1
|
Rosendo-Pineda MJ, Vicente JJ, Vivas O, Pacheco J, Loza-Huerta A, Sampieri A, Wordeman L, Moreno C, Vaca L. Phosphorylation of NMDA receptors by cyclin B/CDK1 modulates calcium dynamics and mitosis. Commun Biol 2020; 3:665. [PMID: 33184446 PMCID: PMC7665045 DOI: 10.1038/s42003-020-01393-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDAR) are glutamate-gated calcium channels named after their artificial agonist. NMDAR are implicated in cell proliferation under normal and pathophysiological conditions. However, the role of NMDAR during mitosis has not yet been explored in individual cells. We found that neurotransmitter-evoked calcium entry via endogenous NMDAR in cortical astrocytes was transient during mitosis. The same occurred in HEK293 cells transfected with the NR1/NR2A subunits of NMDAR. This transient calcium entry during mitosis was due to phosphorylation of the first intracellular loop of NMDAR (S584 of NR1 and S580 of NR2A) by cyclin B/CDK1. Expression of phosphomimetic mutants resulted in transient calcium influx and enhanced NMDAR inactivation independent of the cell cycle phase. Phosphomimetic mutants increased entry of calcium in interphase and generated several alterations during mitosis: increased mitotic index, increased number of cells with lagging chromosomes and fragmentation of pericentriolar material. In summary, by controlling cytosolic calcium, NMDAR modulate mitosis and probably cell differentiation/proliferation. Our results suggest that phosphorylation of NMDAR by cyclin B/CDK1 during mitosis is required to preserve mitotic fidelity. Altering the modulation of the NMDAR by cyclin B/CDK1 may conduct to aneuploidy and cancer.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jonathan Pacheco
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico
| | - Arlet Loza-Huerta
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico
| | - Alicia Sampieri
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Claudia Moreno
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico.
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
2
|
Mechanism of Manganese Dysregulation of Dopamine Neuronal Activity. J Neurosci 2020; 40:5871-5891. [PMID: 32576620 DOI: 10.1523/jneurosci.2830-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
Manganese exposure produces Parkinson's-like neurologic symptoms, suggesting a selective dysregulation of dopamine transmission. It is unknown, however, how manganese accumulates in dopaminergic brain regions or how it regulates the activity of dopamine neurons. Our in vivo studies in male C57BLJ mice suggest that manganese accumulates in dopamine neurons of the VTA and substantia nigra via nifedipine-sensitive Ca2+ channels. Manganese produces a Ca2+ channel-mediated current, which increases neurotransmitter release and rhythmic firing activity of dopamine neurons. These increases are prevented by blockade of Ca2+ channels and depend on downstream recruitment of Ca2+-activated potassium channels to the plasma membrane. These findings demonstrate the mechanism of manganese-induced dysfunction of dopamine neurons, and reveal a potential therapeutic target to attenuate manganese-induced impairment of dopamine transmission.SIGNIFICANCE STATEMENT Manganese is a trace element critical to many physiological processes. Overexposure to manganese is an environmental risk factor for neurologic disorders, such as a Parkinson's disease-like syndrome known as manganism. We found that manganese concentration-dependently increased the excitability of dopamine neurons, decreased the amplitude of action potentials, and narrowed action potential width. Blockade of Ca2+ channels prevented these effects as well as manganese accumulation in the mouse midbrain in vivo Our data provide a potential mechanism for manganese regulation of dopaminergic neurons.
Collapse
|
3
|
The Ubiquitination of Spinal MrgC Alleviates Bone Cancer Pain and Reduces Intracellular Calcium Concentration in Spinal Neurons in Mice. Neurochem Res 2019; 44:2527-2535. [PMID: 31515677 DOI: 10.1007/s11064-019-02869-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023]
Abstract
Mas-related G-protein-coupled receptor subtype C (MrgC) has been shown to play an important role in the development of bone cancer pain. Ubiquitination is reported to participate in pain. However, whether MrgC ubiquitination plays a role in bone cancer pain remains unclear. To answer this question, we designed and performed this study. Osteosarcoma cells were implanted into the intramedullary space of the right femurs of C3H/HeJ mice to induce progressive bone cancer pain. MrgC agonist bovine adrenal medulla 8-22 (BAM 8-22) or MrgC antagonist anti-MrgC antibody were injected intrathecally on day 14 after bone cancer pain was successfully induced. The pain behaviors, the MrgC ubiquitination levels and intracellular calcium concentration in spinal neurons were measured before and after injection, respectively. With comparison to normal and sham group, mice in tumor group exhibited serious bone cancer pain on day 14, and the level of MrgC ubiquitination and intracellular calcium concentration in spinal neurons was significantly higher. Intrathecal injection of BAM 8-22 significantly alleviated bone cancer pain, increased the MrgC ubiquitination level and decreased intracellular calcium concentration in spinal neurons; however, these effects were reversed by administration of anti-MrgC antibody. Our study reveals that MrgC ubiquitination participates in the production and maintenance of bone cancer pain in mice, possibly through the regulation of intracellular calcium concentration in mice spinal neurons.
Collapse
|
4
|
Lin R, Duan Z, Sun H, Fung ML, Chen H, Wang J, Lau CF, Yang D, Liu Y, Ni Y, Wang Z, Cui J, Wu W, Yung WH, Chan YS, Lo ACY, Xia J, Shen J, Huang JD. Kinesin-1 Regulates Extrasynaptic Targeting of NMDARs and Neuronal Vulnerability Toward Excitotoxicity. iScience 2019; 13:82-97. [PMID: 30826728 PMCID: PMC6402234 DOI: 10.1016/j.isci.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor (NMDAR) is highly compartmentalized in neurons, and its dysfunction has been implicated in various neuropsychiatric and neurodegenerative disorders. Recent failure to exploit NMDAR antagonization as a potential therapeutic target has driven the need to identify molecular mechanisms that regulate NMDAR compartmentalization. Here, we report that the reduction of Kif5b, the heavy chain of kinesin-1, protected neurons against NMDA-induced excitotoxicity and ischemia-provoked neurodegeneration. Direct binding of kinesin-1 to the GluN2B cytoplasmic tails regulated the levels of NMDAR at extrasynaptic sites and the subsequent influx of calcium mediated by extrasynaptic NMDAR by regulating the insertion of NMDARs into neuronal surface. Transient increase of Kif5b restored the surface levels of NMDAR and the decreased neuronal susceptibility to NMDA-induced excitotoxicity. The expression of Kif5b was repressed in cerebral ischemia preconditioning. Our findings reveal that kinesin-1 regulates extrasynaptic NMDAR targeting and signaling, and the reduction of kinesin-1 could be exploited to defer neurodegeneration. Kif5b directly binds with GluN2B-containing NMDAR Kinesin-1 mediates extrasynaptic NMDAR targeting and function Reduction of kinesin-1 protects neurons against NMDAR-elicited excitotoxicity Reduction of kinesin-1 protects brain against ischemia-elicited neurodegeneration
Collapse
Affiliation(s)
- Raozhou Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zhigang Duan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Haitao Sun
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jing Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Fai Lau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Di Yang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yanxiang Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ju Cui
- Beijing Institute of Geriatrics, Beijing Hospital, Ministry of Health, Beijing, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jun Xia
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China; Shenzhen Institute of Advanced Technologies, Shenzhen, China.
| |
Collapse
|
5
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
6
|
Calpain inhibition reduces NMDA receptor rundown in rat substantia nigra dopamine neurons. Neuropharmacology 2018; 137:221-229. [PMID: 29772491 DOI: 10.1016/j.neuropharm.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 01/12/2023]
Abstract
Repeated activation of N-Methyl-d-aspartate receptors (NMDARs) causes a Ca2+-dependent reduction in NMDAR-mediated current in dopamine (DA) neurons of the substantia nigra pars compacta (SNc) in one week old rats; however, a Ca2+-dependent regulatory protein has not been identified. The role of the Ca2+-dependent cysteine protease, calpain, in mediating NMDAR current rundown was investigated. In brain slices from rats aged postnatal day 7-9 ('P7'), bath application of either of the membrane permeable calpain inhibitors, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN, 20 μM) or MDL-28170 (30 μM) significantly reduced whole-cell NMDAR current rundown. To investigate the role of the calpain-2 isoform, the membrane permeable calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I, 200 nM), was applied; C2I application significantly reduced whole cell NMDAR current rundown. Interestingly, ALLN but not C2I significantly reduced rundown of NMDA-EPSCs. These results suggest the calpain-2 isoform mediates Ca2+-dependent regulation of extrasynaptic NMDAR current in the first postnatal week, while calpain-1 might mediate rundown of synaptic NMDAR currents. One week later in postnatal development, at P12-P16 ('P14'), there was significantly less rundown in SNc-DA neurons, and no significant effect on rundown of either Ca2+ chelation or treatment with the calpain inhibitor, ALLN, suggesting that the rundown observed in SNc-DA neurons from two week-old rats might be Ca2+-independent. In conclusion, Ca2+-dependent rundown of extrasynaptic NMDAR currents in SNc DA neurons involves calpain-2 activation, but Ca2+- and calpain-2-dependent NMDAR current rundown is developmentally regulated.
Collapse
|
7
|
Bellucci A, Mercuri NB, Venneri A, Faustini G, Longhena F, Pizzi M, Missale C, Spano P. Review: Parkinson's disease: from synaptic loss to connectome dysfunction. Neuropathol Appl Neurobiol 2016; 42:77-94. [PMID: 26613567 DOI: 10.1111/nan.12297] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with prominent loss of nigro-striatal dopaminergic neurons. The resultant dopamine (DA) deficiency underlies the onset of typical motor symptoms (MS). Nonetheless, individuals affected by PD usually show a plethora of nonmotor symptoms (NMS), part of which may precede the onset of motor signs. Besides DA neuron degeneration, a key neuropathological alteration in the PD brain is Lewy pathology. This is characterized by abnormal intraneuronal (Lewy bodies) and intraneuritic (Lewy neurites) deposits of fibrillary aggregates mainly composed of α-synuclein. Lewy pathology has been hypothesized to progress in a stereotypical pattern over the course of PD and α-synuclein mutations and multiplications have been found to cause monogenic forms of the disease, thus raising the question as to whether this protein is pathogenic in this disorder. Findings showing that the majority of α-synuclein aggregates in PD are located at presynapses and this underlies the onset of synaptic and axonal degeneration, coupled to the fact that functional connectivity changes correlate with disease progression, strengthen this idea. Indeed, by altering the proper action of key molecules involved in the control of neurotransmitter release and re-cycling as well as synaptic and structural plasticity, α-synuclein deposition may crucially impair axonal trafficking, resulting in a series of noxious events, whose pressure may inevitably degenerate into neuronal damage and death. Here, we provide a timely overview of the molecular features of synaptic loss in PD and disclose their possible translation into clinical symptoms through functional disconnection.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Annalena Venneri
- IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy.,Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - PierFranco Spano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy
| |
Collapse
|
8
|
Wild AR, Bollands M, Morris PG, Jones S. Mechanisms regulating spill-over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons. Eur J Neurosci 2015; 42:2633-43. [PMID: 26370007 PMCID: PMC4832385 DOI: 10.1111/ejn.13075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 02/02/2023]
Abstract
N‐Methyl‐d‐aspartate glutamate receptors (NMDARs) contribute to neural development, plasticity and survival, but they are also linked with neurodegeneration. NMDARs at synapses are activated by coincident glutamate release and depolarization. NMDARs distal to synapses can sometimes be recruited by ‘spill‐over’ of glutamate during high‐frequency synaptic stimulation or when glutamate uptake is compromised, and this influences the shape of NMDAR‐mediated postsynaptic responses. In substantia nigra dopamine neurons, activation of NMDARs beyond the synapse during different frequencies of presynaptic stimulation has not been explored, even though excitatory afferents from the subthalamic nucleus show a range of firing frequencies, and these frequencies change in human and experimental Parkinson's disease. This study reports that high‐frequency stimulation (80 Hz/200 ms) evoked NMDAR‐excitatory postsynaptic currents (EPSCs) that were larger and longer lasting than those evoked by single stimuli at low frequency (0.1 Hz). MK‐801, which irreversibly blocked NMDAR‐EPSCs activated during 0.1‐Hz stimulation, left a proportion of NMDAR‐EPSCs that could be activated by 80‐Hz stimulation and that may represent activity of NMDARs distal to synapses. TBOA, which blocks glutamate transporters, significantly increased NMDAR‐EPSCs in response to 80‐Hz stimulation, particularly when metabotropic glutamate receptors (mGluRs) were also blocked, indicating that recruitment of NMDARs distal to synapses is regulated by glutamate transporters and mGluRs. These regulatory mechanisms may be essential in the substantia nigra for restricting glutamate diffusion from synaptic sites and keeping NMDAR‐EPSCs in dopamine neurons relatively small and fast. Failure of glutamate transporters may contribute to the declining health of dopamine neurons during pathological conditions.
Collapse
Affiliation(s)
- A R Wild
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - M Bollands
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - P G Morris
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - S Jones
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|
9
|
Ht31 peptide inhibited inflammatory pain by blocking NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice. Neuropharmacology 2014; 89:290-7. [PMID: 25312281 DOI: 10.1016/j.neuropharm.2014.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/10/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022]
Abstract
A kinase anchoring proteins (AKAPs) assemble cAMP-dependent protein kinase (PKA) into signaling complexes with a wide range of ion channels, including N-methyl-d-aspartate (NMDA)-subtype glutamate receptor (NMDAR) that is critical for the central sensitization of nociceptive behaviors. Although PKA has been widely described in the regulation of NMDAR-dependent nociceptive transmission and plasticity, the roles of AKAPs in these processes are largely unknown as yet. The present study interfered with AKAPs/PKA interaction by introducing stearated Ht31 peptide (St-Ht31) into spinal dorsal horn neurons, and investigated the possible changes of primary afferent-evoked, NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSCs). Whole-cell patch clamp recordings demonstrated that intracellular loading of St-Ht31 through the glass pipettes didn't affect NMDAR-mediated synaptic responses in the spinal cord slices from intact mice. When inflammatory pain was established by intraplantar injection of Complete Freund's Adjuvant (CFA), however, St-Ht31 significantly repressed the amplitudes of NMDAR-EPSCs by selectively removing GluN2B subunit-containing NMDAR out of synapses. With the inhibition of NMDAR-mediated nociceptive transmission, St-Ht31 effectively ameliorated CFA-induced inflammatory pain. Pharmacological manipulation of microtubule-based NMDAR transport, dynamin-dependent NMDAR endocytosis or actin depolymerization abolished the inhibitory effects of St-Ht31 peptide on NMDAR-EPSCs, suggesting that disruption of AKAPs/PKA interaction by St-Ht31 might disturb multiple NMDAR trafficking steps to reduce the receptor synaptic expression and spinal sensitization.
Collapse
|
10
|
Petrosyan T, Hovsepyan A. Bacterial melanin crosses the blood-brain barrier in rat experimental model. Fluids Barriers CNS 2014; 11:20. [PMID: 25184034 PMCID: PMC4147389 DOI: 10.1186/2045-8118-11-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/19/2014] [Indexed: 11/14/2022] Open
Abstract
Background Bacterial melanin has been proven to stimulate regeneration after CNS lesions. The purpose of this study was to test, whether bacterial melanin can enter the brain via the blood–brain barrier (BBB). Methods Bacterial melanin (BM) was radioactively labeled by the iodobead method and used to test the BBB permeability after systemic injection into rats. The unidirectional influx rate from the blood was calculated by multiple-time regression analysis. A subgroup of the animals was co-injected with non-labeled BM to determine if BM has a saturable transport across the BBB. The levels of radioactivity were determined in the serum and tissues. Arterial blood was sampled to obtain the level of I-BM at different time points after injection. After systemic perfusion with saline, animals were decapitated and brain, spinal cord, liver and kidney samples were obtained and homogenized to test the I-BM level. Results Study results showed that radioactively-labeled bacterial melanin crossed the BBB, was enzymatically stable in blood and in brain parenchyma. Entry to brain was reduced when non-labeled BM was also present. Circulating melanin entered all regions of the CNS but the uptake was higher in lumbar spinal cord, thalamus, hypothalamus and substantia nigra. Liver and kidneys had high uptake rates of BM. Conclusions These results show that bacterial melanin has saturable transport across the BBB and selectively targets some CNS regions. Such transport may contribute to the neuroprotective action of bacterial melanin.
Collapse
Affiliation(s)
- Tigran Petrosyan
- Armenian State Institute of Physical Education, 11 Alex Manukian, Yerevan 0028, Armenia
| | | |
Collapse
|