1
|
Ashton JL, Prince B, Sands G, Argent L, Anderson M, Smith JEG, Tedoldi A, Ahmad A, Baddeley D, Pereira AG, Lever N, Ramanathan T, Smaill BH, Montgomery JM. Electrophysiology and 3D-imaging reveal properties of human intracardiac neurons and increased excitability with atrial fibrillation. J Physiol 2024. [PMID: 38687681 DOI: 10.1113/jp286278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Altered autonomic input to the heart plays a major role in atrial fibrillation (AF). Autonomic neurons termed ganglionated plexi (GP) are clustered on the heart surface to provide the last point of neural control of cardiac function. To date the properties of GP neurons in humans are unknown. Here we have addressed this knowledge gap in human GP neuron structure and physiology in patients with and without AF. Human right atrial GP neurons embedded in epicardial adipose tissue were excised during open heart surgery performed on both non-AF and AF patients and then characterised physiologically by whole cell patch clamp techniques. Structural analysis was also performed after fixation at both the single cell and at the entire GP levels via three-dimensional confocal imaging. Human GP neurons were found to exhibit unique properties and structural complexity with branched neurite outgrowth. Significant differences in excitability were revealed between AF and non-AF GP neurons as measured by lower current to induce action potential firing, a reduced occurrence of low action potential firing rates, decreased accommodation and increased synaptic density. Visualisation of entire GPs showed almost all neurons are cholinergic with a small proportion of noradrenergic and dual phenotype neurons. Phenotypic distribution differences occurred with AF including decreased cholinergic and dual phenotype neurons, and increased noradrenergic neurons. These data show both functional and structural differences occur between GP neurons from patients with and without AF, highlighting that cellular plasticity occurs in neural input to the heart that could alter autonomic influence on atrial function. KEY POINTS: The autonomic nervous system plays a critical role in regulating heart rhythm and the initiation of AF; however, the structural and functional properties of human autonomic neurons in the autonomic ganglionated plexi (GP) remain unknown. Here we perform the first whole cell patch clamp electrophysiological and large tissue confocal imaging analysis of these neurons from patients with and without AF. Our data show human GP neurons are functionally and structurally complex. Measurements of action potential kinetics show higher excitability in GP neurons from AF patients as measured by lower current to induce action potential firing, reduced low firing action potential rates, and decreased action potential accommodation. Confocal imaging shows increased synaptic density and noradrenergic phenotypes in patients with AF. Both functional and structural differences occur in GP neurons from patients with AF that could alter autonomic influence on atrial rhythm.
Collapse
Affiliation(s)
- J L Ashton
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland and Pūtahi Manawa Centre of Research Excellence, Auckland, New Zealand
| | - B Prince
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland and Pūtahi Manawa Centre of Research Excellence, Auckland, New Zealand
| | - G Sands
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - L Argent
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland and Pūtahi Manawa Centre of Research Excellence, Auckland, New Zealand
| | - M Anderson
- Cardiothoracic Surgical Unit, Auckland City Hospital, Auckland, New Zealand
| | - J E G Smith
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland and Pūtahi Manawa Centre of Research Excellence, Auckland, New Zealand
| | - A Tedoldi
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland and Pūtahi Manawa Centre of Research Excellence, Auckland, New Zealand
| | - A Ahmad
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland and Pūtahi Manawa Centre of Research Excellence, Auckland, New Zealand
| | - D Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - A G Pereira
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - N Lever
- Manaaki Manawa Centre for Heart Research, University of Auckland and Pūtahi Manawa Centre of Research Excellence, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Cardiology, Auckland City Hospital, Auckland, New Zealand
| | - T Ramanathan
- Manaaki Manawa Centre for Heart Research, University of Auckland and Pūtahi Manawa Centre of Research Excellence, Auckland, New Zealand
- Cardiothoracic Surgical Unit, Auckland City Hospital, Auckland, New Zealand
| | - B H Smaill
- Manaaki Manawa Centre for Heart Research, University of Auckland and Pūtahi Manawa Centre of Research Excellence, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland and Pūtahi Manawa Centre of Research Excellence, Auckland, New Zealand
| |
Collapse
|
2
|
Veerakumar A, Yung AR, Liu Y, Krasnow MA. Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature 2022; 606:739-746. [PMID: 35650438 PMCID: PMC9297035 DOI: 10.1038/s41586-022-04760-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/13/2022] [Indexed: 01/29/2023]
Abstract
The sympathetic and parasympathetic nervous systems powerfully regulate internal organs1, but the molecular and functional diversity of their constituent neurons and circuits remains largely unknown. Here we use retrograde neuronal tracing, single-cell RNA sequencing, optogenetics, and physiological experiments to dissect the cardiac parasympathetic control circuit in mice. We show that cardiac-innervating neurons in the brainstem nucleus ambiguus (Amb) are comprised of two molecularly, anatomically, and functionally distinct subtypes. One we call ACV (ambiguus cardiovascular) neurons (~35 neurons per Amb), define the classical cardiac parasympathetic circuit. They selectively innervate a subset of cardiac parasympathetic ganglion neurons and mediate the baroreceptor reflex, slowing heart rate and atrioventricular node conduction in response to increased blood pressure. The other, ACP (ambiguus cardiopulmonary) neurons (~15 neurons per Amb) innervate cardiac ganglion neurons intermingled with and functionally indistinguishable from those innervated by ACV neurons, but surprisingly also innervate most or all lung parasympathetic ganglion neurons; clonal labeling shows individual ACP neurons innervate both organs. ACP neurons mediate the dive reflex, the simultaneous bradycardia and bronchoconstriction that follows water immersion. Thus, parasympathetic control of the heart is organized into two parallel circuits, one that selectively controls cardiac function (ACV circuit) and another that coordinates cardiac and pulmonary function (ACP circuit). This new understanding of cardiac control has implications for treating cardiac and pulmonary diseases and for elucidating the control and coordination circuits of other organs.
Collapse
Affiliation(s)
- Avin Veerakumar
- Department of Biochemistry, Wall Center for Pulmonary Vascular Disease, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrea R Yung
- Department of Biochemistry, Wall Center for Pulmonary Vascular Disease, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yin Liu
- Department of Biochemistry, Wall Center for Pulmonary Vascular Disease, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark A Krasnow
- Department of Biochemistry, Wall Center for Pulmonary Vascular Disease, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Ashton JL, Argent L, Smith JEG, Jin S, Sands GB, Smaill BH, Montgomery JM. Evidence of structural and functional plasticity occurring within the intracardiac nervous system of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2020; 318:H1387-H1400. [DOI: 10.1152/ajpheart.00020.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have developed intracardiac neuron whole cell recording techniques in atrial preparations from control and spontaneous hypertensive rats. This has enabled the identification of significant synaptic plasticity in the intracardiac nervous system, including enhanced postsynaptic current frequency, increased synaptic terminal density, and altered postsynaptic receptors. This increased synaptic drive together with altered cardiac neuron electrophysiology could increase intracardiac nervous system excitability and contribute to the substrate for atrial arrhythmia in hypertensive heart disease.
Collapse
Affiliation(s)
- Jesse L. Ashton
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Liam Argent
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Joscelin E. G. Smith
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Sangjun Jin
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Gregory B. Sands
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Bruce H. Smaill
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Johanna M. Montgomery
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Ramirez JM, Baertsch N. Defining the Rhythmogenic Elements of Mammalian Breathing. Physiology (Bethesda) 2018; 33:302-316. [PMID: 30109823 PMCID: PMC6230551 DOI: 10.1152/physiol.00025.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023] Open
Abstract
Breathing's remarkable ability to adapt to changes in metabolic, environmental, and behavioral demands stems from a complex integration of its rhythm-generating network within the wider nervous system. Yet, this integration complicates identification of its specific rhythmogenic elements. Based on principles learned from smaller rhythmic networks of invertebrates, we define criteria that identify rhythmogenic elements of the mammalian breathing network and discuss how they interact to produce robust, dynamic breathing.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine , Seattle, Washington
| | - Nathan Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine , Seattle, Washington
| |
Collapse
|
5
|
Hayes JA, Papagiakoumou E, Ruffault PL, Emiliani V, Fortin G. Computer-aided neurophysiology and imaging with open-source PhysImage. J Neurophysiol 2018; 120:23-36. [PMID: 29488837 DOI: 10.1152/jn.00048.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Improved integration between imaging and electrophysiological data has become increasingly critical for rapid interpretation and intervention as approaches have advanced in recent years. Here, we present PhysImage, a fork of the popular public-domain ImageJ that provides a platform for working with these disparate sources of data, and we illustrate its utility using in vitro preparations from murine embryonic and neonatal tissue. PhysImage expands ImageJ's core features beyond an imaging program by facilitating integration, analyses, and display of 2D waveform data, among other new features. Together, with the Micro-Manager plugin for image acquisition, PhysImage substantially improves on closed-source or blended approaches to analyses and interpretation, and it furthermore aids post hoc automated analysis of physiological data when needed as we demonstrate here. Developing a high-throughput approach to neurophysiological analyses has been a major challenge for neurophysiology as a whole despite data analytics methods advancing rapidly in other areas of neuroscience, biology, and especially genomics. NEW & NOTEWORTHY High-throughput analyses of both concurrent electrophysiological and imaging recordings has been a major challenge in neurophysiology. We submit an open-source solution that may be able to alleviate, or at least reduce, many of these concerns by providing an institutionally proven mechanism (i.e., ImageJ) with the added benefits of open-source Python scripting of PhysImage data that eases the workmanship of 2D trace data, which includes electrophysiological data. Together, with the ability to autogenerate prototypical figures shows this technology is a noteworthy advance.
Collapse
Affiliation(s)
- John A Hayes
- UMR9197, CNRS/Université Paris-Sud, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay , Gif-sur Yvette , France
| | - Eirini Papagiakoumou
- UMR8250, Neurophotonics Laboratory, CNRS, Paris Descartes University , Paris , France.,Institut National de la Santé et la Recherche Médicale-Inserm
| | - Pierre-Louis Ruffault
- UMR9197, CNRS/Université Paris-Sud, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay , Gif-sur Yvette , France
| | - Valentina Emiliani
- UMR8250, Neurophotonics Laboratory, CNRS, Paris Descartes University , Paris , France
| | - Gilles Fortin
- UMR9197, CNRS/Université Paris-Sud, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay , Gif-sur Yvette , France
| |
Collapse
|
6
|
Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry. J Neurosci 2017; 36:7223-33. [PMID: 27383596 DOI: 10.1523/jneurosci.0296-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/27/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consist of interneurons derived from Dbx1-expressing precursors (Dbx1 neurons), but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, the respiratory-related hypoglossal (XII) motor nucleus and XII premotor circuits. In spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by ∼50% after ∼15 cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased to ∼85 neurons. In contrast, cumulatively deleting Dbx1 XII premotor neurons decreased motor output monotonically but did not affect frequency nor stop XII output regardless of the ablation tally. Here, we couple an existing preBötC model with a premotor population in several topological configurations to investigate which one may replicate the laser ablation experiments best. If the XII premotor population is a "small-world" network (rich in local connections with sparse long-range connections among constituent premotor neurons) and connected with the preBötC such that the total number of incoming synapses remains fixed, then the in silico system successfully replicates the in vitro laser ablation experiments. This study proposes a feasible configuration for circuits consisting of Dbx1-derived interneurons that generate inspiratory rhythm and motor pattern. SIGNIFICANCE STATEMENT To produce a breathing-related motor pattern, a brainstem core oscillator circuit projects to a population of premotor interneurons, but the assemblage of this network remains incompletely understood. Here we applied network modeling and numerical simulation to discover respiratory circuit configurations that successfully replicate photonic cell ablation experiments targeting either the core oscillator or premotor network, respectively. If premotor neurons are interconnected in a so-called "small-world" network with a fixed number of incoming synapses balanced between premotor and rhythmogenic neurons, then our simulations match their experimental benchmarks. These results provide a framework of experimentally testable predictions regarding the rudimentary structure and function of respiratory rhythm- and pattern-generating circuits in the brainstem of mammals.
Collapse
|
7
|
Soloperto A, Bisio M, Palazzolo G, Chiappalone M, Bonifazi P, Difato F. Modulation of Neural Network Activity through Single Cell Ablation: An in Vitro Model of Minimally Invasive Neurosurgery. Molecules 2016; 21:E1018. [PMID: 27527143 PMCID: PMC6274492 DOI: 10.3390/molecules21081018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/03/2022] Open
Abstract
The technological advancement of optical approaches, and the growth of their applications in neuroscience, has allowed investigations of the physio-pathology of neural networks at a single cell level. Therefore, better understanding the role of single neurons in the onset and progression of neurodegenerative conditions has resulted in a strong demand for surgical tools operating with single cell resolution. Optical systems already provide subcellular resolution to monitor and manipulate living tissues, and thus allow understanding the potentiality of surgery actuated at single cell level. In the present work, we report an in vitro experimental model of minimally invasive surgery applied on neuronal cultures expressing a genetically encoded calcium sensor. The experimental protocol entails the continuous monitoring of the network activity before and after the ablation of a single neuron, to provide a robust evaluation of the induced changes in the network activity. We report that in subpopulations of about 1000 neurons, even the ablation of a single unit produces a reduction of the overall network activity. The reported protocol represents a simple and cost effective model to study the efficacy of single-cell surgery, and it could represent a test-bed to study surgical procedures circumventing the abrupt and complete tissue removal in pathological conditions.
Collapse
Affiliation(s)
- Alessandro Soloperto
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Marta Bisio
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Gemma Palazzolo
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Michela Chiappalone
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Paolo Bonifazi
- Biocruces Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain.
| | - Francesco Difato
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
8
|
Revill AL, Vann NC, Akins VT, Kottick A, Gray PA, Del Negro CA, Funk GD. Dbx1 precursor cells are a source of inspiratory XII premotoneurons. eLife 2015; 4. [PMID: 26687006 PMCID: PMC4764567 DOI: 10.7554/elife.12301] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/18/2015] [Indexed: 11/28/2022] Open
Abstract
All behaviors require coordinated activation of motoneurons from central command and premotor networks. The genetic identities of premotoneurons providing behaviorally relevant excitation to any pool of respiratory motoneurons remain unknown. Recently, we established in vitro that Dbx1-derived pre-Bötzinger complex neurons are critical for rhythm generation and that a subpopulation serves a premotor function (Wang et al., 2014). Here, we further show that a subpopulation of Dbx1-derived intermediate reticular (IRt) neurons are rhythmically active during inspiration and project to the hypoglossal (XII) nucleus that contains motoneurons important for maintaining airway patency. Laser ablation of Dbx1 IRt neurons, 57% of which are glutamatergic, decreased ipsilateral inspiratory motor output without affecting frequency. We conclude that a subset of Dbx1 IRt neurons is a source of premotor excitatory drive, contributing to the inspiratory behavior of XII motoneurons, as well as a key component of the airway control network whose dysfunction contributes to sleep apnea. DOI:http://dx.doi.org/10.7554/eLife.12301.001
Collapse
Affiliation(s)
- Ann L Revill
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Nikolas C Vann
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Victoria T Akins
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Andrew Kottick
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, United States
| | | | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Feldman JL, Kam K. Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J Physiol 2015; 593:3-23. [PMID: 25556783 DOI: 10.1113/jphysiol.2014.277632] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/01/2014] [Indexed: 12/27/2022] Open
Abstract
Breathing in mammals is a seemingly straightforward behaviour controlled by the brain. A brainstem nucleus called the preBötzinger Complex sits at the core of the neural circuit generating respiratory rhythm. Despite the discovery of this microcircuit almost 25 years ago, the mechanisms controlling breathing remain elusive. Given the apparent simplicity and well-defined nature of regulatory breathing behaviour, the identification of much of the circuitry, and the ability to study breathing in vitro as well as in vivo, many neuroscientists and physiologists are surprised that respiratory rhythm generation is still not well understood. Our view is that conventional rhythmogenic mechanisms involving pacemakers, inhibition or bursting are problematic and that simplifying assumptions commonly made for many vertebrate neural circuits ignore consequential detail. We propose that novel emergent mechanisms govern the generation of respiratory rhythm. That a mammalian function as basic as rhythm generation arises from complex and dynamic molecular, synaptic and neuronal interactions within a diverse neural microcircuit highlights the challenges in understanding neural control of mammalian behaviours, many (considerably) more elaborate than breathing. We suggest that the neural circuit controlling breathing is inimitably tractable and may inspire general strategies for elucidating other neural microcircuits.
Collapse
Affiliation(s)
- Jack L Feldman
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
10
|
Mechanisms Leading to Rhythm Cessation in the Respiratory PreBötzinger Complex Due to Piecewise Cumulative Neuronal Deletions. eNeuro 2015; 2:eN-NWR-0031-15. [PMID: 26465010 PMCID: PMC4596029 DOI: 10.1523/eneuro.0031-15.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 11/22/2022] Open
Abstract
The mammalian breathing rhythm putatively originates from Dbx1-derived interneurons in the preBötzinger complex (preBötC) of the ventral medulla. Cumulative deletion of ∼15% of Dbx1 preBötC neurons in an in vitro breathing model stops rhythmic bursts of respiratory-related motor output. Here we assemble in silico models of preBötC networks using random graphs for structure, and ordinary differential equations for dynamics, to examine the mechanisms responsible for the loss of spontaneous respiratory rhythm and motor output measured experimentally in vitro. Model networks subjected to cellular ablations similarly discontinue functionality. However, our analyses indicate that model preBötC networks remain topologically intact even after rhythm cessation, suggesting that dynamics coupled with structural properties of the underlying network are responsible for rhythm cessation. Simulations show that cumulative cellular ablations diminish the number of neurons that can be recruited to spike per unit time. When the recruitment rate drops below 1 neuron/ms the network stops spontaneous rhythmic activity. Neurons that play pre-eminent roles in rhythmogenesis include those that commence spiking during the quiescent phase between respiratory bursts and those with a high number of incoming synapses, which both play key roles in recruitment, i.e., recurrent excitation leading to network bursts. Selectively ablating neurons with many incoming synapses impairs recurrent excitation and stops spontaneous rhythmic activity and motor output with lower ablation tallies compared with random deletions. This study provides a theoretical framework for the operating mechanism of mammalian central pattern generator networks and their susceptibility to loss-of-function in the case of disease or neurodegeneration.
Collapse
|
11
|
Tupal S, Rieger MA, Ling GY, Park TJ, Dougherty JD, Goodchild AK, Gray PA. Testing the role of preBötzinger Complex somatostatin neurons in respiratory and vocal behaviors. Eur J Neurosci 2014; 40:3067-77. [PMID: 25040660 DOI: 10.1111/ejn.12669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/07/2014] [Indexed: 12/16/2022]
Abstract
Identifying neurons essential for the generation of breathing and related behaviors such as vocalisation is an important question for human health. The targeted loss of preBötzinger Complex (preBötC) glutamatergic neurons, including those that express high levels of somatostatin protein (SST neurons), eliminates normal breathing in adult rats. Whether preBötC SST neurons represent a functionally specialised population is unknown. We tested the effects on respiratory and vocal behaviors of eliminating SST neuron glutamate release by Cre-Lox-mediated genetic ablation of the vesicular glutamate transporter 2 (VGlut2). We found the targeted loss of VGlut2 in SST neurons had no effect on viability in vivo, or on respiratory period or responses to neurokinin 1 or μ-opioid receptor agonists in vitro. We then compared medullary SST peptide expression in mice with that of two species that share extreme respiratory environments but produce either high or low frequency vocalisations. In the Mexican free-tailed bat, SST peptide-expressing neurons extended beyond the preBötC to the caudal pole of the VII motor nucleus. In the naked mole-rat, however, SST-positive neurons were absent from the ventrolateral medulla. We then analysed isolation vocalisations from SST-Cre;VGlut2(F/F) mice and found a significant prolongation of the pauses between syllables during vocalisation but no change in vocalisation number. These data suggest that glutamate release from preBötC SST neurons is not essential for breathing but play a species- and behavior-dependent role in modulating respiratory networks. They further suggest that the neural network generating respiration is capable of extensive plasticity given sufficient time.
Collapse
Affiliation(s)
- Srinivasan Tupal
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang X, Hayes JA, Revill AL, Song H, Kottick A, Vann NC, LaMar MD, Picardo MCD, Akins VT, Funk GD, Del Negro CA. Laser ablation of Dbx1 neurons in the pre-Bötzinger complex stops inspiratory rhythm and impairs output in neonatal mice. eLife 2014; 3:e03427. [PMID: 25027440 PMCID: PMC4129438 DOI: 10.7554/elife.03427] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To understand the neural origins of rhythmic behavior one must characterize the central pattern generator circuit and quantify the population size needed to sustain functionality. Breathing-related interneurons of the brainstem pre-Bötzinger complex (preBötC) that putatively comprise the core respiratory rhythm generator in mammals are derived from Dbx1-expressing precursors. Here, we show that selective photonic destruction of Dbx1 preBötC neurons in neonatal mouse slices impairs respiratory rhythm but surprisingly also the magnitude of motor output; respiratory hypoglossal nerve discharge decreased and its frequency steadily diminished until rhythm stopped irreversibly after 85±20 (mean ± SEM) cellular ablations, which corresponds to ∼15% of the estimated population. These results demonstrate that a single canonical interneuron class generates respiratory rhythm and contributes in a premotor capacity, whereas these functions are normally attributed to discrete populations. We also establish quantitative cellular parameters that govern network viability, which may have ramifications for respiratory pathology in disease states.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - John A Hayes
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Ann L Revill
- Department of Physiology, University of Alberta, Edmonton, Canada The Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Hanbing Song
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Andrew Kottick
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Nikolas C Vann
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - M Drew LaMar
- Department of Biology, The College of William and Mary, Williamsburg, United States
| | | | - Victoria T Akins
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Gregory D Funk
- Department of Physiology, University of Alberta, Edmonton, Canada The Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
13
|
Cell adhesion promotion strategies for signal transduction enhancement in microelectrode array in vitro electrophysiology: An introductory overview and critical discussion. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|