1
|
Liu X, Scherrer S, Egger S, Lim S, Lauber B, Jelescu I, Griffa A, Gambarota G, Taube W, Xin L. Rebalance the Inhibitory System in the Elderly Brain: Influence of Balance Learning on GABAergic Inhibition and Functional Connectivity. Hum Brain Mapp 2024; 45:e70057. [PMID: 39508513 PMCID: PMC11542107 DOI: 10.1002/hbm.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Aging involves complex processes that impact the structure, function, and metabolism of the human brain. Declines in both structural and functional integrity along with reduced local inhibitory tone in the motor areas, as indicated by reduced γ-aminobutyric acid (GABA) levels, are often associated with compromised motor performance in elderly adults. Using multimodal neuroimaging techniques including magnetic resonance spectroscopy (MRS), diffusion magnetic resonance imaging (MRI), functional MRI as well as transcranial magnetic stimulation to assess short-interval intracortical inhibition (SICI), this study explores whether these age-related changes can be mitigated by motor learning. The investigation focused on the effects of long-term balance learning (3 months) on intracortical inhibition, metabolism, structural, and functional connectivity in the cortical sensorimotor network among an elderly cohort. We found that after 3 months of balance learning, subjects significantly improved balance performance, upregulated sensorimotor cortical GABA levels and ventral sensorimotor network functional connectivity (VSN-FC) compared to a passive control group. Furthermore, correlation analysis suggested a positive association between baseline VSN-FC and balance performance, between baseline VSN-FC and SICI, and between improvements in balance performance and upregulation in SICI in the training group, though these correlations did not survive the false discovery rate correction. These findings demonstrate that balance learning has the potential to counteract aging-related decline in functional connectivity and cortical inhibition on the "tonic" (MRS) and "functional" (SICI) level and shed new light on the close interplay between the GABAergic system, functional connectivity, and behavior.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory for Functional and Metabolic Imaging (LIFMET)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Center for Biomedical Imaging (CIBM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Selin Scherrer
- Department of Neurosciences and Movement ScienceUniversity of FribourgFribourgSwitzerland
| | - Sven Egger
- Department of Neurosciences and Movement ScienceUniversity of FribourgFribourgSwitzerland
| | - Song‐I Lim
- Center for Biomedical Imaging (CIBM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Benedikt Lauber
- Department of Neurosciences and Movement ScienceUniversity of FribourgFribourgSwitzerland
| | - Ileana Jelescu
- Department of RadiologyLausanne University HospitalLausanneSwitzerland
| | - Alessandra Griffa
- Medical Image Processing LaboratoryNeuro‐X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL)GenevaSwitzerland
- Leenaards Memory CenterLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | - Wolfgang Taube
- Department of Neurosciences and Movement ScienceUniversity of FribourgFribourgSwitzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Institute of PhysicsÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
2
|
Hernandez-Pavon JC, San Agustín A, Wang MC, Veniero D, Pons JL. Can we manipulate brain connectivity? A systematic review of cortico-cortical paired associative stimulation effects. Clin Neurophysiol 2023; 154:169-193. [PMID: 37634335 DOI: 10.1016/j.clinph.2023.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE Cortico-cortical paired associative stimulation (ccPAS) is a form of dual-site transcranial magnetic stimulation (TMS) entailing a series of single-TMS pulses paired at specific interstimulus intervals (ISI) delivered to distant cortical areas. The goal of this article is to systematically review its efficacy in inducing plasticity in humans focusing on stimulation parameters and hypotheses of underlying neurophysiology. METHODS A systematic review of the literature from 2009-2023 was undertaken to identify all articles utilizing ccPAS to study brain plasticity and connectivity. Six electronic databases were searched and included. RESULTS 32 studies were identified. The studies targeted connections within the same hemisphere or between hemispheres. 28 ccPAS studies were in healthy participants, 1 study in schizophrenia, and 1 in Alzheimer's disease (AD) patients. 2 additional studies used cortico-cortical repetitive paired associative stimulation (cc-rPAS) in generalized anxiety disorder (GAD) patients. Outcome measures include electromyography (EMG), behavioral measures, electroencephalography (EEG), and functional magnetic resonance imaging (fMRI). ccPAS seems to be able to modulate brain connectivity depending on the ISI. CONCLUSIONS ccPAS can be used to modulate corticospinal excitability, brain activity, and behavior. Although the stimulation parameters used across studies reviewed in this paper are varied, ccPAS is a promising approach for basic research and potential clinical applications. SIGNIFICANCE Recent advances in neuroscience have caused a shift of interest from the study of single areas to a more complex approach focusing on networks of areas that orchestrate brain activity. Consequently, the TMS community is also witnessing a change, with a growing interest in targeting multiple brain areas rather than a single locus, as evidenced by an increasing number of papers using ccPAS. In light of this new enthusiasm for brain connectivity, this review summarizes existing literature and stimulation parameters that have proven effective in changing electrophysiological, behavioral, or neuroimaging-derived measures.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly, The Rehabilitation Institute of Chicago), Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| | - Arantzazu San Agustín
- Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly, The Rehabilitation Institute of Chicago), Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid, Spain; PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Max C Wang
- Department of Physical Therapy and Human Movement Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Jose L Pons
- Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly, The Rehabilitation Institute of Chicago), Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Depolarization and Hyperexcitability of Cortical Motor Neurons after Spinal Cord Injury Associates with Reduced HCN Channel Activity. Int J Mol Sci 2023; 24:ijms24054715. [PMID: 36902146 PMCID: PMC10003573 DOI: 10.3390/ijms24054715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
A spinal cord injury (SCI) damages the axonal projections of neurons residing in the neocortex. This axotomy changes cortical excitability and results in dysfunctional activity and output of infragranular cortical layers. Thus, addressing cortical pathophysiology after SCI will be instrumental in promoting recovery. However, the cellular and molecular mechanisms of cortical dysfunction after SCI are poorly resolved. In this study, we determined that the principal neurons of the primary motor cortex layer V (M1LV), those suffering from axotomy upon SCI, become hyperexcitable following injury. Therefore, we questioned the role of hyperpolarization cyclic nucleotide gated channels (HCN channels) in this context. Patch clamp experiments on axotomized M1LV neurons and acute pharmacological manipulation of HCN channels allowed us to resolve a dysfunctional mechanism controlling intrinsic neuronal excitability one week after SCI. Some axotomized M1LV neurons became excessively depolarized. In those cells, the HCN channels were less active and less relevant to control neuronal excitability because the membrane potential exceeded the window of HCN channel activation. Care should be taken when manipulating HCN channels pharmacologically after SCI. Even though the dysfunction of HCN channels partakes in the pathophysiology of axotomized M1LV neurons, their dysfunctional contribution varies remarkably between neurons and combines with other pathophysiological mechanisms.
Collapse
|
4
|
Tian D, Izumi SI. TMS and neocortical neurons: an integrative review on the micro-macro connection in neuroplasticity. JAPANESE JOURNAL OF COMPREHENSIVE REHABILITATION SCIENCE 2023; 14:1-9. [PMID: 37859791 PMCID: PMC10585015 DOI: 10.11336/jjcrs.14.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 10/21/2023]
Abstract
Tian D, Izumi S. TMS and neocortical neurons: an integrative review on the micro-macro connection in neuroplasticity. Jpn J Compr Rehabil Sci 2023; 14: 1-9. Neuroplasticity plays a pivotal role in neuroscience and neurorehabilitation as it bridges the organization and reorganization properties of the brain. Among the numerous neuroplastic protocols, transcranial magnetic stimulation (TMS) is a well-established non-invasive protocol to induce plastic changes in the brain. Here, we review the findings of four plasticity-inducing TMS protocols in the human motor cortex with relatively evident mechanisms: conventional repetitive TMS (rTMS), theta-burst stimulation (TBS), quadripulse stimulation (QPS) and paired associative stimulation (PAS). Based on the reviewed evidence and a preliminary TMS neurocytological model proposed in our previous report, we further integrate the neurophysiological evidence and plasticity rules of these protocols to present an updated micro-macro connection model between neocortical neurons and the neurophysiological evidence in TMS. This prototypical model will guide further efforts to understand the neural circuit of the motor cortex, the mechanisms of TMS, and the advance of neuroplasticity technologies and their outcomes.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan
| |
Collapse
|
5
|
Ebrahim AA, Tungu A. Neuromodulation for temporal lobe epilepsy: a scoping review. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractTemporal lobe epilepsy (TLE) is difficult to treat as it is often refractory to treatment. Apart from traditional medical treatment, surgical resection is also a choice of treatment, but it may be associated with significant cognitive deficits. As a result, treatment strategies using targeted and adjustable stimulation of malfunctioning brain circuits have been developed. These neuromodulatory therapies using approaches of electric and magnetic neuromodulation are already in clinical use for refractory epilepsy while others such as optogenetics, chemo-genetics and ultrasound modulation are being tested in pre-clinical TLE animal models. In this review, we conducted an in-depth literature search on the clinically available neuromodulatory approaches for TLE, focusing on the possible mechanism of action and the clinical outcomes including adverse effects. Techniques that are currently explored in preclinical animal models but may have therapeutic applications in future are also discussed. The efficacy and subsequent adverse effects vary among the different neuromodulatory approaches and some still have unclear mechanisms of action in TLE treatment. Further studies evaluating the benefits and potential limitations are needed. Continued research on the therapeutic mechanisms and the epileptic brain network is critical for improving therapies for TLE.
Collapse
|
6
|
Benedetti B, Weidenhammer A, Reisinger M, Couillard-Despres S. Spinal Cord Injury and Loss of Cortical Inhibition. Int J Mol Sci 2022; 23:5622. [PMID: 35628434 PMCID: PMC9144195 DOI: 10.3390/ijms23105622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
After spinal cord injury (SCI), the destruction of spinal parenchyma causes permanent deficits in motor functions, which correlates with the severity and location of the lesion. Despite being disconnected from their targets, most cortical motor neurons survive the acute phase of SCI, and these neurons can therefore be a resource for functional recovery, provided that they are properly reconnected and retuned to a physiological state. However, inappropriate re-integration of cortical neurons or aberrant activity of corticospinal networks may worsen the long-term outcomes of SCI. In this review, we revisit recent studies addressing the relation between cortical disinhibition and functional recovery after SCI. Evidence suggests that cortical disinhibition can be either beneficial or detrimental in a context-dependent manner. A careful examination of clinical data helps to resolve apparent paradoxes and explain the heterogeneity of treatment outcomes. Additionally, evidence gained from SCI animal models indicates probable mechanisms mediating cortical disinhibition. Understanding the mechanisms and dynamics of cortical disinhibition is a prerequisite to improve current interventions through targeted pharmacological and/or rehabilitative interventions following SCI.
Collapse
Affiliation(s)
- Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Annika Weidenhammer
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
| | - Maximilian Reisinger
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
7
|
Suppa A, Asci F, Guerra A. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:73-89. [PMID: 35034759 DOI: 10.1016/b978-0-12-819410-2.00005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activity-dependent synaptic plasticity is the main theoretical framework to explain mechanisms of learning and memory. Synaptic plasticity can be explored experimentally in animals through various standardized protocols for eliciting long-term potentiation and long-term depression in hippocampal and cortical slices. In humans, several non-invasive protocols of repetitive transcranial magnetic stimulation and transcranial direct current stimulation have been designed and applied to probe synaptic plasticity in the primary motor cortex, as reflected by long-term changes in motor evoked potential amplitudes. These protocols mimic those normally used in animal studies for assessing long-term potentiation and long-term depression. In this chapter, we first discuss the physiologic basis of theta-burst stimulation, paired associative stimulation, and transcranial direct current stimulation. We describe the current biophysical and theoretical models underlying the molecular mechanisms of synaptic plasticity and metaplasticity, defined as activity-dependent changes in neural functions that modulate subsequent synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), in the human motor cortex including calcium-dependent plasticity, spike-timing-dependent plasticity, the role of N-methyl-d-aspartate-related transmission and gamma-aminobutyric-acid interneuronal activity. We also review the putative microcircuits responsible for synaptic plasticity in the human motor cortex. We critically readdress the issue of variability in studies investigating synaptic plasticity and propose available solutions. Finally, we speculate about the utility of future studies with more advanced experimental approaches.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy.
| | | | | |
Collapse
|
8
|
Rothwell J, Antal A, Burke D, Carlsen A, Georgiev D, Jahanshahi M, Sternad D, Valls-Solé J, Ziemann U. Central nervous system physiology. Clin Neurophysiol 2021; 132:3043-3083. [PMID: 34717225 PMCID: PMC8863401 DOI: 10.1016/j.clinph.2021.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
This is the second chapter of the series on the use of clinical neurophysiology for the study of movement disorders. It focusses on methods that can be used to probe neural circuits in brain and spinal cord. These include use of spinal and supraspinal reflexes to probe the integrity of transmission in specific pathways; transcranial methods of brain stimulation such as transcranial magnetic stimulation and transcranial direct current stimulation, which activate or modulate (respectively) the activity of populations of central neurones; EEG methods, both in conjunction with brain stimulation or with behavioural measures that record the activity of populations of central neurones; and pure behavioural measures that allow us to build conceptual models of motor control. The methods are discussed mainly in relation to work on healthy individuals. Later chapters will focus specifically on changes caused by pathology.
Collapse
Affiliation(s)
- John Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK,Corresponding author at: Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, (J. Rothwell)
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Germany
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney 2050, Australia
| | - Antony Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dagmar Sternad
- Departments of Biology, Electrical & Computer Engineering, and Physics, Northeastern University, Boston, MA 02115, USA
| | - Josep Valls-Solé
- Institut d’Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
9
|
Lauber B, Gollhofer A, Taube W. What to train first: Balance or explosive strength? Impact on performance and intracortical inhibition. Scand J Med Sci Sports 2021; 31:1301-1312. [PMID: 33606302 DOI: 10.1111/sms.13939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023]
Abstract
Explosive strength and balance training are commonly applied to enhance explosive strength and balance performance. Even though both training methods are frequently implemented, ordering effects have largely been neglected. Therefore, the present study aimed to investigate ordering effects of balance and explosive strength training on explosive strength and balance performance as well as changes in short-interval intracortical inhibition (SICI). Two groups of subjects either participated in 4 weeks of balance training followed by 4 weeks of explosive strength training (BT-ET) or vice versa (ET-BT). Before, after 4 and 8 weeks, balance performance, as well as explosive strength, was tested. Additionally, SICI was tested during rest as well as during balance perturbations and explosive contractions. The results show a training specific increase in performance with an increase in balance control followed by an increase in explosive strength in the BT-ET, while the ET-BT increased its balance and explosive strength in the opposite order. There were no significant ordering effects. Both groups showed a significant decrease in SICI during the explosive contractions after the eight weeks of training. When SICI was tested during the balance perturbations, SICI initially increased after the first 4 weeks of training but returned to baseline until the end of the eight weeks. It is suggested that the decrease in SICI with prolonged training might show a disengagement of the motor cortex during the balance task. During the explosive contractions, the low SICI levels are beneficial to provide the necessary level of excitatory cortical drive.
Collapse
Affiliation(s)
- Benedikt Lauber
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
10
|
Abstract
The development of the use of transcranial magnetic stimulation (TMS) in the study of psychological functions has entered a new phase of sophistication. This is largely due to an increasing physiological knowledge of its effects and to its being used in combination with other experimental techniques. This review presents the current state of our understanding of the mechanisms of TMS in the context of designing and interpreting psychological experiments. We discuss the major conceptual advances in behavioral studies using TMS. There are meaningful physiological and technical achievements to review, as well as a wealth of new perceptual and cognitive experiments. In doing so we summarize the different uses and challenges of TMS in mental chronometry, perception, awareness, learning, and memory.
Collapse
Affiliation(s)
- David Pitcher
- Department of Psychology, University of York, York YO10 5DD, United Kingdom;
| | - Beth Parkin
- Department of Psychology, University of Westminster, London W1W 6UW, United Kingdom;
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom;
| |
Collapse
|
11
|
Rizzo V, Mastroeni C, Maggio R, Terranova C, Girlanda P, Siebner HR, Quartarone A. Low-intensity repetitive paired associative stimulation targeting the motor hand area at theta frequency causes a lasting reduction in corticospinal excitability. Clin Neurophysiol 2020; 131:2402-2409. [PMID: 32828043 DOI: 10.1016/j.clinph.2020.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Sub-motor threshold 5 Hz repetitive paired associative stimulation (5 Hz-rPAS25ms) produces a long-lasting increase in corticospinal excitability. Assuming a spike-timing dependent plasticity-like (STDP-like) mechanism, we hypothesized that 5 Hz-rPAS at a shorter inter-stimulus interval (ISI) of 15 ms (5 Hz-rPAS15ms) would exert a lasting inhibitory effect on corticospinal excitability. METHODS 20 healthy volunteers received two minutes of 5 Hz-rPAS15ms. Transcranial magnetic stimulation (TMS) was applied over the motor hotspot of the right abductor pollicis brevis muscle at 90% active motor threshold. Sub-motor threshold peripheral electrical stimulation was given to the left median nerve 15 ms before each TMS pulse. We assessed changes in mean amplitude of the unconditioned motor evoked potential (MEP), short-latency intracortical inhibition (SICI), intracortical facilitation (ICF), short-latency afferent inhibition (SAI), long-latency afferent inhibition (LAI), and cortical silent period (CSP) before and for 60 minutes after 5-Hz rPAS15ms. RESULTS Subthreshold 5-Hz rPAS15ms produced a 20-40% decrease in mean MEP amplitude along with an attenuation in SAI, lasting at least 60 minutes. A follow-up experiment revealed that MEP facilitation was spatially restricted to the target muscle. CONCLUSIONS Subthreshold 5-Hz rPAS15ms effectively suppresses corticospinal excitability. Together with the facilitatory effects of subthreshold 5-Hz rPAS25ms (Quartarone et al., J Physiol 2006;575:657-670), the results show that sub-motor threshold 5-Hz rPAS induces STDP-like bidirectional plasticity in the motor cortex. SIGNIFICANCE The results of the present study provide a new short-time paradigm of long term depression (LTD) induction in human sensory-motor cortex.
Collapse
Affiliation(s)
- V Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Italy.
| | - C Mastroeni
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - R Maggio
- Department of Neurology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - C Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - P Girlanda
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Quartarone
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Italy; IRCCS Centro "Bonino Pulejo", Messina, Italy
| |
Collapse
|
12
|
Taube W, Gollhofer A, Lauber B. Training‐, muscle‐ and task‐specific up‐ and downregulation of cortical inhibitory processes. Eur J Neurosci 2020; 51:1428-1440. [DOI: 10.1111/ejn.14538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Wolfgang Taube
- Department of Neurosciences and Movement Science University of Fribourg Fribourg Switzerland
| | - Albert Gollhofer
- Department of Sport and Sport Science University of Freiburg Freiburg Germany
| | - Benedikt Lauber
- Department of Neurosciences and Movement Science University of Fribourg Fribourg Switzerland
- Department of Sport and Sport Science University of Freiburg Freiburg Germany
| |
Collapse
|
13
|
Fu L, Rocchi L, Hannah R, Xu G, Rothwell JC, Ibáñez J. Corticospinal excitability modulation by pairing peripheral nerve stimulation with cortical states of movement initiation. J Physiol 2019; 599:2471-2482. [PMID: 31579945 DOI: 10.1113/jp278536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/30/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We compare the effects on corticospinal excitability of repeatedly delivering peripheral nerve stimulation at three time points (-30 ms, 0 ms, +50 ms) relative to muscle onset in a cue-guided task. Plastic changes in excitability are only observed when stimuli are delivered immediately before the time when muscles activate, while stimuli delivered at muscle onset or shortly later (0, +50 ms) have no effect. Plastic effects are abolished if there is ongoing volitional electromyogram activity in the muscles prior to the onset of the phasic contraction. The plastic effects induced by timing peripheral stimulation relative to electromyographic markers of muscle activation are as effective as those that occur if stimulation is timed relative to electroencephalographic markers of motor cortical activation. We provide a simple alternative protocol to induce plasticity in people in whom electroencephalogram recording is difficult. ABSTRACT Plastic changes in corticospinal excitability (CSE) and motor function can be induced in a targeted and long-term manner if afferent volleys evoked by peripheral nerve stimulation are repeatedly associated with the peak of premovement brain activity assessed with an electroencephalogram (EEG). The present study investigated whether other factors might also characterize this optimal brain state for plasticity induction. In healthy human volunteers (n = 24), we found that the same reliable changes in CSE can be induced by timing peripheral afferent stimulation relative to the onset of electromyogram (EMG) activity rather than using the EEG peak. Specifically, we observed an increase in CSE when peripheral stimulation activated the cortex just before movement initiation. By contrast, there was no effect on CSE if the afferent input reached the cortex at the same time or after EMG onset, consistent with the idea that the temporal order of synaptic activation from afferent input and voluntary movement is important for production of plasticity. Finally, in 14 volunteers, we found that background voluntary muscle activity prior to movement also abolished the effect on CSE. One possible explanation is that the intervention strengthens synapses that are inactive at rest but change their activity in anticipation of movement, and that the intervention fails when the synapses are tonically active during background EMG activity. Overall, we demonstrate that, in individuals with voluntary control of muscles targeted by our intervention, EMG signals are a suitable alternative to an EEG for inducing plasticity by coupling movement-related brain states with peripheral afferent input.
Collapse
Affiliation(s)
- Lingdi Fu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Ricci Hannah
- Department of Psychology, University of California San Diego, San Diego, CA, USA
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jaime Ibáñez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Bioengineering, Faculty of Engineering, Imperial College London, London, UK
| |
Collapse
|
14
|
Kohl S, Hannah R, Rocchi L, Nord CL, Rothwell J, Voon V. Cortical Paired Associative Stimulation Influences Response Inhibition: Cortico-cortical and Cortico-subcortical Networks. Biol Psychiatry 2019; 85:355-363. [PMID: 29724490 PMCID: PMC7004814 DOI: 10.1016/j.biopsych.2018.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND The ability to stop a suboptimal response is integral to decision making and is commonly impaired across psychiatric disorders. Cortical paired associative stimulation (cPAS) is a form of transcranial magnetic stimulation in which paired pulses can induce plasticity at cortical synapses. Here we used cPAS protocols to target cortico-cortical and cortico-subcortical networks by using different intervals between the paired pulses in an attempt to modify response inhibition. METHODS A total of 25 healthy volunteers underwent four cPAS sessions in random order 1 week apart: right inferior frontal cortex (IFC) stimulation preceding right presupplementary motor area (pre-SMA) stimulation by 10 or 4 ms and pre-SMA stimulation preceding IFC stimulation by 10 or 4 ms. Subjects were tested on the stop signal task along with the delay discounting task as control at baseline (randomized across sessions and cPAS protocol) and after each cPAS session. RESULTS The stop signal reaction time showed a main effect of cPAS condition when controlling for age (F3,57 = 4.05, p = .01). Younger subjects had greater impairments in response inhibition when the pre-SMA pulse preceded the IFC pulse by 10 ms. In older individuals, response inhibition improved when the IFC pulse preceded the pre-SMA pulse by 4 ms. There were no effects on delay discounting. CONCLUSIONS cPAS modified response inhibition through age-dependent long-term potentiation and depression-like plasticity mechanisms via putative cortico-cortical and cortico-subcortical networks. We show for the first time the capacity for cPAS to modify a cognitive process highly relevant to psychiatric disorders.
Collapse
Affiliation(s)
- Sina Kohl
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Ricci Hannah
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Lorenzo Rocchi
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Camilla L Nord
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Addenbrookes Hospital, Cambridge, United Kingdom.
| |
Collapse
|
15
|
Tan J, Iyer KK, Tang AD, Jamil A, Martins RN, Sohrabi HR, Nitsche MA, Hinder MR, Fujiyama H. Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: A narrative review. Neuroimage 2018; 185:490-512. [PMID: 30342977 DOI: 10.1016/j.neuroimage.2018.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Response inhibition, the ability to withhold a dominant and prepotent response following a change in circumstance or sensory stimuli, declines with advancing age. While non-invasive brain stimulation (NiBS) has shown promise in alleviating some cognitive and motor functions in healthy older individuals, NiBS research focusing on response inhibition has mostly been conducted on younger adults. These extant studies have primarily focused on modulating the activity of distinct neural regions known to be critical for response inhibition, including the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (pre-SMA). However, given that changes in structural and functional connectivity have been associated with healthy aging, this review proposes that NiBS protocols aimed at modulating the functional connectivity between the rIFG and pre-SMA may be the most efficacious approach to investigate-and perhaps even alleviate-age-related deficits in inhibitory control.
Collapse
Affiliation(s)
- Jane Tan
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia
| | - Kartik K Iyer
- Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Australia
| | - Asif Jamil
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Medicine (Division of Psychology), University of Tasmania, Hobart, Australia
| | - Hakuei Fujiyama
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia.
| |
Collapse
|
16
|
Sasaki T, Shirota Y, Kodama S, Togashi N, Sugiyama Y, Tokushige SI, Inomata-Terada S, Terao Y, Ugawa Y, Toda T, Hamada M. Modulation of motor learning by a paired associative stimulation protocol inducing LTD-like effects. Brain Stimul 2018; 11:1314-1321. [PMID: 30093288 DOI: 10.1016/j.brs.2018.07.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/13/2018] [Accepted: 07/27/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Paired associative stimulation (PAS) induces long-term potentiation (LTP)-like effects when interstimulus intervals (ISIs) between electrical peripheral nerve stimulation and transcranial magnetic stimulation (TMS) to M1 are approximately 21-25 ms (PASLTP). It was previously reported that two forms of motor learning (i.e., mode-free and model-based learning) can be differentially modulated by PASLTP depending on the different synaptic inputs to corticospinal neurons (CSNs), which relate to posterior-to-anterior (PA) or anterior-to-posterior (AP) currents induced by TMS (PA or AP inputs, respectively). However, the effects of long-term depression (LTD)-inducing PAS with an ISI of approximately 10 ms (PASLTD) on motor learning and its dependency on current direction have not yet been tested. OBJECTIVE To investigate whether, and how, PASLTD affects distinct types of motor learning. METHODS Eighteen healthy volunteers participated. We adopted the standard PAS using suprathreshold TMS with the target muscle relaxed, as well as subthreshold PAS during voluntary contraction, which was suggested to selectively recruit PA or AP inputs depending on the orientation of the TMS coil. We examined the effects of suprathreshold and subthreshold PASLTD on the performance of model-free and model-based learning, as well as the corticospinal excitability, indexed as the amplitudes of motor evoked potentials (MEPs). RESULTS PASLTD inhibited model-free learning and MEPs only when subthreshold AP currents were applied. The PASLTD protocols tested here showed no effects on model-based learning. CONCLUSIONS PASLTD affected model-free learning, presumably by modulating CSN excitability changes, rather than PA inputs, which are thought to be related to model-free learning.
Collapse
Affiliation(s)
- Takuya Sasaki
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichiro Shirota
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kodama
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naohiko Togashi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, National Defense Medical College, Saitama, Japan
| | - Yusuke Sugiyama
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Tokushige
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, Kyorin University School of Medicine, Tokyo, Japan
| | - Satomi Inomata-Terada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yasuo Terao
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Hamada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
17
|
Legon W, Bansal P, Tyshynsky R, Ai L, Mueller JK. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci Rep 2018; 8:10007. [PMID: 29968768 PMCID: PMC6030101 DOI: 10.1038/s41598-018-28320-1] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
Transcranial focused ultrasound is an emerging form of non-invasive neuromodulation that uses acoustic energy to affect neuronal excitability. The effect of ultrasound on human motor cortical excitability and behavior is currently unknown. We apply ultrasound to the primary motor cortex in humans using a novel simultaneous transcranial ultrasound and magnetic stimulation paradigm that allows for concurrent and concentric ultrasound stimulation with transcranial magnetic stimulation (TMS). This allows for non-invasive inspection of the effect of ultrasound on motor neuronal excitability using the motor evoked potential (MEP). We test the effect of ultrasound on single pulse MEP recruitment curves and paired pulse protocols including short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). In addition, we test the effect of ultrasound to motor cortex on a stimulus response reaction time task. Results show ultrasound inhibits the amplitude of single-pulse MEPs and attenuates intracortical facilitation but does not affect intracortical inhibition. Ultrasound also reduces reaction time on a simple stimulus response task. This is the first report of the effect of ultrasound on human motor cortical excitability and motor behavior and confirms previous results in the somatosensory cortex that ultrasound results in effective neuronal inhibition that confers a performance advantage.
Collapse
Affiliation(s)
- Wynn Legon
- Division of Physical Therapy and Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, USA.
- Department of Neurosurgery, School of Medicine, University of Virginia, Charlottesville, VA, United States.
| | - Priya Bansal
- Division of Physical Therapy and Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Roman Tyshynsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Leo Ai
- Division of Physical Therapy and Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Jerel K Mueller
- Division of Physical Therapy and Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Lauber B, Gollhofer A, Taube W. Differences in motor cortical control of the Soleus and Tibialis. J Exp Biol 2018; 221:jeb.174680. [DOI: 10.1242/jeb.174680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/20/2018] [Indexed: 01/10/2023]
Abstract
The tibialis anterior (TA) and the soleus (SOL) are both ankle joint muscles with functionally very different tasks. Thus, differences in motor cortical control between the TA and the SOL have been debated. This study compared the activity of the primary motor cortex during dynamic plantar- and dorsiflexions and compared this with measures obtained during rest. Single- and paired-pulse transcranial magnetic stimulations known as short-interval intracortical inhibition (SICI) were applied to the cortical representation of either the soleus or the tibialis muscle. The results show that the range of SICI from rest to activity is significantly greater in the TA compared with the SOL. Furthermore, when the TA acts as the agonist muscle during dorsiflexions of the ankle, SICI is almost absent (2.9%). When acting as the antagonist during plantarflexions, intracortical inhibition is significantly increased (28.7%). This task-specific modulation is far less pronounced in the SOL, which displayed higher levels of SICI when acting as agonist (10.9%) during plantarflexion, but there was no significant inhibition (6.5%) as antagonist during dorsiflexion. Furthermore, the cortical silent period (CSP) during plantarflexions was significantly longer in the SOL compared with the TA during dorsiflexions, accompanied by a greater corticospinal excitability in the TA. Thus, cortical control considerably differs between the SOL and the TA in a way that inhibitory cortical control (SICI and CSP) of the TA is task-specifically adapted in a broader range of movements, whereas inhibition in the SOL muscle is less specific and more limited in its magnitude of modulation.
Collapse
Affiliation(s)
- Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- Department of Medicine Movement and Sport Science, University of Fribourg, Fribourg, Switzerland
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Wolfgang Taube
- Department of Medicine Movement and Sport Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
19
|
Huang YZ, Lu MK, Antal A, Classen J, Nitsche M, Ziemann U, Ridding M, Hamada M, Ugawa Y, Jaberzadeh S, Suppa A, Paulus W, Rothwell J. Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clin Neurophysiol 2017; 128:2318-2329. [DOI: 10.1016/j.clinph.2017.09.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
|
20
|
Suppa A, Quartarone A, Siebner H, Chen R, Di Lazzaro V, Del Giudice P, Paulus W, Rothwell J, Ziemann U, Classen J. The associative brain at work: Evidence from paired associative stimulation studies in humans. Clin Neurophysiol 2017; 128:2140-2164. [DOI: 10.1016/j.clinph.2017.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022]
|
21
|
Di Lazzaro V, Rothwell J, Capogna M. Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits. Neuroscientist 2017; 24:246-260. [DOI: 10.1177/1073858417717660] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noninvasive brain stimulation methods, such as transcranial electric stimulation and transcranial magnetic stimulation are widely used tools for both basic research and clinical applications. However, the cortical circuits underlying their effects are poorly defined. Here we review the current knowledge based on data mostly coming from experiments performed on human subjects, and also to a lesser extent on rodent or primate models. The data suggest that multiple mechanisms are likely to be involved, such as the direct activation of layer V pyramidal neurons, but also of different types of GABAergic interneurons. In this regard, we propose a key role for a specific type of interneuron known as neurogliaform cell.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Alberto Sordi–Research Institute for Ageing, Rome, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Danish Research Institute of Translational Neuroscience–DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Motor cortex plasticity can indicate vulnerability to motor fluctuation and high L-DOPA need in drug-naïve Parkinson's disease. Parkinsonism Relat Disord 2017; 35:55-62. [DOI: 10.1016/j.parkreldis.2016.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/02/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022]
|
23
|
Modulation of the Direction and Magnitude of Hebbian Plasticity in Human Motor Cortex by Stimulus Intensity and Concurrent Inhibition. Brain Stimul 2017; 10:83-90. [DOI: 10.1016/j.brs.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022] Open
|
24
|
Weise D, Mann J, Rumpf JJ, Hallermann S, Classen J. Differential Regulation of Human Paired Associative Stimulation-Induced and Theta-Burst Stimulation-Induced Plasticity by L-type and T-type Ca2+Channels. Cereb Cortex 2016; 27:4010-4021. [DOI: 10.1093/cercor/bhw212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
Bhandari A, Radhu N, Farzan F, Mulsant BH, Rajji TK, Daskalakis ZJ, Blumberger DM. A meta-analysis of the effects of aging on motor cortex neurophysiology assessed by transcranial magnetic stimulation. Clin Neurophysiol 2016; 127:2834-2845. [PMID: 27417060 DOI: 10.1016/j.clinph.2016.05.363] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) is a non-invasive tool used for studying cortical excitability and plasticity in the human brain. This review aims to quantitatively synthesize the literature on age-related differences in cortical excitability and plasticity, examined by TMS. METHODS A literature search was conducted using MEDLINE, Embase, and PsycINFO from 1980 to December 2015. We extracted studies with healthy old (50-89years) versus young (16-49years) individuals that utilized the following TMS measures: resting motor threshold (RMT), short-interval cortical inhibition (SICI), short-latency afferent inhibition (SAI), cortical silent period (CSP), intracortical facilitation (ICF), and paired associative stimulation (PAS). RESULTS We found a significant increase in RMT (g=0.414, 95% confidence interval (CI) [0.284, 0.544], p<0.001), a significant decrease in SAI (g=0.778, 95% CI [0.478, 1.078], p<0.001), and a trending decrease in LTP-like plasticity (g=-0.528, 95% CI [-1.157, 0.100] p<0.1) with age. CONCLUSIONS Our findings suggest an age-dependent reduction in cortical excitability and sensorimotor integration within the human motor cortex. SIGNIFICANCE Alterations in the ability to regulate cortical excitability, sensorimotor integration and plasticity may underlie several age-related motor deficits.
Collapse
Affiliation(s)
- Apoorva Bhandari
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Natasha Radhu
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Benoit H Mulsant
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
26
|
Kamke MR, Nydam AS, Sale MV, Mattingley JB. Associative plasticity in the human motor cortex is enhanced by concurrently targeting separate muscle representations with excitatory and inhibitory protocols. J Neurophysiol 2016; 115:2191-8. [PMID: 26864761 DOI: 10.1152/jn.00794.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
Paired associative stimulation (PAS) induces changes in the excitability of human sensorimotor cortex that outlast the procedure. PAS typically involves repeatedly pairing stimulation of a peripheral nerve that innervates an intrinsic hand muscle with transcranial magnetic stimulation over the representation of that muscle in the primary motor cortex. Depending on the timing of the stimuli (interstimulus interval of 25 or 10 ms), PAS leads to either an increase (PAS25) or a decrease (PAS10) in excitability. Both protocols, however, have been associated with an increase in excitability of nearby muscle representations not specifically targeted by PAS. Based on these spillover effects, we hypothesized that an additive, excitability-enhancing effect of PAS25 applied to one muscle representation may be produced by simultaneously applying PAS25 or PAS10 to a nearby representation. In different experiments prototypical PAS25 targeting the left thumb representation [abductor pollicis brevis (APB)] was combined with either PAS25 or PAS10 applied to the left little finger representation [abductor digiti minimi (ADM)] or, in a control experiment, with PAS10 also targeting the APB. In an additional control experiment PAS10 targeted both representations. The plasticity effects were quantified by measuring the amplitude of motor evoked potentials (MEPs) recorded before and after PAS. As expected, prototypical PAS25 was associated with an increase in MEP amplitude in the APB muscle. This effect was enhanced when PAS also targeted the ADM representation but only when a different interstimulus timing (PAS10) was used. These results suggest that PAS-induced plasticity is modified by concurrently targeting separate motor cortical representations with excitatory and inhibitory protocols.
Collapse
Affiliation(s)
- Marc R Kamke
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Abbey S Nydam
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Martin V Sale
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Wischnewski M, Schutter DJ. Efficacy and time course of paired associative stimulation in cortical plasticity: Implications for neuropsychiatry. Clin Neurophysiol 2016; 127:732-739. [PMID: 26024981 DOI: 10.1016/j.clinph.2015.04.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/16/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022]
|
28
|
Bhandari A, Voineskos D, Daskalakis ZJ, Rajji TK, Blumberger DM. A Review of Impaired Neuroplasticity in Schizophrenia Investigated with Non-invasive Brain Stimulation. Front Psychiatry 2016; 7:45. [PMID: 27065890 PMCID: PMC4810231 DOI: 10.3389/fpsyt.2016.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/09/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Several lines of evidence implicate dysfunctional neuronal plasticity in the pathophysiology of schizophrenia (SCZ). Aberrant glutamatergic and gamma amino--butyric acid neurotransmission are thought to underlie core cognitive deficits and negative symptoms of SCZ. Non-invasive brain stimulation (NIBS) allows for the in vivo study of cortical plasticity and excitability at the systems level of the human motor cortex. This review will focus on summarizing the available neurophysiological evidence for impaired motor cortical plasticity in SCZ assessed by NIBS. METHODS A search of MEDLINE, Embase, and PubMed was performed on the use of NIBS techniques to investigate neuroplasticity in the motor cortex of SCZ patients. The relevant articles were summarized. CONCLUSION Our review of the literature reveals evidence for disrupted neuroplasticity in SCZ and its close association to alterations in cortical inhibition and dysfunctional intracortical connectivity. Further investigations are required to elucidate the neurobiological mechanisms that underlie dysfunctional plasticity in SCZ in order to develop more targeted therapeutic interventions for SCZ patients.
Collapse
Affiliation(s)
- Apoorva Bhandari
- Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, University of Toronto , Toronto, ON , Canada
| | - Daphne Voineskos
- Department of Psychiatry, Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, University of Toronto , Toronto, ON , Canada
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, University of Toronto , Toronto, ON , Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, University of Toronto , Toronto, ON , Canada
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
29
|
Age-related Differences in Pre- and Post-synaptic Motor Cortex Inhibition are Task Dependent. Brain Stimul 2015; 8:926-36. [DOI: 10.1016/j.brs.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 11/22/2022] Open
|
30
|
Cash RFH, Isayama R, Gunraj CA, Ni Z, Chen R. The influence of sensory afferent input on local motor cortical excitatory circuitry in humans. J Physiol 2015; 593:1667-84. [PMID: 25832926 PMCID: PMC4386965 DOI: 10.1113/jphysiol.2014.286245] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/21/2014] [Indexed: 11/08/2022] Open
Abstract
In human, sensorimotor integration can be investigated by combining sensory input and transcranial magnetic stimulation (TMS). Short latency afferent inhibition (SAI) refers to motor cortical inhibition 20-25 ms after median nerve stimulation. We investigated the interaction between SAI and short-interval intracortical facilitation (SICF), an excitatory motor cortical circuit. Seven experiments were performed. Contrary to expectations, SICF was facilitated in the presence of SAI (SICF(SAI)). This effect is specific to SICF since there was no effect at SICF trough 1 when SICF was absent. Furthermore, the facilitatory SICF(SAI) interaction increased with stronger SICF or SAI. SAI and SICF correlated between individuals, and this relationship was maintained when SICF was delivered in the presence of SAI, suggesting an intrinsic relationship between SAI and SICF in sensorimotor integration. The interaction was present at rest and during muscle contraction, had a broad degree of somatotopic influence and was present in different interneuronal SICF circuits induced by posterior-anterior and anterior-posterior current directions. Our results are compatible with the finding that projections from sensory to motor cortex terminate in both superficial layers where late indirect (I-) waves are thought to originate, as well as deeper layers with more direct effect on pyramidal output. This interaction is likely to be relevant to sensorimotor integration and motor control.
Collapse
Affiliation(s)
- Robin F H Cash
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, Ontario, Canada
| | - Reina Isayama
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, Ontario, Canada
| | - Carolyn A Gunraj
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, Ontario, Canada
| | - Zhen Ni
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, Ontario, Canada
- Corresponding author R. Chen: 13MP-304, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
31
|
Di Lazzaro V, Rothwell JC. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex. J Physiol 2014; 592:4115-28. [PMID: 25172954 DOI: 10.1113/jphysiol.2014.274316] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A number of methods have been developed recently that stimulate the human brain non-invasively through the intact scalp. The most common are transcranial magnetic stimulation (TMS), transcranial electric stimulation (TES) and transcranial direct current stimulation (TDCS). They are widely used to probe function and connectivity of brain areas as well as therapeutically in a variety of conditions such as depression or stroke. They are much less focal than conventional invasive methods which use small electrodes placed on or in the brain and are often thought to activate all classes of neurones in the stimulated area. However, this is not true. A large body of evidence from experiments on the motor cortex shows that non-invasive methods of brain stimulation can be surprisingly selective and that adjusting the intensity and direction of stimulation can activate different classes of inhibitory and excitatory inputs to the corticospinal output cells. Here we review data that have elucidated the action of TMS and TES, concentrating mainly on the most direct evidence available from spinal epidural recordings of the descending corticospinal volleys. The results show that it is potentially possible to test and condition specific neural circuits in motor cortex that could be affected differentially by disease, or be used in different forms of natural behaviour. However, there is substantial interindividual variability in the specificity of these protocols. Perhaps in the future it will be possible, with the advances currently being made to model the electrical fields induced in individual brains, to develop forms of stimulation that can reliably target more specific populations of neurones, and open up the internal circuitry of the motor cortex for study in behaving humans.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Institute of Neurology, Campus Biomedico University, Via Alvaro del Portillo 200, 00128, Rome, Italy Fondazione Alberto Sordi - Research Institute for Ageing, Rome, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
32
|
Brandt VC, Niessen E, Ganos C, Kahl U, Bäumer T, Münchau A. Altered synaptic plasticity in Tourette's syndrome and its relationship to motor skill learning. PLoS One 2014; 9:e98417. [PMID: 24878665 PMCID: PMC4039486 DOI: 10.1371/journal.pone.0098417] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/02/2014] [Indexed: 11/25/2022] Open
Abstract
Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics that can be considered motor responses to preceding inner urges. It has been shown that Tourette patients have inferior performance in some motor learning tasks and reduced synaptic plasticity induced by transcranial magnetic stimulation. However, it has not been investigated whether altered synaptic plasticity is directly linked to impaired motor skill acquisition in Tourette patients. In this study, cortical plasticity was assessed by measuring motor-evoked potentials before and after paired associative stimulation in 14 Tourette patients (13 male; age 18–39) and 15 healthy controls (12 male; age 18–33). Tic and urge severity were assessed using the Yale Global Tic Severity Scale and the Premonitory Urges for Tics Scale. Motor learning was assessed 45 minutes after inducing synaptic plasticity and 9 months later, using the rotary pursuit task. On average, long-term potentiation-like effects in response to the paired associative stimulation were present in healthy controls but not in patients. In Tourette patients, long-term potentiation-like effects were associated with more and long-term depression-like effects with less severe urges and tics. While motor learning did not differ between patients and healthy controls 45 minutes after inducing synaptic plasticity, the learning curve of the healthy controls started at a significantly higher level than the Tourette patients' 9 months later. Induced synaptic plasticity correlated positively with motor skills in healthy controls 9 months later. The present study confirms previously found long-term improvement in motor performance after paired associative stimulation in healthy controls but not in Tourette patients. Tourette patients did not show long-term potentiation in response to PAS and also showed reduced levels of motor skill consolidation after 9 months compared to healthy controls. Moreover, synaptic plasticity appears to be related to symptom severity.
Collapse
Affiliation(s)
- Valerie Cathérine Brandt
- Institute of Neurogenetics, University of Lübeck, Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University Clinic Hamburg-Eppendorf, Hamburg, Hamburg, Germany
- * E-mail:
| | - Eva Niessen
- Institute of Neuroscience & Medicine, Research Centre Jülich, Jülich, Nordrhein-Westfalen, Germany
| | - Christos Ganos
- Institute of Neurogenetics, University of Lübeck, Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University Clinic Hamburg-Eppendorf, Hamburg, Hamburg, Germany
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, United Kingdom
| | - Ursula Kahl
- Department of Neurology, University Clinic Hamburg-Eppendorf, Hamburg, Hamburg, Germany
| | - Tobias Bäumer
- Institute of Neurogenetics, University of Lübeck, Lübeck, Schleswig-Holstein, Germany
| | - Alexander Münchau
- Institute of Neurogenetics, University of Lübeck, Lübeck, Schleswig-Holstein, Germany
| |
Collapse
|
33
|
Carson RG, Kennedy NC. Modulation of human corticospinal excitability by paired associative stimulation. Front Hum Neurosci 2013; 7:823. [PMID: 24348369 PMCID: PMC3847812 DOI: 10.3389/fnhum.2013.00823] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/14/2013] [Indexed: 12/04/2022] Open
Abstract
Paired Associative Stimulation (PAS) has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS) delivered to the contralateral primary motor cortex (M1). Repeated pairing of the stimuli (i.e., association) over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI). It has been suggested that these effects represent a form of associative long-term potentiation (LTP) and depression (LTD) that bears resemblance to spike-timing dependent plasticity (STDP) as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasizing the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland ; School of Psychology, Queen's University Belfast Belfast, UK
| | - Niamh C Kennedy
- School of Psychology, Queen's University Belfast Belfast, UK ; School of Rehabilitation Sciences University of East Anglia Norwich, UK
| |
Collapse
|