased depolarization-evoked Ca2+-responses in EAE photoreceptor synapses Elevated basal, resting Ca2+ levels in preclinical EAE photoreceptor terminals Decreased expression of PMCA2 and Na+/K+-ATPase in EAE photoreceptor synapses
Collapse
Affiliation(s)
- Amrita Mukherjee
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Rashmi Katiyar
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Ekta Dembla
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Mayur Dembla
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Praveen Kumar
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Anouar Belkacemi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Martin Jung
- Institute of Medical Biochemistry and Molecular Biology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Andreas Beck
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Karin Schwarz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| |
Collapse
|
4
|
Amadeo A, Coatti A, Aracri P, Ascagni M, Iannantuoni D, Modena D, Carraresi L, Brusco S, Meneghini S, Arcangeli A, Pasini ME, Becchetti A. Postnatal Changes in K +/Cl - Cotransporter-2 Expression in the Forebrain of Mice Bearing a Mutant Nicotinic Subunit Linked to Sleep-Related Epilepsy. Neuroscience 2018; 386:91-107. [PMID: 29949744 DOI: 10.1016/j.neuroscience.2018.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
The Na+/K+/Cl- cotransporter-1 (NKCC1) and the K+/Cl- cotransporter-2 (KCC2) set the transmembrane Cl- gradient in the brain, and are implicated in epileptogenesis. We studied the postnatal distribution of NKCC1 and KCC2 in wild-type (WT) mice, and in a mouse model of sleep-related epilepsy, carrying the mutant β2-V287L subunit of the nicotinic acetylcholine receptor (nAChR). In WT neocortex, immunohistochemistry showed a wide distribution of NKCC1 in neurons and astrocytes. At birth, KCC2 was localized in neuronal somata, whereas at subsequent stages it was mainly found in the somatodendritic compartment. The cotransporters' expression was quantified by densitometry in the transgenic strain. KCC2 expression increased during the first postnatal weeks, while the NKCC1 amount remained stable, after birth. In mice expressing β2-V287L, the KCC2 amount in layer V of prefrontal cortex (PFC) was lower than in the control littermates at postnatal day 8 (P8), with no concomitant change in NKCC1. Consistently, the GABAergic excitatory to inhibitory switch was delayed in PFC layer V of mice carrying β2-V287L. At P60, the amount of KCC2 was instead higher in mice bearing the transgene. Irrespective of genotype, NKCC1 and KCC2 were abundantly expressed in the neuropil of most thalamic nuclei since birth. However, KCC2 expression decreased by P60 in the reticular nucleus, and more so in mice expressing β2-V287L. Therefore, a complex regulatory interplay occurs between heteromeric nAChRs and KCC2 in postnatal forebrain. The pathogenetic effect of β2-V287L may depend on altered KCC2 amounts in PFC during synaptogenesis, as well as in mature thalamocortical circuits.
Collapse
Affiliation(s)
- Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Aurora Coatti
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Miriam Ascagni
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Davide Iannantuoni
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Debora Modena
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Laura Carraresi
- Dival Toscana Srl, Via Madonna del Piano, 6 - 50019 Sesto Fiorentino, Firenze, Italy.
| | - Simone Brusco
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Firenze, Italy.
| | - Maria Enrica Pasini
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| |
Collapse
|
5
|
Jaggi AS, Kaur A, Bali A, Singh N. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases. Curr Neuropharmacol 2016; 13:369-88. [PMID: 26411965 PMCID: PMC4812803 DOI: 10.2174/1570159x13666150205130359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases.
Collapse
Affiliation(s)
- Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala- 147002.
| | | | | | | |
Collapse
|
6
|
Yoshida T, Nin F, Ogata G, Uetsuka S, Kitahara T, Inohara H, Akazawa K, Komune S, Kurachi Y, Hibino H. NKCCs in the fibrocytes of the spiral ligament are silent on the unidirectional K⁺ transport that controls the electrochemical properties in the mammalian cochlea. Pflugers Arch 2014; 467:1577-1589. [PMID: 25143138 DOI: 10.1007/s00424-014-1597-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/08/2014] [Accepted: 08/07/2014] [Indexed: 11/26/2022]
Abstract
Unidirectional K(+) transport across the lateral cochlear wall contributes to the endocochlear potential (EP) of +80 mV in the endolymph, a property essential for hearing. The wall comprises two epithelial layers, the syncytium and the marginal cells. The basolateral surface of the former and the apical membranes of the latter face the perilymph and the endolymph, respectively. Intrastrial space (IS), an extracellular compartment between the two layers, exhibits low [K(+)] and a potential similar to the EP. This IS potential (ISP) dominates the EP and represents a K(+) diffusion potential elicited by a large K(+) gradient across the syncytial apical surface. The K(+) gradient depends on the unidirectional K(+) transport driven by Na(+),K(+)-ATPases on the basolateral surface of each layer and the concomitant Na(+),K(+),2Cl(-)-cotransporters (NKCCs) in the marginal cell layer. The NKCCs coexpressed with the Na(+),K(+)-ATPases in the syncytial layer also seem to participate in the K(+) transport. To test this hypothesis, we examined the electrochemical properties of the lateral wall with electrodes measuring [K(+)] and potential. Blocking NKCCs by perilymphatic perfusion of bumetanide suppressed the ISP. Unexpectedly and unlike the inhibition of the syncytial Na(+),K(+)-ATPases, the perfusion barely altered the electrochemical properties of the syncytium but markedly augmented [K(+)] of the IS. Consequently, the K(+) gradient decreased and the ISP declined. These observations resembled those when the marginal cells' Na(+),K(+)-ATPases or NKCCs were blocked with vascularly applied inhibitors. It is plausible that NKCCs in the marginal cells are affected by the perilymphatically perfused bumetanide, and these transporters, but not those in the syncytium, mediate the unidirectional K(+) transport.
Collapse
Affiliation(s)
- Takamasa Yoshida
- Department of Molecular Physiology, School of Medicine, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, School of Medicine, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Genki Ogata
- Department of Molecular Physiology, School of Medicine, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Satoru Uetsuka
- Department of Molecular Physiology, School of Medicine, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tadashi Kitahara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kohei Akazawa
- Department of Medical Informatics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Shizuo Komune
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihisa Kurachi
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, and The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, School of Medicine, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan.
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
| |
Collapse
|
7
|
Liu X, Hirano AA, Sun X, Brecha NC, Barnes S. Calcium channels in rat horizontal cells regulate feedback inhibition of photoreceptors through an unconventional GABA- and pH-sensitive mechanism. J Physiol 2013; 591:3309-24. [PMID: 23613534 DOI: 10.1113/jphysiol.2012.248179] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Horizontal cells send inhibitory feedback to photoreceptors, helping form antagonistic receptive fields in the retina, but the neurotransmitter and the mechanisms underlying this signalling are not known. Since the proteins responsible for conventional Ca(2+)-dependent release of GABAergic synaptic vesicles are present in mammalian horizontal cells, we investigated this conventional mechanism as the means by which horizontal cells inhibit photoreceptors. Using Ca(2+) imaging in rat retinal slices, we confirm that horizontal cell depolarization with kainate inhibits and horizontal cell hyperpolarization with NBQX disinhibits the Ca(2+) signals produced by pH-sensitive activation of voltage-gated calcium channels (Ca channels) in photoreceptors. We show that while 100 μm Co(2+) reduces photoreceptor Ca(2+) signals, it disinhibits them at 10 μm, an effect reminiscent of earlier studies where low [Co(2+)] eliminated feedback. The low [Co(2+)] disinhibition is pH sensitive. We localized L-, N- and P/Q-type Ca channels in rat horizontal cells, and showed that both the N-type Ca channel blocker -conotoxin GVIA and the P/Q-type Ca channel blocker -agatoxin IVA increased Ca(2+) signals in photoreceptors in a pH-sensitive manner. Pronounced actions of GABAergic agents on feedback signals to photoreceptors were observed, and are pH sensitive, but are inconsistent with direct inhibition by GABA of photoreceptor [Ca(2+)]. Patch-clamp studies revealed that GABA activates a conductance having high bicarbonate permeability in isolated horizontal cells, suggesting that the commonality of pH sensitivity throughout the results could arise from a GABA autofeedback action in horizontal cells. This could change cleft pH with concomitant inhibitory influences on photoreceptor Ca channels.
Collapse
Affiliation(s)
- Xue Liu
- S. Barnes: Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|