1
|
Majid QA, Ghimire BR, Merkely B, Randi AM, Harding SE, Talman V, Földes G. Generation and characterisation of scalable and stable human pluripotent stem cell-derived microvascular-like endothelial cells for cardiac applications. Angiogenesis 2024; 27:561-582. [PMID: 38775849 PMCID: PMC11303486 DOI: 10.1007/s10456-024-09929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 08/07/2024]
Abstract
Coronary microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however, they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature. Here, we report the development and comprehensive characterisation of a scalable 3D protocol enabling the generation of phenotypically stable cardiac hPSC-microvascular-like ECs (hPSC-CMVECs) and cardiac pericyte-like cells. These were derived by growing vascular organoids within 3D stirred tank bioreactors and subjecting the emerging 3D hPSC-ECs to high-concentration VEGF-A treatment (3DV). Not only did this promote phenotypic stability of the 3DV hPSC-ECs; single cell-RNA sequencing (scRNA-seq) revealed the pronounced expression of cardiac endothelial- and microvascular-associated genes. Further, the generated mural cells attained from the vascular organoid exhibited markers characteristic of cardiac pericytes. Thus, we present a suitable cell model for investigating the cardiac microvasculature as well as the endothelial-dependent and -independent mechanisms of CMD. Moreover, owing to their phenotypic stability, cardiac specificity, and high angiogenic potential, the cells described within would also be well suited for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Qasim A Majid
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary
| | - Anna M Randi
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sian E Harding
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Virpi Talman
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gábor Földes
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary.
| |
Collapse
|
2
|
Martínez-Nieto G, Heljasvaara R, Heikkinen A, Kaski HK, Devarajan R, Rinne O, Henriksson C, Thomson E, von Hertzen C, Miinalainen I, Ruotsalainen H, Pihlajaniemi T, Karppinen SM. Deletion of Col15a1 Modulates the Tumour Extracellular Matrix and Leads to Increased Tumour Growth in the MMTV-PyMT Mouse Mammary Carcinoma Model. Int J Mol Sci 2021; 22:9978. [PMID: 34576139 PMCID: PMC8467152 DOI: 10.3390/ijms22189978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
Basement membrane (BM) zone-associated collagen XV (ColXV) has been shown to suppress the malignancy of tumour cells, and its restin domain can inhibit angiogenesis. In human breast cancer, as well as in many other human carcinomas, ColXV is lost from the epithelial BM zone prior to tumour invasion. Here, we addressed the roles of ColXV in breast carcinogenesis using the transgenic MMTV-PyMT mouse mammary carcinoma model. We show here for the first time that the inactivation of Col15a1 in mice leads to changes in the fibrillar tumour matrix and to increased mammary tumour growth. ColXV is expressed by myoepithelial and endothelial cells in mammary tumours and is lost from the ductal BM along with the loss of the myoepithelial layer during cancer progression while persisting in blood vessels and capillaries, even in invasive tumours. However, despite the absence of anti-angiogenic restin domain, neovascularisation was reduced rather than increased in the ColXV-deficient mammary tumours compared to controls. We also show that, in robust tumour cell transplantation models or in a chemical-induced fibrosarcoma model, the inactivation of Col15a1 does not affect tumour growth or angiogenesis. In conclusion, our results support the proposed tumour suppressor function of ColXV in mammary carcinogenesis and reveal diverse roles of this collagen in different cancer types.
Collapse
MESH Headings
- Animals
- Antigens, Polyomavirus Transforming/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinogenesis/pathology
- Cell Proliferation
- Collagen/deficiency
- Collagen/genetics
- Collagen/metabolism
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Female
- Fibrosarcoma/pathology
- Fibrosis
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Humans
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Mammary Neoplasms, Animal/ultrastructure
- Mammary Tumor Virus, Mouse/physiology
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stromal Cells/pathology
- Stromal Cells/ultrastructure
- Survival Analysis
- Mice
Collapse
Affiliation(s)
- Guillermo Martínez-Nieto
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| | - Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
- Biocenter Oulu, University of Oulu, 90220 Oulu, Finland;
| | - Hanne-Kaisa Kaski
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| | - Raman Devarajan
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| | - Otto Rinne
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| | - Charlotta Henriksson
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| | - Emmi Thomson
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| | - Camilla von Hertzen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| | | | - Heli Ruotsalainen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| | - Sanna-Maria Karppinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland; (G.M.-N.); (R.H.); (A.H.); (H.-K.K.); (R.D.); (O.R.); (C.H.); (E.T.); (C.v.H.); (H.R.); (T.P.)
| |
Collapse
|
3
|
Bretaud S, Guillon E, Karppinen SM, Pihlajaniemi T, Ruggiero F. Collagen XV, a multifaceted multiplexin present across tissues and species. Matrix Biol Plus 2020; 6-7:100023. [PMID: 33543021 PMCID: PMC7852327 DOI: 10.1016/j.mbplus.2020.100023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
Type XV collagen is a non-fibrillar collagen that is associated with basement membranes and belongs to the multiplexin subset of the collagen superfamily. Collagen XV was initially studied because of its sequence homology with collagen XVIII/endostatin whose anti-angiogenic and anti-tumorigenic properties were subjects of wide interest in the past years. But during the last fifteen years, collagen XV has gained growing attention with increasing number of studies that have attributed new functions to this widely distributed collagen/proteoglycan hybrid molecule. Despite the cumulative evidence of its functional pleiotropy and its evolutionary conserved function, no review compiling the current state of the art about collagen XV is currently available. Here, we thus provide the first comprehensive view of the knowledge gathered so far on the molecular structure, tissue distribution and functions of collagen XV in development, tissue homeostasis and disease with an evolutionary perspective. We hope that our review will open new roads for promising research on collagen XV in the coming years. Type XV collagen belongs to the multiplexin subset of the collagen superfamily. It is evolutionarily conserved collagen and associated with basement membranes. This collagen/proteoglycan hybrid molecule contains an anti-angiogenic restin domain. It has important functions in the cardiovascular and the neuromuscular systems. Its expression is dysregulated in various diseases including cancers.
Collapse
Key Words
- Animal models
- BM, basement membrane
- BMZ, basement membrane zone
- COL, collagenous domain
- CS, chondroitin sulfate
- CSPG, chondroitin sulfate proteoglycan
- Collagen-related disease
- Collagens
- Development
- ECM, extracellular matrix
- Evolution
- Extracellular matrix
- GAG, glycosaminoglycan
- HFD, High fat diet
- HS, heparan sulfate
- HSPG, heparan sulfate proteoglycan
- Multiplexin
- NC, non-collagenous domain
- TD, trimerization domain
- TSPN, Thrombospondin-1 N-terminal like domain
- dpf, day post-fertilization
Collapse
Affiliation(s)
- Sandrine Bretaud
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| | - Emilie Guillon
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| | - Sanna-Maria Karppinen
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230 Oulu, Finland
| | - Taina Pihlajaniemi
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230 Oulu, Finland
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| |
Collapse
|
4
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
5
|
Curry FE, Taxt T, Rygh CB, Pavlin T, Bjørnstad R, Døskeland SO, Reed RK. Epac1 -/- mice have elevated baseline permeability and do not respond to histamine as measured with dynamic contrast-enhanced magnetic resonance imaging with contrast agents of different molecular weights. Acta Physiol (Oxf) 2019; 225:e13199. [PMID: 30300965 PMCID: PMC6646910 DOI: 10.1111/apha.13199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Aim Epac1−/− mice, but not Epac2−/− mice have elevated baseline permeability to albumin. This study extends the investigations of how Epac‐dependent pathways modulate transvascular exchange in response to the classical inflammatory agent histamine. It also evaluates the limitations of models of blood‐to‐tissue exchange in transgenic mice in DCE‐MRI measurements. Methods We measured DCE‐MRI signal intensity in masseter muscle of wt and Epac1−/− mice with established approaches from capillary physiology to determine how changes in blood flow and vascular permeability contribute to overall changes of microvascular flux. We used two tracers, the high molecular weight tracer (Gadomer‐17, MW 17 kDa, apparent MW 30‐35 kDa) is expected to be primarily limited by diffusion and therefore less dependent on changes in blood flow and the low molecular weight tracer (Dotarem (MW 0.56 kDa) whose transvascular exchange is determined by both blood flow and permeability. Paired experiments in each animal combined with analytical methods provided an internally consistent description of microvascular transport. Results Epac1−/− mice had elevated baseline permeability relative to wt control mice for Dotarem and Gadomer‐17. In contrast to wt mice, Epac1−/− mice failed to increase transvascular permeability in response to histamine. Dotarem underestimated blood flow and vascular volume and Gadomer‐17 has limited sensitivity in extravascular accumulation. Conclusion The study suggests that the normal barrier loosening effect of histamine in venular microvessels do not function when the normal barrier tightening effect of Epac1 is already compromised. The study also demonstrated that the numerical analysis of DCE‐MRI data with tracers of different molecular weight has significant limitations.
Collapse
Affiliation(s)
- Fitz‐Roy E. Curry
- Department of Physiology and Membrane Biology University of California Davis Davis California
| | - Torfinn Taxt
- Department of Biomedicine University of Bergen Bergen Norway
| | - Cecilie Brekke Rygh
- Department of Biomedicine University of Bergen Bergen Norway
- Molecular Imaging Centre Department of Biomedicine University of Bergen Bergen Norway
| | - Tina Pavlin
- Department of Biomedicine University of Bergen Bergen Norway
- Molecular Imaging Centre Department of Biomedicine University of Bergen Bergen Norway
| | - Ronja Bjørnstad
- Department of Biomedicine University of Bergen Bergen Norway
| | | | - Rolf K. Reed
- Department of Biomedicine University of Bergen Bergen Norway
- Centre for Cancer Biomarkers University of Bergen Bergen Norway
| |
Collapse
|
6
|
Karppinen SM, Honkanen HK, Heljasvaara R, Riihilä P, Autio-Harmainen H, Sormunen R, Harjunen V, Väisänen MR, Väisänen T, Hurskainen T, Tasanen K, Kähäri VM, Pihlajaniemi T. Collagens XV and XVIII show different expression and localisation in cutaneous squamous cell carcinoma: type XV appears in tumor stroma, while XVIII becomes upregulated in tumor cells and lost from microvessels. Exp Dermatol 2018; 25:348-54. [PMID: 26660139 DOI: 10.1111/exd.12913] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 12/17/2022]
Abstract
As the second most common skin malignancy, cutaneous squamous cell carcinoma (cSCC) is an increasing health concern, while its pathogenesis at molecular level remains largely unknown. We studied the expression and localisation of two homologous basement membrane (BM) collagens, types XV and XVIII, at different stages of cSCC. These collagens are involved in angiogenesis and tumorigenesis, but their role in cancer development is incompletely understood. Quantitative RT-PCR analysis revealed upregulation of collagen XVIII, but not collagen XV, in primary cSCC cells in comparison with normal human epidermal keratinocytes. In addition, the Ha-ras-transformed invasive cell line II-4 expressed high levels of collagen XVIII mRNA, indicating upregulation in the course of malignant transformation. Immunohistochemical analyses of a large human tissue microarray material showed that collagen XVIII is expressed by tumor cells from grade 1 onwards, while keratinocytes in normal skin and in premalignant lesions showed negative staining for it. Collagen XV appeared instead as deposits in the tumor stroma. Our findings in human cSCCs and in mouse cSCCs from the DMBA-TPA skin carcinogenesis model showed that collagen XVIII, but not collagen XV or the BM markers collagen IV or laminin, was selectively reduced in the tumor vasculature, and this decrease associated significantly with cancer progression. Our results demonstrate that collagens XV and XVIII are expressed in different sites of cSCC and may contribute in a distinct manner to processes related to cSCC tumorigenesis, identifying these collagens as potential biomarkers in the disease.
Collapse
Affiliation(s)
- Sanna-Maria Karppinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hanne-Kaisa Honkanen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Pilvi Riihilä
- MediCity Research Laboratory and Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | | | - Raija Sormunen
- Department of Pathology, University of Oulu/Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Vanessa Harjunen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Timo Väisänen
- Department of Pathology, University of Oulu/Oulu University Hospital, Oulu, Finland
| | - Tiina Hurskainen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Oulu, Finland.,Department of Dermatology, University of Oulu/Oulu University Hospital, Oulu, Finland
| | - Kaisa Tasanen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Oulu, Finland.,Department of Dermatology, University of Oulu/Oulu University Hospital, Oulu, Finland
| | - Veli-Matti Kähäri
- MediCity Research Laboratory and Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Liu G, Li M, Xu Y, Wu S, Saeed M, Sun C. ColXV promotes adipocyte differentiation via inhibiting DNA methylation and cAMP/PKA pathway in mice. Oncotarget 2017; 8:60135-60148. [PMID: 28947959 PMCID: PMC5601127 DOI: 10.18632/oncotarget.18550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/04/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular matrix (ECM), as an essential component of adipose tissue, not only provides mechanical support for adipocyte growth, but also participates in ECM-adipocyte communication via various secreted proteins, including highly enriched collagens. Collagen XV (ColXV) is a secreted non-fibrillar collagen within ECM Basement Membrane (BM) zones and well recognized as a tumor suppressor. However, the role of ColXV in adipose tissue is still unknown. In this study, high fat diet (HFD) fed mice were used as obese model, in which we deeply investigated the interaction between ColXV and adipocyte differentiation or adipose metabolism. We found great elevated ColXV expression and positive effect of ColXV on lipid deposition during adipocyte differentiation or obesity both in vitro and in vivo. cAMP response element binding protein (CREB) is a cellular transcription factor that can inhibit adipogenesis and promote lipolysis. Here we proposed ColXV as a newly discovered downstream gene of CREB. We further proved that CREB can repress adipocyte differentiation and enhance lipolysis by negatively regulating ColXV transcription. Mechanistic studies showed ColXV enhanced adipocyte differentiation and lipid deposition through reducing its DNA methylation and repressing the cAMP/PKA signaling pathway. Collectively, our study identified ColXV as a novel downstream gene for CREB and could promote adipocyte differentiation, inhibit lipolysis through repressing cAMP/PKA signaling pathway and positively regulating adipogenic markers expressions by repressing the activity of maintenance methyltransferase Dnmt1. Our data discovered a novel role of ColXV in adipocyte differentiation and provide insight into obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Guannv Liu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Meihang Li
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Yatao Xu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Song Wu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Saeed
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
8
|
Heljasvaara R, Aikio M, Ruotsalainen H, Pihlajaniemi T. Collagen XVIII in tissue homeostasis and dysregulation - Lessons learned from model organisms and human patients. Matrix Biol 2016; 57-58:55-75. [PMID: 27746220 DOI: 10.1016/j.matbio.2016.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022]
Abstract
Collagen XVIII is a ubiquitous basement membrane (BM) proteoglycan produced in three tissue-specific isoforms that differ in their N-terminal non-collagenous sequences, but share collagenous and C-terminal non-collagenous domains. The collagenous domain provides flexibility to the large collagen XVIII molecules on account of multiple interruptions in collagenous sequences. Each isoform has a complex multi-domain structure that endows it with an ability to perform various biological functions. The long isoform contains a frizzled-like (Fz) domain with Wnt-inhibiting activity and a unique domain of unknown function (DUF959), which is also present in the medium isoform. All three isoforms share an N-terminal laminin-G-like/thrombospondin-1 sequence whose specific functions still remain unconfirmed. The proteoglycan nature of the isoforms further increases the functional diversity of collagen XVIII. An anti-angiogenic domain termed endostatin resides in the C-terminus of collagen XVIII and is proteolytically cleaved from the parental molecule during the BM breakdown for example in the process of tumour progression. Recombinant endostatin can efficiently reduce tumour angiogenesis and growth in experimental models by inhibiting endothelial cell migration and proliferation or by inducing their death, but its efficacy against human cancers is still a subject of debate. Mutations in the COL18A1 gene result in Knobloch syndrome, a genetic disorder characterised mainly by severe eye defects and encephalocele and, occasionally, other symptoms. Studies with gene-modified mice have elucidated some aspects of this rare disease, highlighting in particular the importance of collagen XVIII in the development of the eye. Research with model organisms have also helped in determining other structural and biological functions of collagen XVIII, such as its requirement in the maintenance of BM integrity and its emerging roles in regulating cell survival, stem or progenitor cell maintenance and differentiation and inflammation. In this review, we summarise current knowledge on the properties and endogenous functions of collagen XVIII in normal situations and tissue dysregulation. When data is available, we discuss the functions of the distinct isoforms and their specific domains.
Collapse
Affiliation(s)
- Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland; Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| | - Mari Aikio
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Heli Ruotsalainen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
9
|
Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT. Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:2422-38. [PMID: 26367079 PMCID: PMC4624607 DOI: 10.1016/j.bbagen.2015.09.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiogenesis is the process of neovascularization from pre-existing vasculature and is involved in various physiological and pathological processes. Inhibitors of angiogenesis, administered either as individual drugs or in combination with other chemotherapy, have been shown to benefit patients with various cancers. Endostatin, a 20-kDa C-terminal fragment of type XVIII collagen, is one of the most potent inhibitors of angiogenesis. SCOPE OF REVIEW We discuss the biology behind endostatin in the context of its endogenous production, the various receptors to which it binds, and the mechanisms by which it acts. We focus on its inhibitory role in angiogenesis, lymphangiogenesis, and cancer metastasis. We also present emerging clinical applications for endostatin and its potential as a therapeutic agent in the form a short peptide. MAJOR CONCLUSIONS The delicate balance between pro- and anti-angiogenic factors can be modulated to result in physiological wound healing or pathological tumor metastasis. Research in the last decade has emphasized an emerging clinical potential for endostatin as a biomarker and as a therapeutic short peptide. Moreover, elevated or depressed endostatin levels in diseased states may help explain the pathophysiological mechanisms of the particular disease. GENERAL SIGNIFICANCE Endostatin was once sought after as the 'be all and end all' for cancer treatment; however, research throughout the last decade has made it apparent that endostatin's effects are complex and involve multiple mechanisms. A better understanding of newly discovered mechanisms and clinical applications still has the potential to lead to future advances in the use of endostatin in the clinic.
Collapse
Affiliation(s)
- Amit Walia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jessica F Yang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu-Hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Homozygosity mapping and whole exome sequencing reveal a novel homozygous COL18A1 mutation causing Knobloch syndrome. PLoS One 2014; 9:e112747. [PMID: 25392994 PMCID: PMC4231049 DOI: 10.1371/journal.pone.0112747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/14/2014] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to identify the genetic basis of a chorioretinal dystrophy with high myopia of unknown origin in a child of a consanguineous marriage. The proband and ten family members of Iranian ancestry participated in this study. Linkage analysis was carried out with DNA samples of the proband and her parents by using the Human SNP Array 6.0. Whole exome sequencing (WES) was performed with the patients' DNA. Specific sequence alterations within the homozygous regions identified by whole exome sequencing were verified by Sanger sequencing. Upon genetic analysis, a novel homozygous frameshift mutation was found in exon 42 of the COL18A1 gene in the patient. Both parents were heterozygous for this sequence variation. Mutations in COL18A1 are known to cause Knobloch syndrome (KS). Retrospective analysis of clinical records of the patient revealed surgical removal of a meningocele present at birth. The clinical features shown by our patient were typical of KS with the exception of chorioretinal degeneration which is a rare manifestation. This is the first case of KS reported in a family of Iranian ancestry. We identified a novel disease-causing (deletion) mutation in the COL18A1 gene leading to a frameshift and premature stop codon in the last exon. The mutation was not present in SNP databases and was also not found in 192 control individuals. Its localization within the endostatin domain implicates a functional relevance of endostatin in KS. A combined approach of linkage analysis and WES led to a rapid identification of the disease-causing mutation even though the clinical description was not completely clear at the beginning.
Collapse
|
11
|
Abstract
Portal fibroblasts are a minor population in the normal liver, found in the periportal mesenchyme surrounding the bile ducts. While many researchers have hypothesized that they are an important myofibroblast precursor population in biliary fibrosis, responsible for matrix deposition in early fibrosis and for recruiting hepatic stellate cells, the role of portal fibroblasts relative to hepatic stellate cells is controversial. Several papers published in the past year have addressed this point and have identified other potential roles for portal fibroblasts in biliary fibrosis. The goal of this review is to critically assess these recent studies, to highlight gaps in our knowledge of portal fibroblasts, and to suggest directions for future research.
Collapse
Affiliation(s)
- Rebecca G Wells
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|