1
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
2
|
Frick M, Schwieger C, Schmidt C. Liposomes as Carriers of Membrane-Associated Proteins and Peptides for Mass Spectrometric Analysis. Angew Chem Int Ed Engl 2021; 60:11523-11530. [PMID: 33599387 PMCID: PMC8252038 DOI: 10.1002/anie.202101242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Membrane proteins are key players of the cell. Their structure and the interactions they form with their lipid environment are required to understand their function. Here we explore liposomes as membrane mimetics for mass spectrometric analysis of peripheral membrane proteins and peptides. Liposomes are advantageous over other membrane mimetics in that they are easy to prepare, can be varied in size and composition, and are suitable for functional assays. We demonstrate that they dissociate into lipid clusters in the gas phase of a mass spectrometer while intact protein and protein-lipid complexes are retained. We exemplify this approach by employing different liposomes including proteoliposomes of two model peptides/proteins differing in size. Our results pave the way for the general application of liposomes for mass spectrometric analysis of membrane-associated proteins.
Collapse
Affiliation(s)
- Melissa Frick
- Interdisciplinary Research Center HALOmemCharles Tanford Protein CenterInstitute for Biochemistry and BiotechnologyMartin Luther University Halle-WittenbergKurt-Mothes-Strasse 3a06120HalleGermany
| | - Christian Schwieger
- Interdisciplinary Research Center HALOmemCharles Tanford Protein CenterInstitute for Biochemistry and BiotechnologyMartin Luther University Halle-WittenbergKurt-Mothes-Strasse 3a06120HalleGermany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmemCharles Tanford Protein CenterInstitute for Biochemistry and BiotechnologyMartin Luther University Halle-WittenbergKurt-Mothes-Strasse 3a06120HalleGermany
| |
Collapse
|
3
|
Frick M, Schwieger C, Schmidt C. Liposomen als Überträger membranassoziierter Proteine und Peptide für die massenspektrometrische Analyse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Melissa Frick
- Interdisziplinäre wissenschaftliche Einrichtung Charles-Tanford-Proteinzentrum Institut für Biochemie und Biotechnologie Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Straße 3a 06120 Halle Deutschland
| | - Christian Schwieger
- Interdisziplinäre wissenschaftliche Einrichtung Charles-Tanford-Proteinzentrum Institut für Biochemie und Biotechnologie Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Straße 3a 06120 Halle Deutschland
| | - Carla Schmidt
- Interdisziplinäre wissenschaftliche Einrichtung Charles-Tanford-Proteinzentrum Institut für Biochemie und Biotechnologie Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Straße 3a 06120 Halle Deutschland
| |
Collapse
|
4
|
Scratching the surface: native mass spectrometry of peripheral membrane protein complexes. Biochem Soc Trans 2021; 48:547-558. [PMID: 32129823 PMCID: PMC7192793 DOI: 10.1042/bst20190787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
A growing number of integral membrane proteins have been shown to tune their activity by selectively interacting with specific lipids. The ability to regulate biological functions via lipid interactions extends to the diverse group of proteins that associate only peripherally with the lipid bilayer. However, the structural basis of these interactions remains challenging to study due to their transient and promiscuous nature. Recently, native mass spectrometry has come into focus as a new tool to investigate lipid interactions in membrane proteins. Here, we outline how the native MS strategies developed for integral membrane proteins can be applied to generate insights into the structure and function of peripheral membrane proteins. Specifically, native MS studies of proteins in complex with detergent-solubilized lipids, bound to lipid nanodiscs, and released from native-like lipid vesicles all shed new light on the role of lipid interactions. The unique ability of native MS to capture and interrogate protein–protein, protein–ligand, and protein–lipid interactions opens exciting new avenues for the study of peripheral membrane protein biology.
Collapse
|
5
|
Hammerschmid D, van Dyck JF, Sobott F, Calabrese AN. Interrogating Membrane Protein Structure and Lipid Interactions by Native Mass Spectrometry. Methods Mol Biol 2021; 2168:233-261. [PMID: 33582995 DOI: 10.1007/978-1-0716-0724-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Native mass spectrometry and native ion mobility mass spectrometry are now established techniques in structural biology, with recent work developing these methods for the study of integral membrane proteins reconstituted in both lipid bilayer and detergent environments. Here we show how native mass spectrometry can be used to interrogate integral membrane proteins, providing insights into conformation, oligomerization, subunit composition/stoichiometry, and interactions with detergents/lipids/drugs. Furthermore, we discuss the sample requirements and experimental considerations unique to integral membrane protein native mass spectrometry research.
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.,Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Jeroen F van Dyck
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium.,Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Antonio N Calabrese
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
6
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
7
|
Bolla JR, Corey RA, Sahin C, Gault J, Hummer A, Hopper JTS, Lane DP, Drew D, Allison TM, Stansfeld PJ, Robinson CV, Landreh M. A Mass‐Spectrometry‐Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jani Reddy Bolla
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Robin A. Corey
- Department of BiochemistryUniversity of Oxford South Parks Road Oxford OX1 3QU UK
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet 17165 Solna Sweden
- Department of BiologyUniversity of Copenhagen Copenhagen N 2200 Denmark
| | - Joseph Gault
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Alissa Hummer
- Department of BiochemistryUniversity of Oxford South Parks Road Oxford OX1 3QU UK
| | - Jonathan T. S. Hopper
- OMass Therapeutics The Oxford Science Park, The Schrödinger Building Kidlington OX4 4GE UK
| | - David P. Lane
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet 17165 Solna Sweden
| | - David Drew
- Department of Biochemistry and BiophysicsStockholm University 10691 Stockholm Sweden
| | - Timothy M. Allison
- Biomolecular Interaction Centre and School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8140 New Zealand
| | - Phillip J. Stansfeld
- Department of BiochemistryUniversity of Oxford South Parks Road Oxford OX1 3QU UK
- School of Life Sciences & Department of ChemistryUniversity of Warwick Coventry CV4 7AL UK
| | - Carol V. Robinson
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet 17165 Solna Sweden
| |
Collapse
|
8
|
Bolla JR, Corey RA, Sahin C, Gault J, Hummer A, Hopper JTS, Lane DP, Drew D, Allison TM, Stansfeld PJ, Robinson CV, Landreh M. A Mass-Spectrometry-Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane Proteins. Angew Chem Int Ed Engl 2020; 59:3523-3528. [PMID: 31886601 PMCID: PMC7065234 DOI: 10.1002/anie.201914411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/29/2019] [Indexed: 01/21/2023]
Abstract
Membrane proteins engage in a variety of contacts with their surrounding lipids, but distinguishing between specifically bound lipids, and non-specific, annular interactions is a challenging problem. Applying native mass spectrometry to three membrane protein complexes with different lipid-binding properties, we explore the ability of detergents to compete with lipids bound in different environments. We show that lipids in annular positions on the presenilin homologue protease are subject to constant exchange with detergent. By contrast, detergent-resistant lipids bound at the dimer interface in the leucine transporter show decreased koff rates in molecular dynamics simulations. Turning to the lipid flippase MurJ, we find that addition of the natural substrate lipid-II results in the formation of a 1:1 protein-lipid complex, where the lipid cannot be displaced by detergent from the highly protected active site. In summary, we distinguish annular from non-annular lipids based on their exchange rates in solution.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Robin A. Corey
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet17165SolnaSweden
- Department of BiologyUniversity of CopenhagenCopenhagen N2200Denmark
| | - Joseph Gault
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Alissa Hummer
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| | - Jonathan T. S. Hopper
- OMass TherapeuticsThe Oxford Science Park, The Schrödinger BuildingKidlingtonOX4 4GEUK
| | - David P. Lane
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet17165SolnaSweden
| | - David Drew
- Department of Biochemistry and BiophysicsStockholm University10691StockholmSweden
| | - Timothy M. Allison
- Biomolecular Interaction Centre and School of Physical and Chemical SciencesUniversity of CanterburyChristchurch8140New Zealand
| | - Phillip J. Stansfeld
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
- School of Life Sciences & Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Carol V. Robinson
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet17165SolnaSweden
| |
Collapse
|
9
|
Frick M, Schmidt C. Mass spectrometry—A versatile tool for characterising the lipid environment of membrane protein assemblies. Chem Phys Lipids 2019; 221:145-157. [DOI: 10.1016/j.chemphyslip.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
|
10
|
Nji E, Chatzikyriakidou Y, Landreh M, Drew D. An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins. Nat Commun 2018; 9:4253. [PMID: 30315156 PMCID: PMC6185904 DOI: 10.1038/s41467-018-06702-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Membrane bilayers are made up of a myriad of different lipids that regulate the functional activity, stability, and oligomerization of many membrane proteins. Despite their importance, screening the structural and functional impact of lipid–protein interactions to identify specific lipid requirements remains a major challenge. Here, we use the FSEC-TS assay to show cardiolipin-dependent stabilization of the dimeric sodium/proton antiporter NhaA, demonstrating its ability to detect specific protein-lipid interactions. Based on the principle of FSEC-TS, we then engineer a simple thermal-shift assay (GFP-TS), which facilitates the high-throughput screening of lipid- and ligand- interactions with membrane proteins. By comparing the thermostability of medically relevant eukaryotic membrane proteins and a selection of bacterial counterparts, we reveal that eukaryotic proteins appear to have evolved to be more dependent to the presence of specific lipids. Membrane bilayers are made up of a myriad of different lipids that affect membrane proteins, but identifying those specific lipid requirements remains a challenge. Here authors present an engineered thermal-shift screen which reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins.
Collapse
Affiliation(s)
- Emmanuel Nji
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Yurie Chatzikyriakidou
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Michael Landreh
- SciLifeLab and Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
11
|
Sahu ID, Lorigan GA. Site-Directed Spin Labeling EPR for Studying Membrane Proteins. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3248289. [PMID: 29607317 PMCID: PMC5828257 DOI: 10.1155/2018/3248289] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 01/13/2023]
Abstract
Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a rapidly expanding powerful biophysical technique to study the structural and dynamic properties of membrane proteins in a native environment. Membrane proteins are responsible for performing important functions in a wide variety of complicated biological systems that are responsible for the survival of living organisms. In this review, a brief introduction of the most popular SDSL EPR techniques and illustrations of recent applications for studying pertinent structural and dynamic properties on membrane proteins will be discussed.
Collapse
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
12
|
Lipids Shape the Electron Acceptor-Binding Site of the Peripheral Membrane Protein Dihydroorotate Dehydrogenase. Cell Chem Biol 2018; 25:309-317.e4. [PMID: 29358052 PMCID: PMC5856493 DOI: 10.1016/j.chembiol.2017.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022]
Abstract
The interactions between proteins and biological membranes are important for drug development, but remain notoriously refractory to structural investigation. We combine non-denaturing mass spectrometry (MS) with molecular dynamics (MD) simulations to unravel the connections among co-factor, lipid, and inhibitor binding in the peripheral membrane protein dihydroorotate dehydrogenase (DHODH), a key anticancer target. Interrogation of intact DHODH complexes by MS reveals that phospholipids bind via their charged head groups at a limited number of sites, while binding of the inhibitor brequinar involves simultaneous association with detergent molecules. MD simulations show that lipids support flexible segments in the membrane-binding domain and position the inhibitor and electron acceptor-binding site away from the membrane surface, similar to the electron acceptor-binding site in respiratory chain complex I. By complementing MS with MD simulations, we demonstrate how a peripheral membrane protein uses lipids to modulate its structure in a similar manner as integral membrane proteins. Mass spectrometry captures intact complexes of the peripheral membrane protein DHODH Detergent removal in the gas phase reveals lipid and co-factor binding DHODH attaches to the membrane by binding charged phospholipids Lipids stabilize the flexible substrate- and drug-binding site
Collapse
|
13
|
Lippens JL, Nshanian M, Spahr C, Egea PF, Loo JA, Campuzano IDG. Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry as a Platform for Characterizing Multimeric Membrane Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:183-193. [PMID: 28971338 PMCID: PMC5786498 DOI: 10.1007/s13361-017-1799-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 05/18/2023]
Abstract
Membrane protein characterization is consistently hampered by challenges with expression, purification, and solubilization. Among several biophysical techniques employed for their characterization, native-mass spectrometry (MS) has emerged as a powerful tool for the analysis of membrane proteins and complexes. Here, two MS platforms, the FT-ICR and Q-ToF, have been explored to analyze the homotetrameric water channel protein, AquaporinZ (AqpZ), under non-denaturing conditions. This 97 kDa membrane protein complex can be readily liberated from the octylglucoside (OG) detergent micelle under a range of instrument conditions on both MS platforms. Increasing the applied collision energy of the FT-ICR collision cell yielded varying degrees of tetramer (97 kDa) liberation from the OG micelles, as well as dissociation into the trimeric (72 kDa) and monomeric (24 kDa) substituents. Tandem-MS on the Q-ToF yielded higher intensity tetramer signal and, depending on the m/z region selected, the observed monomer signal varied in intensity. Precursor ion selection of an m/z range above the expected protein signal distribution, followed by mild collisional activation, is able to efficiently liberate AqpZ with a high S/N ratio. The tetrameric charge state distribution obtained on both instruments demonstrated superpositioning of multiple proteoforms due to varying degrees of N-terminal formylation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Michael Nshanian
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Chris Spahr
- Discovery Attribute Sciences, Amgen, Thousand Oaks, CA, 91320, USA
| | - Pascal F Egea
- Department of Biological Chemistry and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
14
|
Grisshammer R. New approaches towards the understanding of integral membrane proteins: A structural perspective on G protein-coupled receptors. Protein Sci 2017; 26:1493-1504. [PMID: 28547763 DOI: 10.1002/pro.3200] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/12/2023]
Abstract
Three-dimensional structure determination of integral membrane proteins has advanced in unprecedented detail our understanding of mechanistic events of how ion channels, transporters, receptors, and enzymes function. This exciting progress required a tremendous amount of methods development, as exemplified here with G protein-coupled receptors (GPCRs): Optimizing the production of GPCRs in recombinant hosts; increasing the probability of crystal formation using high-affinity ligands, nanobodies, and minimal G proteins for co-crystallization, thus stabilizing receptors into one conformation; using the T4 lysozyme technology and other fusion partners to promote crystal contacts; advancing crystallization methods including the development of novel detergents, and miniaturization and automation of the lipidic cubic phase crystallization method; the concept of conformational thermostabilization of GPCRs; and developing microfocus X-ray synchrotron technologies to analyze small GPCR crystals. However, despite immense progress to explain how GPCRs function, many receptors pose intractable hurdles to structure determination at this time. Three emerging methods, serial femtosecond crystallography, micro electron diffraction, and single particle electron cryo-microscopy, hold promise to overcome current limitations in structural membrane biology.
Collapse
Affiliation(s)
- Reinhard Grisshammer
- Department of Health and Human Services, Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, Maryland, 20852
| |
Collapse
|
15
|
Govaerts C. Lipids Can Make Them Stick Together. Trends Biochem Sci 2017; 42:329-330. [DOI: 10.1016/j.tibs.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
|
16
|
Asadi J, Ferguson S, Raja H, Hacker C, Marius P, Ward R, Pliotas C, Naismith J, Lucocq J. Enhanced imaging of lipid rich nanoparticles embedded in methylcellulose films for transmission electron microscopy using mixtures of heavy metals. Micron 2017; 99:40-48. [PMID: 28419915 PMCID: PMC5465805 DOI: 10.1016/j.micron.2017.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 02/01/2023]
Abstract
Uranyl acetate/tungsten double stains are proposed for imaging lipid rich nanoparticle in TEM. Combined with methylcellulose embedment, the technique enhances membrane contrast. The technique works for liposomes, nanodiscs and bicelles. The double staining should improve quantification of lipid rich nanoparticles.
Synthetic and naturally occurring lipid-rich nanoparticles are of wide ranging importance in biomedicine. They include liposomes, bicelles, nanodiscs, exosomes and virus particles. The quantitative study of these particles requires methods for high-resolution visualization of the whole population. One powerful imaging method is cryo-EM of vitrified samples, but this is technically demanding, requires specialized equipment, provides low contrast and does not reveal all particles present in a population. Another approach is classical negative stain-EM, which is more accessible but is difficult to standardize for larger lipidic structures, which are prone to artifacts of structure collapse and contrast variability. A third method uses embedment in methylcellulose films containing uranyl acetate as a contrasting agent. Methylcellulose embedment has been widely used for contrasting and supporting cryosections but only sporadically for visualizing lipid rich vesicular structures such as endosomes and exosomes. Here we present a simple methylcellulose-based method for routine and comprehensive visualization of synthetic lipid rich nanoparticles preparations, such as liposomes, bicelles and nanodiscs. It combines a novel double-staining mixture of uranyl acetate (UA) and tungsten-based electron stains (namely phosphotungstic acid (PTA) or sodium silicotungstate (STA)) with methylcellulose embedment. While the methylcellulose supports the delicate lipid structures during drying, the addition of PTA or STA to UA provides significant enhancement in lipid structure display and contrast as compared to UA alone. This double staining method should aid routine structural evaluation and quantification of lipid rich nanoparticles structures.
Collapse
Affiliation(s)
- Jalal Asadi
- School of Medicine, University of St Andrews, St. Andrews, Fife, KY16 9TF, UK
| | - Sophie Ferguson
- School of Medicine, University of St Andrews, St. Andrews, Fife, KY16 9TF, UK
| | - Hussain Raja
- School of Medicine, University of St Andrews, St. Andrews, Fife, KY16 9TF, UK
| | - Christian Hacker
- School of Medicine, University of St Andrews, St. Andrews, Fife, KY16 9TF, UK
| | - Phedra Marius
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, St. Andrews, Scotland, UK
| | - Richard Ward
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, St. Andrews, Scotland, UK
| | - Christos Pliotas
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, St. Andrews, Scotland, UK
| | - James Naismith
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, St. Andrews, Scotland, UK
| | - John Lucocq
- School of Medicine, University of St Andrews, St. Andrews, Fife, KY16 9TF, UK.
| |
Collapse
|
17
|
Native Mass Spectrometry for the Characterization of Structure and Interactions of Membrane Proteins. Methods Mol Biol 2017; 1635:205-232. [PMID: 28755371 DOI: 10.1007/978-1-4939-7151-0_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past years, native mass spectrometry and ion mobility have grown into techniques that are widely applicable to the study of aspects of protein structure. More recently, it has become apparent that this approach provides a very promising avenue for the investigation of integral membrane proteins in lipid or detergent environments.In this chapter, we discuss applications of native mass spectrometry and ion mobility in membrane protein research-what is important to take into consideration when working with membrane proteins, and what the requirements are for sample preparation for native mass spectrometry. Furthermore, we will discuss the types of information provided by the measurements, including the oligomeric state, subunit composition and stoichiometry, interactions with detergents or lipids, conformational transitions, and the binding and structural effect of ligands and drugs.
Collapse
|
18
|
Kalli AC, Rog T, Vattulainen I, Campbell ID, Sansom MSP. The Integrin Receptor in Biologically Relevant Bilayers: Insights from Molecular Dynamics Simulations. J Membr Biol 2016; 250:337-351. [PMID: 27465729 PMCID: PMC5579164 DOI: 10.1007/s00232-016-9908-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/25/2016] [Indexed: 11/27/2022]
Abstract
Integrins are heterodimeric (αβ) cell surface receptors that are potential therapeutic targets for a number of diseases. Despite the existence of structural data for all parts of integrins, the structure of the complete integrin receptor is still not available. We have used available structural data to construct a model of the complete integrin receptor in complex with talin F2-F3 domain. It has been shown that the interactions of integrins with their lipid environment are crucial for their function but details of the integrin/lipid interactions remain elusive. In this study an integrin/talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin/talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2-F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction across cell membranes.
Collapse
Affiliation(s)
- Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, 5230, Odense M, Denmark
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
19
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Paterson DJ, Howells S. The Journal of Physiology annual report 2014-15: a year of change and celebration. J Physiol 2016; 593:1035-44. [PMID: 25720753 DOI: 10.1113/jphysiol.2015.270164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
21
|
Young LM, Mahood RA, Saunders JC, Tu LH, Raleigh DP, Radford SE, Ashcroft AE. Insights into the consequences of co-polymerisation in the early stages of IAPP and Aβ peptide assembly from mass spectrometry. Analyst 2015; 140:6990-9. [PMID: 26193839 PMCID: PMC4626081 DOI: 10.1039/c5an00865d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The precise molecular mechanisms by which different peptides and proteins assemble into highly ordered amyloid deposits remain elusive. The fibrillation of human amylin (also known as islet amyloid polypeptide, hIAPP) and the amyloid-beta peptide (Aβ-40) are thought to be pathogenic factors in Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), respectively. Amyloid diseases may involve co-aggregation of different protein species, in addition to the self-assembly of single precursor sequences. Here we investigate the formation of heterogeneous pre-fibrillar, oligomeric species produced by the co-incubation of hIAPP and Aβ-40 using electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS)-based methods. Conformational properties and gas-phase stabilities of amyloid oligomers formed from hIAPP or Aβ40 alone, and from a 1 : 1 mixture of hIAPP and Aβ40 monomers, were determined and compared. We show that co-assembly of the two sequences results in hetero-oligomers with distinct properties and aggregation kinetics properties compared with the homo-oligomers present in solution. The observations may be of key significance to unravelling the mechanisms of amyloid formation in vivo and elucidating how different sequences and/or assembly conditions can result in different fibril structures and/or pathogenic outcomes.
Collapse
Affiliation(s)
- Lydia M. Young
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Rachel A. Mahood
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Janet C. Saunders
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
- Research Department of Structural and Molecule Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| |
Collapse
|
22
|
Abstract
Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States of America
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States of America
| |
Collapse
|
23
|
Martinac B, Vandenberg J. 'Shooting gallery' for membrane proteins provides new insights into complexities of their function and structural dynamics. J Physiol 2015; 593:353-4. [PMID: 25630256 DOI: 10.1113/jphysiol.2014.286559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Level 6, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, University of New South Wales, Victoria Street, Darlinghurst, NSW, 2010, Australia
| | | |
Collapse
|
24
|
Paran CW, Zou K, Ferrara PJ, Song H, Turk J, Funai K. Lipogenesis mitigates dysregulated sarcoplasmic reticulum calcium uptake in muscular dystrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1530-8. [PMID: 26361872 DOI: 10.1016/j.bbalip.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/27/2015] [Accepted: 09/06/2015] [Indexed: 01/07/2023]
Abstract
Muscular dystrophy is accompanied by a reduction in activity of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) that contributes to abnormal Ca(2+) homeostasis in sarco/endoplasmic reticulum (SR/ER). Recent findings suggest that skeletal muscle fatty acid synthase (FAS) modulates SERCA activity and muscle function via its effects on SR membrane phospholipids. In this study, we examined muscle's lipid metabolism in mdx mice, a mouse model for Duchenne muscular dystrophy (DMD). De novo lipogenesis was ~50% reduced in mdx muscles compared to wildtype (WT) muscles. Gene expressions of lipogenic and other ER lipid-modifying enzymes were found to be differentially expressed between wildtype (WT) and mdx muscles. A comprehensive examination of muscles' SR phospholipidome revealed elevated phosphatidylcholine (PC) and PC/phosphatidylethanolamine (PE) ratio in mdx compared to WT mice. Studies in primary myocytes suggested that defects in key lipogenic enzymes including FAS, stearoyl-CoA desaturase-1 (SCD1), and Lipin1 are likely contributing to reduced SERCA activity in mdx mice. Triple transgenic expression of FAS, SCD1, and Lipin1 (3TG) in mdx myocytes partly rescued SERCA activity, which coincided with an increase in SR PE that normalized PC/PE ratio. These findings implicate a defect in lipogenesis to be a contributing factor for SERCA dysfunction in muscular dystrophy. Restoration of muscle's lipogenic pathway appears to mitigate SERCA function through its effects on SR membrane composition.
Collapse
Affiliation(s)
- Christopher W Paran
- Department of Kinesiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; Department of Physiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA
| | - Kai Zou
- Department of Kinesiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA
| | - Patrick J Ferrara
- Department of Kinesiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA
| | - Haowei Song
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - John Turk
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Katsuhiko Funai
- Department of Kinesiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; Department of Physiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA.
| |
Collapse
|
25
|
Liu L, Mayo DJ, Sahu ID, Zhou A, Zhang R, McCarrick RM, Lorigan GA. Determining the Secondary Structure of Membrane Proteins and Peptides Via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. Methods Enzymol 2015; 564:289-313. [PMID: 26477255 DOI: 10.1016/bs.mie.2015.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Revealing detailed structural and dynamic information of membrane embedded or associated proteins is challenging due to their hydrophobic nature which makes NMR and X-ray crystallographic studies challenging or impossible. Electron paramagnetic resonance (EPR) has emerged as a powerful technique to provide essential structural and dynamic information for membrane proteins with no size limitations in membrane systems which mimic their natural lipid bilayer environment. Therefore, tremendous efforts have been devoted toward the development and application of EPR spectroscopic techniques to study the structure of biological systems such as membrane proteins and peptides. This chapter introduces a novel approach established and developed in the Lorigan lab to investigate membrane protein and peptide local secondary structures utilizing the pulsed EPR technique electron spin echo envelope modulation (ESEEM) spectroscopy. Detailed sample preparation strategies in model membrane protein systems and the experimental setup are described. Also, the ability of this approach to identify local secondary structure of membrane proteins and peptides with unprecedented efficiency is demonstrated in model systems. Finally, applications and further developments of this ESEEM approach for probing larger size membrane proteins produced by overexpression systems are discussed.
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA.
| | - Daniel J Mayo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Andy Zhou
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
26
|
Alfonso-Garrido J, Garcia-Calvo E, Luque-Garcia JL. Sample preparation strategies for improving the identification of membrane proteins by mass spectrometry. Anal Bioanal Chem 2015; 407:4893-905. [PMID: 25967148 DOI: 10.1007/s00216-015-8732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
Despite enormous advances in the mass spectrometry and proteomics fields during the last two decades, the analysis of membrane proteins still remains a challenge for the proteomic community. Membrane proteins play a wide number of key roles in several cellular events, making them relevant target molecules to study in a significant variety of investigations (e.g., cellular signaling, immune surveillance, drug targets, vaccine candidates, etc.). Here, we critically review the several attempts that have been carried out on the different steps of the sample preparation procedure to improve and modify existing conventional proteomic strategies in order to make them suitable for the study of membrane proteins. We also revise novel techniques that have been designed to tackle the difficult but relevant task of identifying and characterizing membrane proteins.
Collapse
Affiliation(s)
- Javier Alfonso-Garrido
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28004, Madrid, Spain
| | | | | |
Collapse
|
27
|
Battle AR, Ridone P, Bavi N, Nakayama Y, Nikolaev YA, Martinac B. Lipid-protein interactions: Lessons learned from stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1744-56. [PMID: 25922225 DOI: 10.1016/j.bbamem.2015.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
Biological membranes are essential for normal function and regulation of cells, forming a physical barrier between extracellular and intracellular space and cellular compartments. These physical barriers are subject to mechanical stresses. As a consequence, nature has developed proteins that are able to transpose mechanical stimuli into meaningful intracellular signals. These proteins, termed Mechanosensitive (MS) proteins provide a variety of roles in response to these stimuli. In prokaryotes these proteins form transmembrane spanning channels that function as osmotically activated nanovalves to prevent cell lysis by hypoosmotic shock. In eukaryotes, the function of MS proteins is more diverse and includes physiological processes such as touch, pain and hearing. The transmembrane portion of these channels is influenced by the physical properties such as charge, shape, thickness and stiffness of the lipid bilayer surrounding it, as well as the bilayer pressure profile. In this review we provide an overview of the progress to date on advances in our understanding of the intimate biophysical and chemical interactions between the lipid bilayer and mechanosensitive membrane channels, focusing on current progress in both eukaryotic and prokaryotic systems. These advances are of importance due to the increasing evidence of the role the MS channels play in disease, such as xerocytosis, muscular dystrophy and cardiac hypertrophy. Moreover, insights gained from lipid-protein interactions of MS channels are likely relevant not only to this class of membrane proteins, but other bilayer embedded proteins as well. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- A R Battle
- Menzies Health Institute Queensland and School of Pharmacy, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - P Ridone
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Y Nakayama
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Y A Nikolaev
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.
| |
Collapse
|
28
|
Cho KH, Husri M, Amin A, Gotfryd K, Lee HJ, Go J, Kim JW, Loland CJ, Guan L, Byrne B, Chae PS. Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study. Analyst 2015; 140:3157-63. [PMID: 25813698 DOI: 10.1039/c5an00240k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Detergents are typically used to both extract membrane proteins (MPs) from the lipid bilayers and maintain them in solution. However, MPs encapsulated in detergent micelles are often prone to denaturation and aggregation. Thus, the development of novel agents with enhanced stabilization characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here, we prepared MNG-3 analogues and characterised their properties using selected MPs. Most MNGs were superior to a conventional detergent, n-dodecyl-β-D-maltopyranoside (DDM), in terms of membrane protein stabilization efficacy. Interestingly, optimal stabilization was achieved with different MNG-3 analogues depending on the target MP. The origin for such detergent specificity could be explained by a novel concept: compatibility between detergent hydrophobicity and MP tendency to denature and aggregate. This set of MNGs represents viable alternatives to currently available detergents for handling MPs, and can be also used as tools to estimate MP sensitivity to denaturation and aggregation.
Collapse
Affiliation(s)
- Kyung Ho Cho
- Department of Bionanotechnology, Hanyang University, Ansan, 426-791, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|