1
|
Pakalapati N, Chiang CC, Durand DM. Low-frequency stimulation of corpus callosum suppresses epileptiform activity in the cortex through γ-aminobutyric acid type B receptor and slow afterhyperpolarization-mediated reduction in tissue excitability. Epilepsia 2024. [PMID: 39425912 DOI: 10.1111/epi.18135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Deep brain stimulation, particularly low-frequency stimulation (LFS) targeting fiber tracts, has emerged as a potential therapy for drug-resistant epilepsy (DRE) and for generalized epilepsy, both of which pose significant treatment challenges. LFS diffusely suppresses seizures in the cortex when applied to fiber tracts like the corpus callosum (CC). Nevertheless, the specific processes responsible for suppressing epileptic activity in the cortex induced by LFS remain unclear. This study investigates the mechanisms underlying the antiepileptic effect in the cortex of LFS of the CC in coronal rodent brain slices. METHODS An in vitro 4-aminopyridine (4-AP) seizure model of cortical seizures was generated. LFS stimulation parameters were optimized to provide the largest antiepileptic effect in the cortex when applied to the CC. Changes to tissue excitability and percent time spent seizing were measured due to LFS in artificial cerebrospinal fluid, 4-AP, and in the presence of various specific and nonspecific γ-aminobutyric acid type B (GABAB) and slow afterhyperpolarization (sAHP) antagonists. RESULTS LFS significantly suppressed seizure activity in the cortex, with an optimal frequency of 5 Hz (76.5%). Tissue excitability during LFS reduces across a wide range of interstimulus intervals, with a maximum reduction at 200 ms. Notably, the tissue excitability remains depressed at 1000 ms. LFS, in the presence of GABAB antagonists, had diminished seizure reduction (<15%) and failed to reduce tissue excitability in the 50-400-ms range. Tissue excitability measured with paired pulses in the 600-1000-ms range was depressed in the presence of GABAB antagonists, suggesting a different antiepileptic mechanism was active. Upon administering sAHP antagonists, seizure reduction was once again diminished (<15%). Upon administration of both sAHP and GABAB antagonists, LFS failed to provide any meaningful seizure reduction (<5%). SIGNIFICANCE LFS of the CC provides an antiepileptic effect in the cortex with well-understood mechanisms and could be an alternative to surgical intervention for patients suffering from DRE.
Collapse
Affiliation(s)
- Nrupen Pakalapati
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chia-Chu Chiang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Shen Y, Gong Y, Da X, Gao S, Zhang S, Sun M, Yang Y, Qiu X, Li M, Zheng Y, Fei F, Wang Y, Chen Z, Xu C. Low-frequency Stimulation at the Subiculum Prevents Extensive Secondary Epileptogenesis in Temporal Lobe Epilepsy. Neurosci Bull 2024; 40:564-576. [PMID: 38244139 PMCID: PMC11127896 DOI: 10.1007/s12264-023-01173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/05/2023] [Indexed: 01/22/2024] Open
Abstract
Secondary epileptogenesis is characterized by increased epileptic susceptibility and a tendency to generate epileptiform activities outside the primary focus. It is one of the major resultants of pharmacoresistance and failure of surgical outcomes in epilepsy, but still lacks effective treatments. Here, we aimed to test the effects of low-frequency stimulation (LFS) at the subiculum for secondary epileptogenesis in a mouse model. Here, secondary epileptogenesis was simulated at regions both contralateral and ipsilateral to the primary focus by applying successive kindling stimuli. Mice kindled at the right CA3 showed higher seizure susceptibilities at both the contralateral CA3 and the ipsilateral entorhinal cortex and had accelerated kindling processes compared with naive mice. LFS at the ipsilateral subiculum during the primary kindling progress at the right CA3 effectively prevented secondary epileptogenesis at both the contralateral CA3 and the ipsilateral entorhinal cortex, characterized by decreased seizure susceptibilities and a retarded kindling process at those secondary foci. Only application along with the primary epileptogenesis was effective. Notably, the effects of LFS on secondary epileptogenesis were associated with its inhibitory effect at the secondary focus through interfering with the enhancement of synaptic connections between the primary and secondary foci. These results imply that LFS at the subiculum is an effective preventive strategy for extensive secondary epileptogenesis in temporal lobe epilepsy and present the subiculum as a target with potential translational importance.
Collapse
Affiliation(s)
- Yujia Shen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoli Da
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shajing Gao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuo Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, China
| | - Minjuan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuanzhi Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Menghan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Toprani S, Durand DM. Mechanisms of Neurostimulation for Epilepsy. Epilepsy Curr 2023; 23:298-302. [PMID: 37901784 PMCID: PMC10601041 DOI: 10.1177/15357597231191887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
This review discusses the use of neurostimulation therapies for epilepsy treatment, including vagal nerve stimulation, responsive neurostimulation, and deep brain stimulation. Different therapeutic strategies and their underlying mechanisms are explored, with a focus on optimizing parameters for seizure reduction. The review also highlights the paradigm shift toward a more diverse and multimodal approach to deep brain neuromodulation.
Collapse
Affiliation(s)
- Sheela Toprani
- Neurology, Division of Epilepsy, University of California
Davis, CA, USA
| | - Dominique M. Durand
- Department of Biomedical Engineering, Neural Engineering
Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
5
|
Graham RT, Parrish RR, Alberio L, Johnson EL, Owens L, Trevelyan AJ. Optogenetic stimulation reveals a latent tipping point in cortical networks during ictogenesis. Brain 2023; 146:2814-2827. [PMID: 36572952 PMCID: PMC10316782 DOI: 10.1093/brain/awac487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
Brain-state transitions are readily apparent from changes in brain rhythms,1 but are difficult to predict, suggestive that the underlying cause is latent to passive recording methods. Among the most important transitions, clinically, are the starts of seizures. We here show that an 'active probing' approach may have several important benefits for epileptic management, including by helping predict these transitions. We used mice expressing the optogenetic actuator, channelrhodopsin, in pyramidal cells, allowing this population to be stimulated in isolation. Intermittent stimulation at frequencies as low as 0.033 Hz (period = 30 s) delayed the onset of seizure-like events in an acute brain slice model of ictogenesis, but the effect was lost if stimulation was delivered at even lower frequencies (1/min). Notably, active probing additionally provides advance indication of when seizure-like activity is imminent, revealed by monitoring the postsynaptic response to stimulation. The postsynaptic response, recorded extracellularly, showed an all-or-nothing change in both amplitude and duration, a few hundred seconds before seizure-like activity began-a sufficient length of time to provide a helpful warning of an impending seizure. The change in the postsynaptic response then persisted for the remainder of the recording, indicative of a state change from a pre-epileptic to a pro-epileptic network. This occurred in parallel with a large increase in the stimulation-triggered Ca2+ entry into pyramidal dendrites, and a step increase in the number of evoked postsynaptic action potentials, both consistent with a reduction in the threshold for dendritic action potentials. In 0 Mg2+ bathing media, the reduced threshold was not associated with changes in glutamatergic synaptic function, nor of GABAergic release from either parvalbumin or somatostatin interneurons, but simulations indicate that the step change in the optogenetic response can instead arise from incremental increases in intracellular [Cl-]. The change in the response to stimulation was replicated by artificially raising intracellular [Cl-], using the optogenetic chloride pump, halorhodopsin. By contrast, increases in extracellular [K+] cannot account for the firing patterns in the response to stimulation, although this, and other cellular changes, may contribute to ictal initiation in other circumstances. We describe how these various cellular changes form a synergistic network of positive feedback mechanisms, which may explain the precipitous nature of seizure onset. This model of seizure initiation draws together several major lines of epilepsy research as well as providing an important proof-of-principle regarding the utility of open-loop brain stimulation for clinical management of the condition.
Collapse
Affiliation(s)
- Robert T Graham
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - R Ryley Parrish
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Alberio
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Emily L Johnson
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Owens
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew J Trevelyan
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
6
|
Huang H, Gregg NM, Ojeda Valencia G, Brinkmann BH, Lundstrom BN, Worrell GA, Miller KJ, Hermes D. Electrical Stimulation of Temporal and Limbic Circuitry Produces Distinct Responses in Human Ventral Temporal Cortex. J Neurosci 2023; 43:4434-4447. [PMID: 37188514 PMCID: PMC10278681 DOI: 10.1523/jneurosci.1325-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The human ventral temporal cortex (VTC) is highly connected to integrate visual perceptual inputs with feedback from cognitive and emotional networks. In this study, we used electrical brain stimulation to understand how different inputs from multiple brain regions drive unique electrophysiological responses in the VTC. We recorded intracranial EEG data in 5 patients (3 female) implanted with intracranial electrodes for epilepsy surgery evaluation. Pairs of electrodes were stimulated with single-pulse electrical stimulation, and corticocortical evoked potential responses were measured at electrodes in the collateral sulcus and lateral occipitotemporal sulcus of the VTC. Using a novel unsupervised machine learning method, we uncovered 2-4 distinct response shapes, termed basis profile curves (BPCs), at each measurement electrode in the 11-500 ms after stimulation interval. Corticocortical evoked potentials of unique shape and high amplitude were elicited following stimulation of several regions and classified into a set of four consensus BPCs across subjects. One of the consensus BPCs was primarily elicited by stimulation of the hippocampus; another by stimulation of the amygdala; a third by stimulation of lateral cortical sites, such as the middle temporal gyrus; and the final one by stimulation of multiple distributed sites. Stimulation also produced sustained high-frequency power decreases and low-frequency power increases that spanned multiple BPC categories. Characterizing distinct shapes in stimulation responses provides a novel description of connectivity to the VTC and reveals significant differences in input from cortical and limbic structures.SIGNIFICANCE STATEMENT Disentangling the numerous input influences on highly connected areas in the brain is a critical step toward understanding how brain networks work together to coordinate human behavior. Single-pulse electrical stimulation is an effective tool to accomplish this goal because the shapes and amplitudes of signals recorded from electrodes are informative of the synaptic physiology of the stimulation-driven inputs. We focused on targets in the ventral temporal cortex, an area strongly implicated in visual object perception. By using a data-driven clustering algorithm, we identified anatomic regions with distinct input connectivity profiles to the ventral temporal cortex. Examining high-frequency power changes revealed possible modulation of excitability at the recording site induced by electrical stimulation of connected regions.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory A Worrell
- Department of Neurology
- Department of Physiology and Biomedical Engineering
| | - Kai J Miller
- Department of Physiology and Biomedical Engineering
- Department of Neurologic Surgery
| | - Dora Hermes
- Department of Neurology
- Department of Physiology and Biomedical Engineering
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
7
|
Avoli M, Chen LY, Di Cristo G, Librizzi L, Scalmani P, Shiri Z, Uva L, de Curtis M, Lévesque M. Ligand-gated mechanisms leading to ictogenesis in focal epileptic disorders. Neurobiol Dis 2023; 180:106097. [PMID: 36967064 DOI: 10.1016/j.nbd.2023.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
We review here the neuronal mechanisms that cause seizures in focal epileptic disorders and, specifically, those involving limbic structures that are known to be implicated in human mesial temporal lobe epilepsy. In both epileptic patients and animal models, the initiation of focal seizures - which are most often characterized by a low-voltage fast onset EEG pattern - is presumably dependent on the synchronous firing of GABA-releasing interneurons that, by activating post-synaptic GABAA receptors, cause large increases in extracellular [K+] through the activation of the co-transporter KCC2. A similar mechanism may contribute to seizure maintenance; accordingly, inhibiting KCC2 activity transforms seizure activity into a continuous pattern of short-lasting epileptiform discharges. It has also been found that interactions between different areas of the limbic system modulate seizure occurrence by controlling extracellular [K+] homeostasis. In line with this view, low-frequency electrical or optogenetic activation of limbic networks restrain seizure generation, an effect that may also involve the activation of GABAB receptors and activity-dependent changes in epileptiform synchronization. Overall, these findings highlight the paradoxical role of GABAA signaling in both focal seizure generation and maintenance, emphasize the efficacy of low-frequency activation in abating seizures, and provide experimental evidence explaining the poor efficacy of antiepileptic drugs designed to augment GABAergic function in controlling seizures in focal epileptic disorders.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada; Neurology & Neurosurgery and of Physiology, McGill University, Montreal H3A 2B4, Que, Canada.
| | - Li-Yuan Chen
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Québec H3T 1N8, Canada; CHU Sainte-Justine Research Center, Montréal, Québec H3T 1C5, Canada
| | - Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Scalmani
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Zahra Shiri
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Laura Uva
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| |
Collapse
|
8
|
Rezaei M, Raoufy MR, Fathollahi Y, Shojaei A, Mirnajafi-Zadeh J. Tonic and phasic stimulations of ventral tegmental area have opposite effects on pentylenetetrazol kindled seizures in mice. Epilepsy Res 2023; 189:107073. [PMID: 36584482 DOI: 10.1016/j.eplepsyres.2022.107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Dopamine may be involved in the anticonvulsant action of deep brain stimulation (DBS). Therefore, ventral tegmental area (VTA), as a brain dopaminergic nucleus, may be a suitable target for DBS anticonvulsant action. This study investigated the effect of tonic and phasic stimulations of the VTA on seizure parameters. Seizures were induced in adult mice by sequential injections of a sub-convulsive dose of 35 mg/kg pentylenetetrazole (PTZ) every 48 h to develop the chemical kindling until the mice reached full kindled state (showing three consecutive seizure stages 4 or 5). Fully kindled mice received DBS once a day as tonic (square waves at 1 Hz; pulse duration: 200 μs; intensity: 300 μA; 600 pulses in 10 min) or phasic (square waves at 100 Hz; pulse duration: 200 μs; intensity: 300 μA; 8 trains of 10 pulses at 1 min interval; 800 pulses in 10 min) stimulations applied into their VTA for 4 days. A single dose of PTZ was injected after each DBS. Simultaneously electrocorticography and video recordings were performed during the seizure for accuracy in seizure severity parameters detection. Tonic but not phasic stimulation significantly decreased the epileptiform discharge duration and the seizure behavioral parameters such as maximum seizure stage, stage 5 duration, seizure duration. In addition, focal to generalized seizure latency increased following VTA tonic stimulation. These data suggest that tonic (but not phasic) stimulation of VTA before PTZ injection on 4 test days had anticonvulsant effects on PTZ-kindled seizures.
Collapse
Affiliation(s)
- Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Proskurina EY, Chizhov AV, Zaitsev AV. Optogenetic Low-Frequency Stimulation of Principal Neurons, but Not Parvalbumin-Positive Interneurons, Prevents Generation of Ictal Discharges in Rodent Entorhinal Cortex in an In Vitro 4-Aminopyridine Model. Int J Mol Sci 2022; 24:ijms24010195. [PMID: 36613660 PMCID: PMC9820186 DOI: 10.3390/ijms24010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Low-frequency electrical stimulation is used to treat some drug-resistant forms of epilepsy. Despite the effectiveness of the method in suppressing seizures, there is a considerable risk of side effects. An optogenetic approach allows the targeting of specific populations of neurons, which can increase the effectiveness and safety of low-frequency stimulation. In our study, we tested the efficacy of the suppression of ictal activity in entorhinal cortex slices in a 4-aminopyridine model with three variants of low-frequency light stimulation (LFLS): (1) activation of excitatory and inhibitory neurons (on Thy1-ChR2-YFP mice), (2) activation of inhibitory interneurons only (on PV-Cre mice after virus injection with channelrhodopsin2 gene), and (3) hyperpolarization of excitatory neurons (on Wistar rats after virus injection with archaerhodopsin gene). Only in the first variant did simultaneous LFLS of excitatory and inhibitory neurons replace ictal activity with interictal activity. We suggest that LFLS caused changes in the concentration gradients of K+ and Na+ cations across the neuron membrane, which activated Na-K pumping. According to the mathematical modeling, the increase in Na-K pump activity in neurons induced by LFLS led to an antiepileptic effect. Thus, a less specific and generalized optogenetic effect on entorhinal cortex neurons was more effective in suppressing ictal activity in the 4-aminopyridine model.
Collapse
Affiliation(s)
- Elena Y. Proskurina
- Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Toreza Prospekt, 194223 St. Petersburg, Russia
| | - Anton V. Chizhov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Toreza Prospekt, 194223 St. Petersburg, Russia
- Computational Physics Laboratory, Ioffe Institute, 26 Polytekhnicheskaya Street, 194021 St. Petersburg, Russia
- MathNeuro Team, Inria Centre at Universite Cote d’Azur, 06902 Sophia Antipolis, France
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Toreza Prospekt, 194223 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
10
|
Khodadadi M, Zare M, Rezaei M, Bakhtiarzadeh F, Barkley V, Shojaei A, Raoufy MR, Mirnajafi-Zadeh J. Effect of low frequency stimulation of olfactory bulb on seizure severity, learning, and memory in kindled rats. Epilepsy Res 2022; 188:107055. [DOI: 10.1016/j.eplepsyres.2022.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
11
|
Avoli M, Lévesque M. GABA B Receptors: are they Missing in Action in Focal Epilepsy Research? Curr Neuropharmacol 2022; 20:1704-1716. [PMID: 34429053 PMCID: PMC9881065 DOI: 10.2174/1570159x19666210823102332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
GABA, the key inhibitory neurotransmitter in the adult forebrain, activates pre- and postsynaptic receptors that have been categorized as GABAA, which directly open ligand-gated (or receptor-operated) ion-channels, and GABAB, which are metabotropic since they operate through second messengers. Over the last three decades, several studies have addressed the role of GABAB receptors in the pathophysiology of generalized and focal epileptic disorders. Here, we will address their involvement in focal epileptic disorders by mainly reviewing in vitro studies that have shown: (i) how either enhancing or decreasing GABAB receptor function can favour epileptiform synchronization and thus ictogenesis, although with different features; (ii) the surprising ability of GABAB receptor antagonism to disclose ictal-like activity when the excitatory ionotropic transmission is abolished; and (iii) their contribution to controlling seizure-like discharges during repetitive electrical stimuli delivered in limbic structures. In spite of this evidence, the role of GABAB receptor function in focal epileptic disorders has been attracting less interest when compared to the numerous studies that have addressed GABAA receptor signaling. Therefore, the main aim of our mini-review is to revive interest in the function of GABAB receptors in focal epilepsy research.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of; ,Department of Experimental Medicine, Sapienza University of Rome, 00185Rome, Italy,Address correspondence to this author at the Montreal Neurological Institute-Hospital, 3801 University Street, Montréal, Canada, H3A 2B4, QC; Tels: +1 514 998 6790; +39 333 483 1060; E-mail:
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of;
| |
Collapse
|
12
|
Subramanian M, Chiang CC, Couturier NH, Durand DM. Theta waves, neural spikes and seizures can propagate by ephaptic coupling in vivo. Exp Neurol 2022; 354:114109. [PMID: 35551899 PMCID: PMC10214533 DOI: 10.1016/j.expneurol.2022.114109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Electric field coupling has been shown to be responsible for non-synaptic neural activity propagation in hippocampal slices and cortical slices. Epileptiform and slow-wave sleep activity can propagate by electric field coupling without using synaptic connections at speeds of ~0.1 m/s in vitro. However, the characteristics of the events that can propagate using electric field coupling through a volume conductor in vivo have not been studied. Thus, we tested the hypothesis that various types of neural signals such as interictal spikes, theta waves and seizures could propagate in vivo across a transection in the hippocampus. We induced epileptiform activity in 4 rats under anesthesia by injecting 4-aminopyridine in the temporal region of the hippocampus, four recording electrodes were inserted along the longitudinal axis of the hippocampus. A transection was made between the electrodes to study the propagation of the neural activity. Although 54% of the interictal spikes could propagate through the cut, only those spikes with a high amplitude and short duration had a high probability to do so. 70% of seizure events could propagate through the cut but parameters distinguishing between propagating and non-propagating seizure events could not be identified. Theta activity was also observed to propagate at a mean speed of 0.16 ± 0.12 m/s in the characteristic range of propagation using electric field coupling through the transection. The electric field volume conduction mechanism was confirmed by showing that propagation was blocked by placing a dielectric layer within the cut. The speed of propagation was not affected by the transection thereby providing further evidence that various types of neural signals including activity in the theta range can propagate by electric field coupling in-vivo.
Collapse
Affiliation(s)
- Muthumeenakshi Subramanian
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chia-Chu Chiang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas H Couturier
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Zhang F, Yang Y, Zheng Y, Zhu J, Wang P, Xu K. Combination of Matching Responsive Stimulations of Hippocampus and Subiculum for Effective Seizure Suppression in Temporal Lobe Epilepsy. Front Neurol 2021; 12:638795. [PMID: 34512497 PMCID: PMC8426572 DOI: 10.3389/fneur.2021.638795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Responsive neural stimulation (RNS) is considered a promising neural modulation therapy for refractory epilepsy. Combined stimulation on different targets may hold great promise for improving the efficacy of seizure control since neural activity changed dynamically within associated brain targets in the epileptic network. Three major issues need to be further explored to achieve better efficacy of combined stimulation: (1) which nodes within the epileptogenic network should be chosen as stimulation targets? (2) What stimulus frequency should be delivered to different targets? and (3) Could the efficacy of RNS for seizure control be optimized by combined different stimulation targets together? In our current study, Granger causality (GC) method was applied to analyze epileptogenic networks for finding key targets of RNS. Single target stimulation (100 μA amplitude, 300 μs pulse width, 5s duration, biphasic, charge-balanced) with high frequency (130 Hz, HFS) or low frequency (5 Hz, LFS) was firstly delivered by our lab designed RNS systems to CA3, CA1, subiculum (SUB) of hippocampi, and anterior nucleus of thalamus (ANT). The efficacy of combined stimulation with different groups of frequencies was finally assessed to find out better combined key targets with optimal stimulus frequency. Our results showed that stimulation individually delivered to SUB and CA1 could shorten the average duration of seizures. Different stimulation frequencies impacted the efficacy of seizure control, as HFS delivered to CA1 and LFS delivered to SUB, respectively, were more effective for shortening the average duration of electrographic seizure in Sprague-Dawley rats (n = 3). Moreover, the synchronous stimulation of HFS in CA1 combined with LFS in SUB reduced the duration of discharge significantly in rats (n = 6). The combination of responsive stimulation at different targets may be an inspiration to optimize stimulation therapy for epilepsy.
Collapse
Affiliation(s)
- Fang Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Yufang Yang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Yongte Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Junming Zhu
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Ping Wang
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Abstract
[Box: see text]
Collapse
|
15
|
Pedersen M, Zalesky A. Intracranial brain stimulation modulates fMRI-based network switching. Neurobiol Dis 2021; 156:105401. [PMID: 34023395 DOI: 10.1016/j.nbd.2021.105401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022] Open
Abstract
The extent to which functional MRI (fMRI) reflects direct neuronal changes remains unknown. Using 160 simultaneous electrical stimulation (es-fMRI) and intracranial brain stimulation recordings acquired in 26 individuals with epilepsy (with varying electrode locations), we tested whether brain networks dynamically change during intracranial brain stimulation, aiming to establish whether switching between brain networks is reduced after intracranial brain stimulation. As the brain spontaneously switches between a repertoire of intrinsic functional network configurations and the rate of switching is likely increased in epilepsy, we hypothesised that intracranial stimulation would reduce the brain's switching rate, thus potentially normalising aberrant brain network dynamics. To test this hypothesis, we quantified the rate that brain regions changed networks over time in response to brain stimulation, using network switching applied to multilayer modularity analysis of time-resolved es-fMRI connectivity. Network switching and synchrony was decreased after the first brain stimulation, followed by a more consistent pattern of network switching over time. This change was commonly observed in cortical networks and adjacent to the electrode targets. Our results suggest that neuronal perturbation is likely to modulate large-scale brain networks, and multilayer network modelling may be used to inform the clinical efficacy of brain stimulation in epilepsy.
Collapse
Affiliation(s)
- Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology (AUT), Auckland, New Zealand.
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne, VIC, Australia; Melbourne School of Engineering, The University of Melbourne, VIC, Australia
| |
Collapse
|
16
|
Wu YJ, Chien ME, Chiang CC, Huang YZ, Durand DM, Hsu KS. Delta oscillation underlies the interictal spike changes after repeated transcranial direct current stimulation in a rat model of chronic seizures. Brain Stimul 2021; 14:771-779. [PMID: 33989818 DOI: 10.1016/j.brs.2021.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) provides a noninvasive polarity-specific constant current to treat epilepsy, through a mechanism possibly involving excitability modulation and neural oscillation. OBJECTIVE To determine whether EEG oscillations underlie the interictal spike changes after tDCS in rats with chronic spontaneous seizures. METHODS Rats with kainic acid-induced spontaneous seizures were subjected to cathodal tDCS or sham stimulation for 5 consecutive days. Video-EEG recordings were collected immediately pre- and post-stimulation and for the subsequent 2 weeks following stimulation. The acute pre-post stimulation and subacute follow-up changes of interictal spikes and EEG oscillations in tDCS-treated rats were compared with sham. Ictal EEG with seizure behaviors, hippocampal brain-derived neurotrophic factor (BDNF) protein expression, and mossy fiber sprouting were compared between tDCS and sham rats. RESULTS Interictal spike counts were reduced immediately following tDCS with augmented delta and diminished beta and gamma oscillations compared with sham. Cathodal tDCS also enhanced delta oscillations in normal rats. However, increased numbers of interictal spikes with a decrease of delta and theta oscillations were observed in tDCS-treated rats compared with sham during the following 2 weeks after stimulation. Resuming tDCS suppressed the increase of interictal spike activity. In tDCS rats, hippocampal BDNF protein expression was decreased while mossy fiber sprouting did not change compared with sham. CONCLUSIONS The inverse relationship between the changes of delta oscillation and interictal spikes during tDCS on and off stimulation periods indicates that an enhanced endogenous delta oscillation underlies the tDCS inhibitory effect on epileptic excitability.
Collapse
Affiliation(s)
- Yi-Jen Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
| | - Miao-Er Chien
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan
| | - Chia-Chu Chiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ying-Zu Huang
- Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan; Medical School and Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Dominique M Durand
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
17
|
Ahmadirad N, Fathollahi Y, Janahmadi M, Ghasemi Z, Shojaei A, Rezaei M, Barkley V, Mirnajafi-Zadeh J. The role of α adrenergic receptors in mediating the inhibitory effect of electrical brain stimulation on epileptiform activity in rat hippocampal slices. Brain Res 2021; 1765:147492. [PMID: 33887250 DOI: 10.1016/j.brainres.2021.147492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
The Inhibitory effect of electrical low-frequency stimulation (LFS) on neuronal excitability and seizure occurrence has been indicated in experimental models, but the precise mechanism has not established. This investigation was intended to figure out the role of α1 and α2 adrenergic receptors in LFS' inhibitory effect on neuronal excitability. Epileptiform activity induced in an in vitro rat hippocampal slice preparation by high K+ ACSF and LFS (900 square wave pulses at 1 Hz) was administered at the beginning of epileptiform activity to the Schaffer collaterals. In CA1 pyramidal neurons, the electrophysiological properties were measured at the baseline, before high K+ ACSF washout, and at 15 min after high K+ ACSF washout using whole-cell, patch-clamp recording. Results indicated that after high K+ ACSF washout, prazosine (10 µM; α1 adrenergic receptor antagonist) and yohimbine (5 µM; α2 adrenergic receptor antagonist) suppressed the LFS' effect of reducing rheobase current and utilization time following depolarizing ramp current, the latency to the first spike following a depolarizing current and latency to the first rebound action potential following hyperpolarizing current pulses. Thus, it may be proposed that LFS' inhibitory action on the neuronal hyperexcitability, in some way, is mediated by α1 and α2 adrenergic receptors.
Collapse
Affiliation(s)
- Nooshin Ahmadirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ghasemi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
Smirnova EY, Sinyak DS, Chizhov AV, Zaitsev AV. Age-Dependent Generation of Epileptiform
Activity
in the 4-Aminopyridine Model with Slices of the Rat Entorhinal Cortex. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Liu H, Carlen PL, Zhang L. Examinations of Bilateral Epileptiform Activities in Hippocampal Slices Obtained From Young Mice. Front Cell Neurosci 2021; 14:593840. [PMID: 33551747 PMCID: PMC7854570 DOI: 10.3389/fncel.2020.593840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Bilateral interconnections through the hippocampal commissure play important roles in synchronizing or spreading hippocampal seizure activities. Intact hippocampi or bilateral hippocampal slices have been isolated from neonatal or immature rats (6–7 or 12–21 days old, respectively) and the mechanisms underlying the bilateral synchrony of hippocampal epileptiform activities have been investigated. However, the feasibility of examining bilateral epileptiform activities of more developed hippocampal circuitry in vitro remains to be explored. For this, we prepared bilateral hippocampal slices from C57 black mice, a strain commonly used in neuroscience and for genetic/molecular modifications. Young mice (21–24-day-old) were used in most experiments. A 600-μm-thick slice was obtained from each mouse by horizontal vibratome sectioning. Bilateral dorsal hippocampal and connecting dorsal hippocampal commissure (DHC) tissues were preserved in the slice and extrahippocampal tissues were removed. Slices were recorded in a submerged chamber mainly at a room temperature (21–22°C). Bilateral CA3 areas were monitored by extracellular recordings, and unilateral electrical stimulation was used to elicit CA3 synaptic field potentials. The unilateral stimulation could elicit population spikes in the contralateral CA3 area. These contralateral spikes were attenuated by inhibiting synaptic transmission with cobalt-containing medium and were abolished when a cut was made at the DHC. Self-sustained and bilaterally correlated epileptiform potentials were observed following application of 4-aminopyradine and became independent after the DHC cut. Bilateral hippocampal activities were detectable in some slices of adult mice and/or at 35–36°C, but with smaller amplitudes and variable waveforms compared to those observed from slices of young mice and at the room temperature. Together, these observations suggested that examining bilateral epileptiform activities in hippocampal slices of young mice is feasible. The weaknesses and limitations of this preparation and our experimentation are discussed.
Collapse
Affiliation(s)
- Haiyu Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Chapman KB, Yousef TA, Foster A, D Stanton-Hicks M, van Helmond N. Mechanisms for the Clinical Utility of Low-Frequency Stimulation in Neuromodulation of the Dorsal Root Ganglion. Neuromodulation 2020; 24:738-745. [PMID: 33236811 DOI: 10.1111/ner.13323] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dorsal root ganglion stimulation (DRG-S) involves the electrical modulation of the somata of afferent neural fibers to treat chronic pain. DRG-S has demonstrated clinical efficacy at frequencies lower than typically used with spinal cord stimulation (SCS). In a clinical study, we found that the frequency of DRG-S can be tapered to a frequency as low as 4 Hz with no loss of efficacy. This review discusses possible mechanisms of action underlying effective pain relief with very low-frequency DRG-S. MATERIALS AND METHODS We performed a literature review to explore the role of frequency in neural transmission and the corresponding relevance of frequency settings with neuromodulation. FINDINGS Sensory neural transmission is a frequency-modulated system, with signal frequency determining which mechanisms are activated in the dorsal horn. In the dorsal horn, low-frequency signaling (<20 Hz) activates inhibitory processes while higher frequencies (>25 Hz) are excitatory. Physiologically, low-threshold mechanoreceptors (LTMRs) fibers transmit or modulate innocuous mechanical touch at frequencies as low as 0.5-5 Hz, while nociceptive fibers transmit pain at high frequencies. We postulate that very low-frequency DRG-S, at least partially, harnesses LTMRs and the native endogenous opioid system. Utilizing lower stimulation frequency decreases the total energy delivery used for DRG-S, extends battery life, and facilitates the development of devices with smaller generators.
Collapse
Affiliation(s)
- Kenneth B Chapman
- Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York City, NY, USA.,Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Northwell Health, Manhasset, NY, USA
| | - Tariq A Yousef
- Spine & Pain Institute of New York, New York City, NY, USA
| | | | | | - Noud van Helmond
- Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Hospital, Camden, NJ, USA
| |
Collapse
|
21
|
Köksal Ersöz E, Modolo J, Bartolomei F, Wendling F. Neural mass modeling of slow-fast dynamics of seizure initiation and abortion. PLoS Comput Biol 2020; 16:e1008430. [PMID: 33166277 PMCID: PMC7676664 DOI: 10.1371/journal.pcbi.1008430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/19/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a dynamic and complex neurological disease affecting about 1% of the worldwide population, among which 30% of the patients are drug-resistant. Epilepsy is characterized by recurrent episodes of paroxysmal neural discharges (the so-called seizures), which manifest themselves through a large-amplitude rhythmic activity observed in depth-EEG recordings, in particular in local field potentials (LFPs). The signature characterizing the transition to seizures involves complex oscillatory patterns, which could serve as a marker to prevent seizure initiation by triggering appropriate therapeutic neurostimulation methods. To investigate such protocols, neurophysiological lumped-parameter models at the mesoscopic scale, namely neural mass models, are powerful tools that not only mimic the LFP signals but also give insights on the neural mechanisms related to different stages of seizures. Here, we analyze the multiple time-scale dynamics of a neural mass model and explain the underlying structure of the complex oscillations observed before seizure initiation. We investigate population-specific effects of the stimulation and the dependence of stimulation parameters on synaptic timescales. In particular, we show that intermediate stimulation frequencies (>20 Hz) can abort seizures if the timescale difference is pronounced. Those results have the potential in the design of therapeutic brain stimulation protocols based on the neurophysiological properties of tissue.
Collapse
Affiliation(s)
| | - Julien Modolo
- University of Rennes, Inserm-U1099, LTSI, Rennes, France
| | - Fabrice Bartolomei
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France
| | | |
Collapse
|
22
|
Presynaptic GABA B receptors underlie the antiepileptic effect of low-frequency electrical stimulation in the 4-aminopyridine model of epilepsy in brain slices of young rats. Brain Stimul 2020; 13:1387-1395. [PMID: 32717394 DOI: 10.1016/j.brs.2020.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Low-frequency electrical stimulation (LFES) of the brain is one of the promising methods for helping patients with pharmacoresistant epilepsy. However, the mechanism of the antiepileptic effect of LFES is still unclear. We applied electrophysiological and pharmacological tools and mathematical modeling to investigate it. Using the 4-aminopyridine (4-AP) model of epileptiform activity in juvenile rat brain slices, we found that LFES increased the interval between ictal discharges (IDs) in the entorhinal cortex. The blockade of GABAA, GABAB, AMPA, or NMDA synaptic receptors strongly affected the characteristics of epileptiform discharges in slices. However, only under the blockade of GABAB receptors, LFES becomes entirely ineffective, indicating that the activation of GABAB receptors underlies the main LFES antiepileptic effect. Further experiments allowed us to suggest that LFES activates mostly presynaptic GABAB receptors, which decrease the probability of glutamate release. In line with this hypothesis is the following data: 1) LFES reduces the short-term synaptic depression of excitatory postsynaptic currents similar to the agonist of GABAB receptors SKF-97541; 2) the blockade of excitatory amino acid transporters diminishes the antiepileptic effect of LFES; 3) modeling of the effects of LFES on the probability of glutamate release with a previously proposed mathematical model of epileptiform activity Epileptor-2 also shows the increase of the interval between IDs. Our findings point out a crucial role of presynaptic GABAB receptors in the antiepileptic effect of LFES in the 4-AP model in juvenile rat brain slices.
Collapse
|
23
|
The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity. Brain Stimul 2020; 13:1183-1195. [PMID: 32446925 DOI: 10.1016/j.brs.2020.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Researchers have used direct electrical brain stimulation to treat a range of neurological and psychiatric disorders. However, for brain stimulation to be maximally effective, clinicians and researchers should optimize stimulation parameters according to desired outcomes. OBJECTIVE The goal of our large-scale study was to comprehensively evaluate the effects of stimulation at different parameters and locations on neuronal activity across the human brain. METHODS To examine how different kinds of stimulation affect human brain activity, we compared the changes in neuronal activity that resulted from stimulation at a range of frequencies, amplitudes, and locations with direct human brain recordings. We recorded human brain activity directly with electrodes that were implanted in widespread regions across 106 neurosurgical epilepsy patients while systematically stimulating across a range of parameters and locations. RESULTS Overall, stimulation most often had an inhibitory effect on neuronal activity, consistent with earlier work. When stimulation excited neuronal activity, it most often occurred from high-frequency stimulation. These effects were modulated by the location of the stimulating electrode, with stimulation sites near white matter more likely to cause excitation and sites near gray matter more likely to inhibit neuronal activity. CONCLUSION By characterizing how different stimulation parameters produced specific neuronal activity patterns on a large scale, our results provide an electrophysiological framework that clinicians and researchers may consider when designing stimulation protocols to cause precisely targeted changes in human brain activity.
Collapse
|
24
|
Kurada L, Bayat A, Joshi S, Chahine A, Koubeissi MZ. Antiepileptic effects of electrical stimulation of the piriform cortex. Exp Neurol 2020; 325:113070. [DOI: 10.1016/j.expneurol.2019.113070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022]
|
25
|
Focal Suppression of Epileptiform Activity in the Hippocampus by a High-frequency Magnetic Field. Neuroscience 2020; 432:1-14. [PMID: 32105740 DOI: 10.1016/j.neuroscience.2020.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Electric current has been used for epilepsy treatment by targeting specific neural circuitries. Despite its success, direct contact between the electrode and tissue could cause side effects including pain, inflammation, and adverse biological reactions. Magnetic stimulation overcomes these limitations by offering advantages over biocompatibility and operational feasibility. However, the underlying neurological mechanisms of its action are largely unknown. In this work, a magnetic generating system was assembled that included a miniature coil. The coil was positioned above the CA3 area of mouse hippocampal slices. Epileptiform activity (EFA) was induced with low Mg2+/high K+ perfusion or with 100 µM 4-aminopyridine (4-AP). The miniature coil generated a sizable electric field that suppressed the local EFA in the hippocampus in the low-Mg2+/high-K+ model. The inhibition effect was dependent on the frequency and duration of the magnetic stimulus, with high frequency being more effective in suppressing EFA. EFA suppression by the magnetic field was also observed in the 4-AP model, in a frequency and duration - dependent manner. The study provides a platform for further investigation of cellular and molecular mechanisms underlying epilepsy treatment with time varying magnetic fields.
Collapse
|
26
|
Fan D, Wang Q. Closed-Loop Control of Absence Seizures Inspired by Feedback Modulation of Basal Ganglia to the Corticothalamic Circuit. IEEE Trans Neural Syst Rehabil Eng 2020; 28:581-590. [PMID: 32011258 DOI: 10.1109/tnsre.2020.2969426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basal ganglia (BG) has been demonstrated to play the role of modulation for absence seizure generated in the corticothalamic (CT) circuit. But it is unknown what the principle of modulation is and how to improve the modulation if BG fails to hold back the absence seizures. Although neurostimulation has been surgically employed to improve the clinical symptom of patients with epilepsy, the mechanism underlying the neurostimulation regulation is still unclear. In addition, it is not clear what sort of the spatiotemporal patterned stimulation protocols can effectively abate absence seizures with less side effect and energy consumption. Here, we address these issues on the previously proposed BG-CT model. In particular, we develop a reduced corticothalamic (RCT) moldel by viewing BG as a 2I:3O feedback modulator. By calculating the mean firing rate (MFR) and triggering mean firing rate (TMFR), we find that absence seizures can be induced or abated using the neurostimulations through driving the MFRs of the related neurons to fall into or be kicked out of the regions bounded by the TMFRs. In particular, closed-loop m:n ON-OFF anodic-cathodic-cathodic (ACC) triphase coordinated resetting stimulation (CRS) applied on the CT circuit and designed with the TMFR of subthalamic nucleus (STN) in BG could achieve the satisfying abatement effects of absence seizures with the least current consumption.
Collapse
|
27
|
Couturier NH, Durand DM. Comparison of fiber tract low frequency stimulation to focal and ANT stimulation in an acute rat model of focal cortical seizures. Brain Stimul 2019; 13:499-506. [PMID: 31902689 DOI: 10.1016/j.brs.2019.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Current implementations of direct brain stimulation for epilepsy in patients involve high-frequency (HFS) electrical current and targeting of grey matter. Studies have shown that low-frequency (LFS) fiber-tract stimulation may also prove effective. To compare the efficacy of high-frequency grey matter stimulation to the low-frequency fiber tract stimulation technique a well-controlled set of experiments using a single animal model of epilepsy is needed. OBJECTIVE The goal of this study was to determine the relative efficacy of different direct brain stimulation techniques for suppressing seizures using an acute rat model of focal cortical seizures. METHODS 4-AP was injected into the S1 region of cortex in rodents over 3 h. LFPs were recorded from the seizure focus and mirror focus to monitor seizure frequency during the experiments. CC-LFS, HFS-ANT, Focal-HFS, or a transection of the CC was applied. RESULTS Stimulation of the CC yielded a 65% ±14% (p = 0.0014) reduction of seizures in the focus and a 97% ±15% (p = 0.0026) reduction in the mirror focus (n = 7). By comparison transection of the CC produced a 65% ±18% reduction in the focus and a non-statistically significant reduction of 57% ±18% (p = 0.1381) in the mirror focus (n = 5). All other methods of stimulation failed to have a statistically significant effect on seizure suppression. CONCLUSIONS LFS of the CC is the only method of stimulation to significantly reduce seizure frequency in this model of focal cortical seizures. These results support the hypothesis that LFSof fiber tracts has significant potential for seizure control.
Collapse
Affiliation(s)
- Nicholas H Couturier
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Dominique M Durand
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
28
|
Li R, Wang J, Yu X, Xu P, Zhang S, Xu J, Bai Y, Dai Z, Sun Y, Ye R, Liu X, Ruan G, Xu G. Enhancing the effects of transcranial magnetic stimulation with intravenously injected magnetic nanoparticles. Biomater Sci 2019; 7:2297-2307. [PMID: 31050344 DOI: 10.1039/c9bm00178f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive and clinically approved method for treating neurological disorders. However, the relatively weak intracranial electric current induced by TMS is an obvious inferiority which can only produce limited treatment effects in clinical application. The present study aimed to investigate the possibility of enhancing the effects of TMS with intravenously administrated magnetic nanoparticles. To facilitate crossing of the blood-brain barrier (BBB), the superparamagnetic iron oxide nanoparticles (SPIONs) were coated with carboxylated chitosan and poly(ethylene glycol). To aid the nanoparticles in crossing the BBB and targeting the predesigned brain regions, an external permanent magnet was attached to the foreheads of the rats before the intravenous administration of SPIONs. The electrophysiological tests showed that the maximum MEP amplitude recorded in an individual rat was significantly higher in the SPIONs + magnet group than in the saline group (5.78 ± 2.54 vs. 1.80 ± 1.55 mV, P = 0.015). In the M1 region, biochemical tests detected that the number density of c-fos positive cells in the SPIONs + magnet group was 3.44 fold that of the saline group. These results suggest that intravenously injected SPIONs can enhance the effects of TMS in treating neurological disorders.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ahmadirad N, Fathollahi Y, Janahmadi M, Shojaei A, Ghasemi Z, Barkley V, Mirnajafi-Zadeh J. Low-Frequency Electrical Stimulation Reduces the Impairment in Synaptic Plasticity Following Epileptiform Activity in Rat Hippocampal Slices through α 1, But Not α 2, Adrenergic Receptors. Neuroscience 2019; 406:176-185. [PMID: 30872164 DOI: 10.1016/j.neuroscience.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023]
Abstract
Low frequency stimulation (LFS) has anticonvulsant effect and may restore the ability of long-term potentiation (LTP) to the epileptic brain. The mechanisms of LFS have not been completely determined. Here, we showed that LTP induction was impaired following in vitro epileptiform activity (EA) in hippocampal slices, but application of LFS prevented this impairment. Then, we investigated the involvement of α-adrenergic receptors in this effect of LFS. EA was induced by increasing the extracellular K+ concentration to 12 mM and EPSPs were recorded from CA1 neurons in whole cell configuration. EA increased EPSP amplitude from 6.9 ± 0.7 mV to 9.6 ± 0.6 mV. For LTP induction, the Schaffer collaterals were stimulated by high frequency stimulation (HFS; two trains of 100 pulses, 100 Hz at the interval of 20 s). The application of HFS resulted in 40.9 ± 2.3% increase in the amplitude of EPSPs. However, following EA, HFS could not produce any significant changes in EPSP amplitude. Administration of LFS (1 Hz, 900 pulses) to Schaffer collaterals at the beginning of EA restored LTP induction to the hippocampal slices and HFS increased the EPSPs amplitude up to 41.7 ± 3.1% of baseline. When slices were perfused by prazosin (α1-adrenergic receptor antagonist; 10 μM) before and during LFS application, LFS improvement on LTP induction was reduced significantly. Perfusion of slices by yohimbine (α2-adrenergic receptor antagonist; 5 μM) had no effect on LFS action. Therefore, it may be concluded that following epileptiform activity, LFS can improve the impairment of LTP generation through α1, but not α2, adrenergic receptor activity.
Collapse
Affiliation(s)
- Nooshin Ahmadirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Ghasemi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
30
|
Svejgaard B, Andreasen M, Nedergaard S. Role of GABA B receptors in proepileptic and antiepileptic effects of an applied electric field in rat hippocampus in vitro. Brain Res 2018; 1710:157-162. [PMID: 30599137 DOI: 10.1016/j.brainres.2018.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023]
Abstract
The mechanisms underlying antiepileptic effects of deep brain stimulation (DBS) are complex and poorly understood. Studies on the effects of applied electric fields on epileptic nervous tissue could enable future advances in DBS treatments. Applied electric fields are known to inhibit or enhance epileptic activity in vitro through direct effects on local neurons, but it is unclear whether trans-synaptic effects participate in such actions. The present study investigates, in an epileptic brain slice model, the influence of GABAB receptor activation on excitatory and suppressive effects of a short-duration (10 ms) electric field in rat hippocampus. The results show that perfusion of the GABAB receptor antagonist, CGP 55845 (2 μM), could abolish applied-field induced suppression of orthodromic-stimulus evoked epileptiform afterdischarge activity in the CA1 region. GABAB receptor blockade was associated with an enhanced excitatory (proepileptic) effect of the applied field. However, the suppressive effect, observed in isolation using weak field stimuli, was left unchanged. The G-protein-activated inwardly rectifying K+ channel (GIRK) antagonist, tertiapin (30-50 nM), mimicked the effects of CGP 55845. The results suggest that the applied field activate (elements of) local interneurons to release GABA onto GABAB receptors. The resulting activation of postsynaptic GIRK channels inhibits neuronal activity thereby dampening the direct stimulatory effect of the applied field. The study indicates that local-stimulus induced GABAB receptor activation can serve a protective role under antiepileptic paradigms by preventing electrical stimulation from causing hyperexcitation.
Collapse
Affiliation(s)
| | - Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
31
|
Couturier NH, Durand DM. Corpus callosum low-frequency stimulation suppresses seizures in an acute rat model of focal cortical seizures. Epilepsia 2018; 59:2219-2230. [PMID: 30426470 PMCID: PMC6279515 DOI: 10.1111/epi.14595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Low-frequency fiber-tract stimulation has been shown to be effective in treating mesial temporal lobe epilepsies through activation of the hippocampal commissure in rodents and human patients. The corpus callosum is a major pathway connecting the two hemispheres of the brain; however, few experiments have documented corpus callosum stimulation. The objective is to determine the efficacy of corpus callosum stimulation at low frequencies to suppress cortical seizures. METHODS 4-Aminopyridine was injected in the primary motor cortex of 24 rats under anesthesia. Recording electrodes were placed in the contralateral motor cortex and hippocampus. Three pairs of stimulating electrodes were inserted into the corpus callosum along its longitudinal axis. Local field potentials were recorded 1 hour before, during, and after stimulation to determine the effect of stimulation on seizure duration. Stimulation was delivered from each pair of electrodes independently in separate experiments. Furthermore, electrical stimulation was applied to the region of the corpus callosum with the highest degree of innervation of the seizure focus to compare the efficacy of different stimulation frequencies (1-30 Hz) on seizure suppression. RESULTS Corpus callosum stimulation was effective at suppressing seizures at 10 Hz by 76% (P < 0.05, n = 5) and at 20 Hz by 95% (P < 0.0001, n = 14). Stimulation at frequencies of 1 and 30 Hz did not have a significant effect on reducing the total time spent seizing (P > 0.9999, n = 5). Furthermore, stimulation was only effective at suppressing seizures when the pair of electrodes was placed within the section of corpus callosum containing fibers innervating the seizure focus. Secondarily generalized seizures in the hippocampus were eliminated when seizures in the cortical focus were suppressed. SIGNIFICANCE Low-frequency fiber-tract stimulation of the corpus callosum suppresses both cortical and cortically induced hippocampal seizures in an acute model of focal cortical seizures. The stimulation paradigm is selective, as it is only effective when targeted to specific regions of the corpus callosum that project maximally to cortical regions generating the seizure activity. Selective placement of stimulation electrodes along the corpus callosum could be used as a patient-specific treatment for cortical epilepsies.
Collapse
Affiliation(s)
- Nicholas H. Couturier
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Dominique M. Durand
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH, U.S.A
| |
Collapse
|
32
|
Young JC, Vaughan DN, Paolini AG, Jackson GD. Electrical stimulation of the piriform cortex for the treatment of epilepsy: A review of the supporting evidence. Epilepsy Behav 2018; 88:152-161. [PMID: 30269034 DOI: 10.1016/j.yebeh.2018.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
In this review, we consider how the piriform cortex is engaged in both focal and generalized epilepsy networks and postulate the various neural pathways that can be effectively neuromodulated by stimulation at this site. This highlights the common involvement of the piriform cortex in epilepsy. We address both current and future preclinical studies of deep brain stimulation (DBS) of the piriform cortex, with attention to the critical features of these trials that will enable them to be of greatest utility in informing clinical translation. Although recent DBS trials have utilized thalamic targets, electrical stimulation of the piriform cortex may also be a useful intervention for people with epilepsy. However, more work is required to develop a solid foundation for this approach before considering human trials.
Collapse
Affiliation(s)
- James C Young
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Victoria 3084, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| | - David N Vaughan
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Victoria 3084, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia; Department of Neurology, Austin Health, Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Antonio G Paolini
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Victoria 3084, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Level 6/10 Martin Street, Heidelberg, Victoria 3084, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Plenty Road and Kingsbury Drive, Bundoora, VIC 3068, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Victoria 3084, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia; Department of Neurology, Austin Health, Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
33
|
Gharib A, Sayyahi Z, Komaki A, Barkley V, Sarihi A, Mirnajafi-Zadeh J. The role of 5-HT 1A receptors of hippocampal CA1 region in anticonvulsant effects of low-frequency stimulation in amygdala kindled rats. Physiol Behav 2018; 196:119-125. [PMID: 30179595 DOI: 10.1016/j.physbeh.2018.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/24/2023]
Abstract
Low frequency stimulation (LFS) has been proposed as a method in the treatment of epilepsy, but its anticonvulsant mechanism is still unknown. In the current study, the hippocampal CA1 region was microinjected with NAD-299 (a selective 5-HT1A antagonist), and its role in mediating the inhibitory action of LFS on amygdala kindling was investigated. Male Wistar rats were kindled by amygdala stimulation in a semi-rapid kindling manner (12 stimulations per day). LFS (0.1 ms pulse duration at 1 Hz, 200 pulses, 50-150 μA) was applied at 5 min after termination of daily kindling stimulations. NAD (a selective 5-HT1A antagonist) was microinjected into the CA1 region of the hippocampus at the doses of 2.5 and 5 μg/1 μl. An open field test was also run to determine the motor activity of animals in different experimental groups. The application of LFS following daily kindling stimulations reduced the behavioral seizure stages, afterdischarge duration, and stage 5 seizure duration and increased the latency to stage 4 seizure compared to the kindled group. However, microinjection of NAD at the doses of 5 μg/1 μl, but not 2.5 μg/1 μl, blocked the inhibitory effect of LFS on behavioral and electrophysiological parameters in kindled animals. It could be presumed that 5-HT1A receptors in the CA1 area are involved in mediating the antiepileptic effects of LFS.
Collapse
Affiliation(s)
- Alireza Gharib
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zeinab Sayyahi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Abdolrahman Sarihi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
34
|
Abstract
Epilepsy affects all age groups and is one of the most common and most disabling neurological disorders. The accurate diagnosis of seizures is essential as some patients will be misdiagnosed with epilepsy, whereas others will receive an incorrect diagnosis. Indeed, errors in diagnosis are common, and many patients fail to receive the correct treatment, which often has severe consequences. Although many patients have seizure control using a single medication, others require multiple medications, resective surgery, neuromodulation devices or dietary therapies. In addition, one-third of patients will continue to have uncontrolled seizures. Epilepsy can substantially impair quality of life owing to seizures, comorbid mood and psychiatric disorders, cognitive deficits and adverse effects of medications. In addition, seizures can be fatal owing to direct effects on autonomic and arousal functions or owing to indirect effects such as drowning and other accidents. Deciphering the pathophysiology of epilepsy has advanced the understanding of the cellular and molecular events initiated by pathogenetic insults that transform normal circuits into epileptic circuits (epileptogenesis) and the mechanisms that generate seizures (ictogenesis). The discovery of >500 genes associated with epilepsy has led to new animal models, more precise diagnoses and, in some cases, targeted therapies.
Collapse
Affiliation(s)
- Orrin Devinsky
- Departments of Neurology, Neuroscience, Neurosurgery and Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Annamaria Vezzani
- Laboratory of Experimental Neurology, Department of Neuroscience, IRCCS 'Mario Negri' Institute for Pharmacological Research, Milan, Italy
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nathalie Jette
- Department of Neurology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, and Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Lévesque M, Salami P, Shiri Z, Avoli M. Interictal oscillations and focal epileptic disorders. Eur J Neurosci 2017. [DOI: 10.1111/ejn.13628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maxime Lévesque
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Pariya Salami
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Zahra Shiri
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Massimo Avoli
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
- Dipartimento di Medicina Sperimentale; Sapienza University of Rome; Roma Italy
| |
Collapse
|
36
|
Effects of low-frequency electrical stimulation of the anterior piriform cortex on kainate-induced seizures in rats. Epilepsy Behav 2017; 72:1-7. [PMID: 28564587 DOI: 10.1016/j.yebeh.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Recent evidence in animals and humans suggests that low-frequency stimulation (LFS) has significant antiepileptic properties. The anterior piriform cortex (APC) is a highly susceptible seizure-trigger zone and may be critical for the initiation and propagation of seizures originating from cortical and limbic foci. We used the kainic acid (KA) seizure model in rats to assess the therapeutic effect of LFS of the APC on seizures. METHODS Adult male Sprague-Dawley rats were implanted with electrodes in the left APC and recording electrodes bilaterally in the hippocampal CA3 regions. Rats were monitored continuously with video-EEG after the emergence of spontaneous recurrent seizures that followed induction of status epilepticus by intraperitoneal KA. After two weeks of baseline recordings to determine seizure frequency, LFS of the APC was applied 60-min On 15-min Off, for two weeks with 1Hz biphasic square waves, 0.2ms pulse width, at 200μA. Another 2-week period of video-EEG monitoring was done after the cessation of LFS to study the carry-over effect. Changes in seizure frequency, severity, and duration between baseline, during LFS, and post-LFS were analyzed using the Poisson regression model. RESULTS Overall seizure frequency decreased during the post-LFS period to 5% of that at baseline (p=0.003). Severe seizures (stages 4 and 5 on the Racine scale) decreased to 0% of the baseline during the post-LFS period. CONCLUSIONS Two weeks of LFS of the APC reduced spontaneous seizure frequency and severity in the KA model with the effect outlasting the stimulation. Our findings suggest that the APC can be an important therapeutic target for stimulation in epilepsy.
Collapse
|
37
|
Kim HY, Hur YJ, Kim HD, Park KM, Kim SE, Hwang TG. Modification of electrophysiological activity pattern after anterior thalamic deep brain stimulation for intractable epilepsy: report of 3 cases. J Neurosurg 2016; 126:2028-2035. [DOI: 10.3171/2016.6.jns152958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVEThalamic stimulation can provoke electroencephalography (EEG) synchronization or desynchronization, which can help to reduce the occurrence of seizures in intractable epilepsy, though the underlying mechanism is not fully understood. Therefore, the authors investigated changes in EEG electrical activity to better understand the seizure-reducing effects of deep brain stimulation (DBS) in patients with intractable epilepsy.METHODSElectrical activation patterns in the epileptogenic brains of 3 patients were analyzed using classical low-resolution electromagnetic tomography analysis recursively applied (CLARA). Electrical activity recorded during thalamic stimulation was compared with that recorded during the preoperative and postoperative off-stimulation states in patients who underwent anterior thalamic nucleus DBS for intractable epilepsy.RESULTSInterictal EEG was fully synchronized to the β frequency in the postoperative on-stimulation period. The CLARA showed that electrical activity during preoperative and postoperative off-stimulation states was localized in cortical and subcortical areas, including the insular, middle frontal, mesial temporal, and precentral areas. No electrical activity was localized in deep nucleus structures. However, with CLARA, electrical activity in the postoperative on-stimulation period was localized in the anterior cingulate area, basal ganglia, and midbrain.CONCLUSIONSAnterior thalamic stimulation could spread electrical current to the underlying neuronal networks that connect with the thalamus, which functions as a cortical pacemaker. Consequently, the thalamus could modify electrical activity within these neuronal networks and influence cortical EEG activity by inducing neuronal synchronization between the thalamus and cortical structures.
Collapse
Affiliation(s)
| | | | - Heung-Dong Kim
- 4Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kang Min Park
- 3Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan; and
| | - Sung Eun Kim
- 3Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan; and
| | | |
Collapse
|
38
|
Girgis F, Miller JP. White matter stimulation for the treatment of epilepsy. Seizure 2016; 37:28-31. [PMID: 26926734 DOI: 10.1016/j.seizure.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/03/2016] [Accepted: 02/06/2016] [Indexed: 10/22/2022] Open
Abstract
Electrical stimulation in the treatment of epilepsy has been tried in numerous forms and with a variety of targets. Some of these, such as anterior thalamic stimulation, responsive cortical stimulation, and vagal nerve stimulation, have shown promise. A relatively novel concept, that of white matter stimulation, offers a different mechanism in that a small population of stimulated axons can transmit current to a large population of epileptogenic neurons. In theory, this allows for the modulation of seizure circuits and neural networks using lower stimulation volumes. Although clinical data is currently sparse, we review the relevant studies pertaining to white matter stimulation in epilepsy thus far, and offer explanations as to its effects, potential advantages, and utility.
Collapse
Affiliation(s)
- Fady Girgis
- Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Jonathan P Miller
- Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
39
|
Klinger NV, Mittal S. Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy. Clin Neurol Neurosurg 2016; 140:11-25. [DOI: 10.1016/j.clineuro.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 10/26/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
|
40
|
Ladas TP, Chiang CC, Gonzalez-Reyes LE, Nowak T, Durand DM. Seizure reduction through interneuron-mediated entrainment using low frequency optical stimulation. Exp Neurol 2015; 269:120-32. [PMID: 25863022 PMCID: PMC4446206 DOI: 10.1016/j.expneurol.2015.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/20/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022]
Abstract
Low frequency electrical stimulation (LFS) can reduce neural excitability and suppress seizures in animals and patients with epilepsy. However the therapeutic outcome could benefit from the determination of the cell types involved in seizure suppression. We used optogenetic techniques to investigate the role of interneurons in LFS (1Hz) in the epileptogenic hippocampus. Optical low frequency stimulation (oLFS) was first used to activate the cation channel channelrhodopsin-2 (ChR2) in the Thy1-ChR2 transgenic mouse that expresses ChR2 in both excitatory and inhibitory neurons. We found that oLFS could effectively reduce epileptiform activity in the hippocampus through the activation of GAD-expressing hippocampal interneurons. This was confirmed using the VGAT-ChR2 transgenic mouse, allowing for selective optical activation of only GABA interneurons. Activating hippocampal interneurons through oLFS was found to cause entrainment of neural activity similar to electrical stimulation, but through a GABAA-mediated mechanism. These results confirm the robustness of the LFS paradigm and indicate that GABA interneurons play an unexpected role of shaping inter-ictal activity to decrease neural excitability in the hippocampus.
Collapse
Affiliation(s)
- Thomas P Ladas
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland OH 44106, USA
| | - Chia-Chu Chiang
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland OH 44106, USA
| | - Luis E Gonzalez-Reyes
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland OH 44106, USA
| | - Theodore Nowak
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland OH 44106, USA
| | - Dominique M Durand
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland OH 44106, USA.
| |
Collapse
|
41
|
Salam MT, Kassiri H, Genov R, Perez Velazquez JL. Rapid brief feedback intracerebral stimulation based on real-time desynchronization detection preceding seizures stops the generation of convulsive paroxysms. Epilepsia 2015; 56:1227-38. [PMID: 26119887 DOI: 10.1111/epi.13064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To investigate the abortion of seizure generation using "minimal" intervention in hippocampi using two rat models of human temporal lobe epilepsy. METHODS The recording or stimulation electrodes were implanted into both hippocampi (CA1 area). Using the kainic acid (chronic: experiment duration 24 days) and the 4-aminopyridine (acute: experiment duration 2 h) models of paroxysms in rats, a real-time feedback stimulation paradigm was implemented, which triggered a short periodic electrical stimulus (5 Hz for 5 s) upon detecting a seizure precursor. Our seizure precursor detection algorithm relied on the monitoring of the real-time phase synchronization analysis, and detected/anticipated electrographic seizures as early as a few seconds to a few minutes before the behavioral and electrographic seizure onset, with a very low false-positive rate of the detection. RESULTS The baseline mean seizure frequencies were 5.39 seizures per day (chronic) and 13.2 seizures per hour (acute). The phase synchrony analysis detected 88% (434 of 494) of seizures with a mean false alarm of 0.67 per day (chronic) and 83% (86 of 104) of seizures with a mean false alarm of 0.47 per hour (acute). The feedback stimulation reduced the seizure frequencies to 0.41 seizures per day (chronic) and 2.4 seizures per hour (acute). Overall, the feedback stimulation paradigm reduced seizure frequency by a minimum of 80% to a maximum of 100% in 10 rats, with 83% of the animals rendered seizure-free. SIGNIFICANCE This approach represents a simple and efficient manner for stopping seizure development. Because of the short on-demand stimuli, few or no associated side effects are expected in clinical application in patients with epilepsy. Abnormal synchrony patterns are common features in epilepsy and other neurologic and psychiatric syndromes; therefore, this type of feedback stimulation paradigm could be a novel therapeutic modality for use in various neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Muhammad T. Salam
- Department of Electrical and Computer Engineering; University of Toronto; Toronto Ontario Canada
| | - Hossein Kassiri
- Department of Electrical and Computer Engineering; University of Toronto; Toronto Ontario Canada
| | - Roman Genov
- Department of Electrical and Computer Engineering; University of Toronto; Toronto Ontario Canada
| | - Jose L. Perez Velazquez
- Neuroscience & Mental Health Programme and Division of Neurology; Hospital for Sick Children; Institute of Medical Science and Department of Paediatrics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
42
|
Cuculic D, Sosa I. Theoretical considerations on Koubeissi et al. Epilepsy Behav 2015; 42:35. [PMID: 25499159 DOI: 10.1016/j.yebeh.2014.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 10/30/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Drazen Cuculic
- Department of Forensic Medicine and Criminalistics, Rijeka University Medical Faculty, Brace Branchetta 20, 51 000 Rijeka, Croatia
| | - Ivan Sosa
- Department of Forensic Medicine and Criminalistics, Rijeka University Medical Faculty, Brace Branchetta 20, 51 000 Rijeka, Croatia.
| |
Collapse
|
43
|
Siah BH, Chiang CC, Ju MS, Lin CCK. Suppression of acute seizures by theta burst electrical stimulation of the hippocampal commissure using a closed-loop system. Brain Res 2014; 1593:117-25. [PMID: 25451100 DOI: 10.1016/j.brainres.2014.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 11/26/2022]
Abstract
This study investigated the effects of electrical stimulation with theta burst stimulation (eTBS) on seizure suppression. Optimal parameters of eTBS were determined through open-loop stimulation experiments and then implemented in a close-loop seizure control system. For the experiments, 4-aminopyridine (4-AP) was injected into the right hippocampus of Sprague-Dawley rats to induce an acute seizure. eTBS was applied on the ventral hippocampal commissure and the effects of eTBS with different combinations of burst frequency and number of pulses per burst were analyzed in terms of seizure suppression. A closed-loop seizure control system was then implemented based on optimal eTBS parameters. The efficiency of the closed-loop eTBS was evaluated and compared to that of high frequency stimulation. The results show that eTBS induced global suppression in the hippocampus and this was sustained even after the application of eTBS. The optimal parameter of eTBS in the open-loop stimulation experiments was a burst frequency at 100Hz with nine pulses in a burst. The eTBS integrated with the on-off control law yielded less actions and cumulative delivered charge, but induced longer after-effects of seizure suppression compared to continuous high frequency stimulation (cHFS). To conclude, eTBS has suppressive effects on 4-AP induced seizure. A closed-loop eTBS system provides a more effective way of suppressing seizure and requires less effort compared to cHFS. eTBS may be a novel stimulation protocol for effective seizure control.
Collapse
Affiliation(s)
- Boon Hong Siah
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chu Chiang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shaung Ju
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching K Lin
- Department of Neurology, National Cheng Kung University Hospital, 138 Sheng Li Road, Tainan 704, Taiwan.
| |
Collapse
|
44
|
Electrical stimulation of hippocampus for the treatment of refractory temporal lobe epilepsy. Brain Res Bull 2014; 109:13-21. [DOI: 10.1016/j.brainresbull.2014.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/21/2014] [Accepted: 08/28/2014] [Indexed: 01/21/2023]
|
45
|
Deep brain stimulation in the dish: focus on mechanisms. Epilepsy Curr 2014; 14:201-2. [PMID: 25170318 DOI: 10.5698/1535-7597-14.4.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Lang M, Moradi-Chameh H, Zahid T, Gane J, Wu C, Valiante T, Zhang L. Regulating hippocampal hyperexcitability through GABAB Receptors. Physiol Rep 2014. [PMID: 24771688 PMCID: PMC4001873 DOI: 10.1002/phy2.278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Disturbances of GABAergic inhibition are a major cause of epileptic seizures. GABA exerts its actions via ionotropic GABAA receptors and metabotropic G protein‐coupled GABAB receptors. Malfunction of GABAA inhibition has long been recognized in seizure genesis but the role of GABAB receptors in controlling seizure activity is still not well understood. Here, we examined the anticonvulsive, or inhibitory effects, of GABAB receptors in a mouse model of hippocampal kindling as well as mouse hippocampal slices through the use of GS 39783, a positive allosteric GABAB receptor modulator, and CGP 55845, a selective GABAB receptor antagonist. When administered via intraperitoneal injections in kindled mice, GS 39783 (5 mg/kg) did not attenuate hippocampal EEG discharges, but did reduce aberrant hippocampal spikes, whereas CGP 55845 (10 mg/kg) prolonged hippocampal discharges and increased spike incidences. When examined in hippocampal slices, neither GS 39783 at 5 μmol/L nor the GABAB receptor agonist baclofen at 0.1 μmol/L alone significantly altered repetitive excitatory field potentials, but GS 39783 and baclofen together reversibly abolished these field potentials. In contrast, CGP 55845 at 1 μmol/L facilitated induction and incidence of these field potentials. In addition, CGP 55845 attenuated the paired pulse depression of CA3 population spikes and increased the frequency of EPSCs in individual CA3 pyramidal neurons. Collectively, these data suggest that GABABB receptors regulate hippocampal hyperexcitability by inhibiting CA3 glutamatergic synapses. We postulate that positive allosteric modulation of GABAB receptors may be effective in reducing seizure‐related hyperexcitability. GABAB positive modulator GS 39783 attenuated, whereas GABAB antagonist CGP55845 facilitated hippocampal EEG spikes in kindled mice and excitatory field potentials in hippocampal slices. We postulate that GABAB receptors may inhibit CA3 glutamate synapses and hence regulate hippocampal hyperexcitability.
Collapse
Affiliation(s)
- Min Lang
- Toronto Western Research Institute; University Health Network; Toronto Ontario Canada
| | - Homeira Moradi-Chameh
- Toronto Western Research Institute; University Health Network; Toronto Ontario Canada
- Department of Physiology; University of Tarbiat Modares; Tehran Iran
| | - Tariq Zahid
- Toronto Western Research Institute; University Health Network; Toronto Ontario Canada
| | - Jonathan Gane
- Toronto Western Research Institute; University Health Network; Toronto Ontario Canada
| | - Chiping Wu
- Toronto Western Research Institute; University Health Network; Toronto Ontario Canada
| | - Taufik Valiante
- Department of Surgery (Division of Neurosurgery); University of Toronto; Toronto Ontario Canada
| | - Liang Zhang
- Toronto Western Research Institute; University Health Network; Toronto Ontario Canada
- Department of Medicine (Division of Neurology); University of Toronto; Toronto Ontario Canada
| |
Collapse
|