1
|
Acute Respiratory Distress Syndrome, Mechanical Ventilation, and Inhalation Injury in Burn Patients. Surg Clin North Am 2023; 103:439-451. [PMID: 37149380 PMCID: PMC10028407 DOI: 10.1016/j.suc.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Respiratory failure occurs with some frequency in seriously burned patients, driven by a combination of inflammatory and infection factors. Inhalation injury contributes to respiratory failure in some burn patients via direct mucosal injury and indirect inflammation. In burn patients, respiratory failure leading to acute respiratory distress syndrome, with or without inhalation injury, is effectively managed using principles evolved for non-burn critically ill patients.
Collapse
|
2
|
Gendreau S, Geri G, Pham T, Vieillard-Baron A, Mekontso Dessap A. The role of acute hypercapnia on mortality and short-term physiology in patients mechanically ventilated for ARDS: a systematic review and meta-analysis. Intensive Care Med 2022; 48:517-534. [PMID: 35294565 PMCID: PMC8924945 DOI: 10.1007/s00134-022-06640-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Hypercapnia is frequent during mechanical ventilation for acute respiratory distress syndrome (ARDS), but its effects on morbidity and mortality are still controversial. We conducted a systematic review and meta-analysis to explore clinical consequences of acute hypercapnia in adult patients ventilated for ARDS. METHODS We searched Medline, Embase, and the Cochrane Library via the OVID platform for studies published from 1946 to 2021. "Permissive hypercapnia" defined hypercapnia in studies where the group with hypercapnia was ventilated with a protective ventilation (PV) strategy (lower VT targeting 6 ml/kg predicted body weight) while the group without hypercapnia was managed with a non-protective ventilation (NPV); "imposed hypercapnia" defined hypercapnia in studies where hypercapnic and non-hypercapnic patients were managed with a similar ventilation strategy. RESULTS Twenty-nine studies (10,101 patients) were included. Permissive hypercapnia, imposed hypercapnia under PV, and imposed hypercapnia under NPV were reported in 8, 21 and 1 study, respectively. Studies testing permissive hypercapnia reported lower mortality in hypercapnic patients receiving PV as compared to non-hypercapnic patients receiving NPV: OR = 0.26, 95% CI [0.07-0.89]. By contrast, studies reporting imposed hypercapnia under PV reported increased mortality in hypercapnic patients receiving PV as compared to non-hypercapnic patients also receiving PV: OR = 1.54, 95% CI [1.15-2.07]. There was a significant interaction between the mechanism of hypercapnia and the effect on mortality. CONCLUSIONS Clinical effects of hypercapnia are conflicting depending on its mechanism. Permissive hypercapnia was associated with improved mortality contrary to imposed hypercapnia under PV, suggesting a major role of PV strategy on the outcome.
Collapse
Affiliation(s)
- Ségolène Gendreau
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive-Réanimation, 94010, Créteil, France
- Université Paris Est Créteil, CARMAS, 94010, Créteil, France
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France
| | - Guillaume Geri
- AP-HP, Hôpital Universitaire Ambroise-Paré, Service de Médecine Intensive Réanimation, 92100, Boulogne-Billancourt, France
- Université de Paris Saclay, INSERM UMR 1018, Clinical Epidemiology Team, CESP, Villejuif, France
| | - Tai Pham
- AP-HP, Hôpital de Bicêtre, DMU CORREVE, Service de Médecine Intensive-Réanimation, Université Paris-Saclay, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Le Kremlin-Bicêtre, France
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm U1018, Equipe d'Epidémiologie respiratoire intégrative, CESP, 94807, Villejuif, France
| | - Antoine Vieillard-Baron
- AP-HP, Hôpital Universitaire Ambroise-Paré, Service de Médecine Intensive Réanimation, 92100, Boulogne-Billancourt, France
- Université de Paris Saclay, INSERM UMR 1018, Clinical Epidemiology Team, CESP, Villejuif, France
| | - Armand Mekontso Dessap
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive-Réanimation, 94010, Créteil, France.
- Université Paris Est Créteil, CARMAS, 94010, Créteil, France.
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France.
| |
Collapse
|
3
|
Almanza-Hurtado A, Polanco Guerra C, Martínez-Ávila MC, Borré-Naranjo D, Rodríguez-Yanez T, Dueñas-Castell C. Hypercapnia from Physiology to Practice. Int J Clin Pract 2022; 2022:2635616. [PMID: 36225533 PMCID: PMC9525762 DOI: 10.1155/2022/2635616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Acute hypercapnic ventilatory failure is becoming more frequent in critically ill patients. Hypercapnia is the elevation in the partial pressure of carbon dioxide (PaCO2) above 45 mmHg in the bloodstream. The pathophysiological mechanisms of hypercapnia include the decrease in minute volume, an increase in dead space, or an increase in carbon dioxide (CO2) production per sec. They generate a compromise at the cardiovascular, cerebral, metabolic, and respiratory levels with a high burden of morbidity and mortality. It is essential to know the triggers to provide therapy directed at the primary cause and avoid possible complications.
Collapse
|
4
|
Pospelov AS, Puskarjov M, Kaila K, Voipio J. Endogenous brain-sparing responses in brain pH and PO 2 in a rodent model of birth asphyxia. Acta Physiol (Oxf) 2020; 229:e13467. [PMID: 32174009 DOI: 10.1111/apha.13467] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
AIM To study brain-sparing physiological responses in a rodent model of birth asphyxia which reproduces the asphyxia-defining systemic hypoxia and hypercapnia. METHODS Steady or intermittent asphyxia was induced for 15-45 minutes in anaesthetized 6- and 11-days old rats and neonatal guinea pigs using gases containing 5% or 9% O2 plus 20% CO2 (in N2 ). Hypoxia and hypercapnia were induced with low O2 and high CO2 respectively. Oxygen partial pressure (PO2 ) and pH were measured with microsensors within the brain and subcutaneous ("body") tissue. Blood lactate was measured after asphyxia. RESULTS Brain and body PO2 fell to apparent zero with little recovery during 5% O2 asphyxia and 5% or 9% O2 hypoxia, and increased more than twofold during 20% CO2 hypercapnia. Unlike body PO2 , brain PO2 recovered rapidly to control after a transient fall (rat), or was slightly higher than control (guinea pig) during 9% O2 asphyxia. Asphyxia (5% O2 ) induced a respiratory acidosis paralleled by a progressive metabolic (lact)acidosis that was much smaller within than outside the brain. Hypoxia (5% O2 ) produced a brain-confined alkalosis. Hypercapnia outlasting asphyxia suppressed pH recovery and prolonged the post-asphyxia PO2 overshoot. All pH changes were accompanied by consistent shifts in the blood-brain barrier potential. CONCLUSION Regardless of brain maturation stage, hypercapnia can restore brain PO2 and protect the brain against metabolic acidosis despite compromised oxygen availability during asphyxia. This effect extends to the recovery phase if normocapnia is restored slowly, and it is absent during hypoxia, demonstrating that exposure to hypoxia does not mimic asphyxia.
Collapse
Affiliation(s)
- Alexey S. Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
| | - Martin Puskarjov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
- Neuroscience Center (HiLIFE) University of Helsinki Helsinki Finland
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
| |
Collapse
|
5
|
In Memoriam: Brian Kavanagh, 1962 to 2019. Anesthesiology 2019. [DOI: 10.1097/aln.0000000000002944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Morales-Quinteros L, Camprubí-Rimblas M, Bringué J, Bos LD, Schultz MJ, Artigas A. The role of hypercapnia in acute respiratory failure. Intensive Care Med Exp 2019; 7:39. [PMID: 31346806 PMCID: PMC6658637 DOI: 10.1186/s40635-019-0239-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
The biological effects and physiological consequences of hypercapnia are increasingly understood. The literature on hypercapnia is confusing, and at times contradictory. On the one hand, it may have protective effects through attenuation of pulmonary inflammation and oxidative stress. On the other hand, it may also have deleterious effects through inhibition of alveolar wound repair, reabsorption of alveolar fluid, and alveolar cell proliferation. Besides, hypercapnia has meaningful effects on lung physiology such as airway resistance, lung oxygenation, diaphragm function, and pulmonary vascular tree. In acute respiratory distress syndrome, lung-protective ventilation strategies using low tidal volume and low airway pressure are strongly advocated as these have strong potential to improve outcome. These strategies may come at a price of hypercapnia and hypercapnic acidosis. One approach is to accept it (permissive hypercapnia); another approach is to treat it through extracorporeal means. At present, it remains uncertain what the best approach is.
Collapse
Affiliation(s)
- Luis Morales-Quinteros
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Carrer de Viladomat, 288, 08029, Barcelona, Spain.
| | - Marta Camprubí-Rimblas
- Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Josep Bringué
- Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Lieuwe D Bos
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Antonio Artigas
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Carrer de Viladomat, 288, 08029, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Critical Care Center, Corporació Sanitària I Universitària Parc Taulí, Sabadell, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
7
|
Repessé X, Vieillard-Baron A. Hypercapnia during acute respiratory distress syndrome: the tree that hides the forest! J Thorac Dis 2017; 9:1420-1425. [PMID: 28740647 DOI: 10.21037/jtd.2017.05.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xavier Repessé
- Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, University Hospital Ambroise Paré, Boulogne-Billancourt, France
| | - Antoine Vieillard-Baron
- Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, University Hospital Ambroise Paré, Boulogne-Billancourt, France.,Faculty of Medicine Paris Ile-de-France Ouest, University of Versailles Saint-Quentin en Yvelines, Saint-Quentin en Yvelines, France.,INSERM U-1018, CESP, Team 5 (EpReC, Renal and Cardiovascular Epidemiology), UVSQ, Villejuif, France
| |
Collapse
|
8
|
Romano TG, Azevedo LCP, Mendes PV, Costa ELV, Park M. Effect of continuous dialysis on blood ph in acidemic hypercapnic animals with severe acute kidney injury: a randomized experimental study comparing high vs. low bicarbonate affluent. Intensive Care Med Exp 2017; 5:28. [PMID: 28560615 PMCID: PMC5449359 DOI: 10.1186/s40635-017-0141-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background Controlling blood pH during acute ventilatory failure and hypercapnia in individuals suffering from severe acute kidney injury (AKI) and undergoing continuous renal replacement therapy (CRRT) is of paramount importance in critical care settings. In this situation, the optimal concentration of sodium bicarbonate in the dialysate is still an unsolved question in critical care since high concentrations may worsen carbon dioxide levels and low concentrations may not be as effective in controlling pH. Methods We performed a randomized, non-blinded, experimental study. AKI was induced in 12 female pigs via renal hilum ligation and hypoventilation by reducing the tidal volume during mechanical ventilation with the goal of achieving a pH between 7.10–7.15. After achieving the target pH, animals were randomized to undergo isovolemic hemodialysis with one of two bicarbonate concentrations in the dialysate (40 mEq/L [group 40] vs. 20 mEq/L [group 20]). Results Hemodynamic, respiratory, and laboratory data were collected. The median pH value at CRRT initiation was 7.14 [7.12, 7.15] in group 20 and 7.13 [7.09, 7.14] in group 40 (P = ns). The median baseline PaCO2 was 74 [72, 81] mmHg in group 20 vs. 79 [63, 85] mmHg in group 40 (P = ns). After 3 h of CRRT, the pH value was 7.05 [6.95, 7.09] in group 20 and 7.12 [7.1, 7.14] in group 40 (P < 0.05), with corresponding values of PaCO2 of 85 [79, 88] mmHg vs. 81 [63, 100] mmHg (P = ns). The difference in pH after 3 h was due to a metabolic component [standard base excess −10.4 [−12.5, −9.5] mEq/L in group 20 vs. –7.6 [−9.2, −5.1] mEq/L in group 40) (P < 0.05)]. Despite the increased infusion of bicarbonate in group 40, the blood CO2 content did not change during the experiment. The 12-h survival rate was higher in group 40 (67% vs. 0, P = 0.032). Conclusions A higher bicarbonate concentration in the dialysate of animals undergoing hypercapnic respiratory failure was associated with improved blood pH control without increasing the PaCO2 levels. Electronic supplementary material The online version of this article (doi:10.1186/s40635-017-0141-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thiago Gomes Romano
- Nephrology Department, ABC Medical School, Av. Príncipe de Gales, 821, Príncipe de Gales, Santo André, São Paulo, 09060-650, Brazil. .,Research and Education Institute, Hospital Sírio-Libanês, São Paulo, Brazil.
| | - Luciano Cesar Pontes Azevedo
- Research and Education Institute, Hospital Sírio-Libanês, São Paulo, Brazil.,Emergency Medicine Discipline, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Pedro Vitale Mendes
- Research and Education Institute, Hospital Sírio-Libanês, São Paulo, Brazil.,Emergency Medicine Discipline, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Eduardo Leite Vieira Costa
- Research and Education Institute, Hospital Sírio-Libanês, São Paulo, Brazil.,Cardio-Pulmonary Department, Pulmonary Division, Heart Institute (Incor), University of São Paulo, São Paulo, Brazil
| | - Marcelo Park
- Research and Education Institute, Hospital Sírio-Libanês, São Paulo, Brazil.,Emergency Medicine Discipline, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Przybysz TM, Heffner AC. Early Treatment of Severe Acute Respiratory Distress Syndrome. Emerg Med Clin North Am 2015; 34:1-14. [PMID: 26614238 DOI: 10.1016/j.emc.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is defined by acute diffuse inflammatory lung injury invoked by a variety of systemic or pulmonary insults. Despite medical progress in management, mortality remains 27% to 45%. Patients with ARDS should be managed with low tidal volume ventilation. Permissive hypercapnea is well tolerated. Conservative fluid strategy can reduce ventilator and hospital days in patients without shock. Prone positioning and neuromuscular blockers reduce mortality in some patients. Early management of ARDS is relevant to emergency medicine. Identifying ARDS patients who should be transferred to an extracorporeal membrane oxygenation center is an important task for emergency providers.
Collapse
Affiliation(s)
- Thomas M Przybysz
- Division of Critical Care Medicine, Department of Internal Medicine, Carolinas Medical Center, 1000 Blyth Boulevard, Charlotte, NC 28203, USA
| | - Alan C Heffner
- Division of Critical Care Medicine, Department of Internal Medicine, Carolinas Medical Center, 1000 Blyth Boulevard, Charlotte, NC 28203, USA; Medical ICU, Department of Emergency Medicine, Carolinas Medical Center, University of North Carolina, Charlotte Campus, 1000 Blyth Boulevard, Charlotte, NC 28203, USA.
| |
Collapse
|
10
|
Chiu S, Kanter J, Sun H, Bharat A, Sporn PHS, Bharat A. Effects of Hypercapnia in Lung Tissue Repair and Transplant. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-014-0047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Abstract
This review documents important progress made in 2013 in the field of critical care respirology, in particular with regard to acute respiratory failure and acute respiratory distress syndrome. Twenty-five original articles published in the respirology and critical care sections of Critical Care are discussed in the following categories: pre-clinical studies, protective lung ventilation – how low can we go, non-invasive ventilation for respiratory failure, diagnosis and prognosis in acute respiratory distress syndrome and respiratory failure, and promising interventions for acute respiratory distress syndrome.
Collapse
|
12
|
Otulakowski G, Engelberts D, Gusarova GA, Bhattacharya J, Post M, Kavanagh BP. Hypercapnia attenuates ventilator-induced lung injury via a disintegrin and metalloprotease-17. J Physiol 2014; 592:4507-21. [PMID: 25085885 DOI: 10.1113/jphysiol.2014.277616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hypercapnic acidosis, common in mechanically ventilated patients, has been reported to exert both beneficial and harmful effects in models of lung injury. Understanding its effects at the molecular level may provide insight into mechanisms of injury and protection. The aim of this study was to establish the effects of hypercapnic acidosis on mitogen‐activated protein kinase (MAPK) activation, and determine the relevant signalling pathways. p44/42 MAPK activation in a murine model of ventilator‐induced lung injury (VILI) correlated with injury and was reduced in hypercapnia. When cultured rat alveolar epithelial cells were subjected to cyclic stretch, activation of p44/42 MAPK was dependent on epidermal growth factor receptor (EGFR) activity and on shedding of EGFR ligands; exposure to 12% CO2 without additional buffering blocked ligand shedding, as well as EGFR and p44/42 MAPK activation. The EGFR ligands are known substrates of the matrix metalloprotease ADAM17, suggesting stretch activates and hypercapnic acidosis blocks stretch‐mediated activation of ADAM17. This was corroborated in the isolated perfused mouse lung, where elevated CO2 also inhibited stretch‐activated shedding of the ADAM17 substrate TNFR1 from airway epithelial cells. Finally, in vivo confirmation was obtained in a two‐hit murine model of VILI where pharmacological inhibition of ADAM17 reduced both injury and p44/42 MAPK activation. Thus, ADAM17 is an important proximal mediator of VILI; its inhibition is one mechanism of hypercapnic protection and may be a target for clinical therapy.
Collapse
Affiliation(s)
- Gail Otulakowski
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Doreen Engelberts
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Galina A Gusarova
- Departments of Medicine and Physiology, Columbia University, New York, NY, USA
| | - Jahar Bhattacharya
- Departments of Medicine and Physiology, Columbia University, New York, NY, USA
| | - Martin Post
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Brian P Kavanagh
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada Departments of Critical Care Medicine and Anaesthesia, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Beitler JR, Hubmayr RD, Malhotra A. Rebuttal from Jeremy R. Beitler, Rolf D. Hubmayr and Atul Malhotra. J Physiol 2013; 591:2773. [PMID: 23729793 DOI: 10.1113/jphysiol.2013.255646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
14
|
Cummins EP, Selfridge AC, Sporn PH, Sznajder JI, Taylor CT. Carbon dioxide-sensing in organisms and its implications for human disease. Cell Mol Life Sci 2013; 71:831-45. [PMID: 24045706 DOI: 10.1007/s00018-013-1470-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/22/2013] [Accepted: 08/30/2013] [Indexed: 12/29/2022]
Abstract
The capacity of organisms to sense changes in the levels of internal and external gases and to respond accordingly is central to a range of physiologic and pathophysiologic processes. Carbon dioxide, a primary product of oxidative metabolism is one such gas that can be sensed by both prokaryotic and eukaryotic cells and in response to altered levels, elicit the activation of multiple adaptive pathways. The outcomes of activating CO2-sensitive pathways in various species include increased virulence of fungal and bacterial pathogens, prey-seeking behavior in insects as well as taste perception, lung function, and the control of immunity in mammals. In this review, we discuss what is known about the mechanisms underpinning CO2 sensing across a range of species and consider the implications of this for physiology, disease progression, and the possibility of developing new therapeutics for inflammatory and infectious disease.
Collapse
Affiliation(s)
- Eoin P Cummins
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
15
|
Herold S, Gabrielli NM, Vadász I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2013; 305:L665-81. [PMID: 24039257 DOI: 10.1152/ajplung.00232.2013] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review we summarize recent major advances in our understanding on the molecular mechanisms, mediators, and biomarkers of acute lung injury (ALI) and alveolar-capillary barrier dysfunction, highlighting the role of immune cells, inflammatory and noninflammatory signaling events, mechanical noxae, and the affected cellular and molecular entities and functions. Furthermore, we address novel aspects of resolution and repair of ALI, as well as putative candidates for treatment of ALI, including pharmacological and cellular therapeutic means.
Collapse
Affiliation(s)
- Susanne Herold
- Dept. of Internal Medicine, Justus Liebig Univ., Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany.
| | | | | |
Collapse
|