1
|
Geisler SM, Ottaviani MM, Jacobo-Piqueras N, Theiner T, Mastrolia V, Guarina L, Ebner K, Obermair GJ, Carbone E, Tuluc P. Deletion of the α 2δ-1 calcium channel subunit increases excitability of mouse chromaffin cells. J Physiol 2024; 602:3793-3814. [PMID: 39004870 DOI: 10.1113/jp285681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
High voltage-gated Ca2+ channels (HVCCs) shape the electrical activity and control hormone release in most endocrine cells. HVCCs are multi-subunit protein complexes formed by the pore-forming α1 and the auxiliary β, α2δ and γ subunits. Four genes code for the α2δ isoforms. At the mRNA level, mouse chromaffin cells (MCCs) express predominantly the CACNA2D1 gene coding for the α2δ-1 isoform. Here we show that α2δ-1 deletion led to ∼60% reduced HVCC Ca2+ influx with slower inactivation kinetics. Pharmacological dissection showed that HVCC composition remained similar in α2δ-1-/- MCCs compared to wild-type (WT), demonstrating that α2δ-1 exerts similar functional effects on all HVCC isoforms. Consistent with reduced HVCC Ca2+ influx, α2δ-1-/- MCCs showed reduced spontaneous electrical activity with action potentials (APs) having a shorter half-maximal duration caused by faster rising and decay slopes. However, the induced electrical activity showed opposite effects with α2δ-1-/- MCCs displaying significantly higher AP frequency in the tonic firing mode as well as an increase in the number of cells firing AP bursts compared to WT. This gain-of-function phenotype was caused by reduced functional activation of Ca2+-dependent K+ currents. Additionally, despite the reduced HVCC Ca2+ influx, the intracellular Ca2+ transients and vesicle exocytosis or endocytosis were unaltered in α2δ-1-/- MCCs compared to WT during sustained stimulation. In conclusion, our study shows that α2δ-1 genetic deletion reduces Ca2+ influx in cultured MCCs but leads to a paradoxical increase in catecholamine secretion due to increased excitability. KEY POINTS: Deletion of the α2δ-1 high voltage-gated Ca2+ channel (HVCC) subunit reduces mouse chromaffin cell (MCC) Ca2+ influx by ∼60% but causes a paradoxical increase in induced excitability. MCC intracellular Ca2+ transients are unaffected by the reduced HVCC Ca2+ influx. Deletion of α2δ-1 reduces the immediately releasable pool vesicle exocytosis but has no effect on catecholamine (CA) release in response to sustained stimuli. The increased electrical activity and CA release from MCCs might contribute to the previously reported cardiovascular phenotype of patients carrying α2δ-1 loss-of-function mutations.
Collapse
Affiliation(s)
- Stefanie M Geisler
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Matteo M Ottaviani
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Noelia Jacobo-Piqueras
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Tamara Theiner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Vincenzo Mastrolia
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Laura Guarina
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Guérineau NC. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla. VITAMINS AND HORMONES 2023; 124:221-295. [PMID: 38408800 DOI: 10.1016/bs.vh.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.
Collapse
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Lingle C. New insights about non-neurogenic excitability revealed by MEA recordings from rat adrenal chromaffin cells. Pflugers Arch 2023; 475:151-152. [PMID: 36547699 PMCID: PMC9983419 DOI: 10.1007/s00424-022-02783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Christopher Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
4
|
Marcantoni A, Chiantia G, Tomagra G, Hidisoglu E, Franchino C, Carabelli V, Carbone E. Two firing modes and well-resolved Na +, K +, and Ca 2+ currents at the cell-microelectrode junction of spontaneously active rat chromaffin cell on MEAs. Pflugers Arch 2023; 475:181-202. [PMID: 36260174 PMCID: PMC9849155 DOI: 10.1007/s00424-022-02761-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 02/01/2023]
Abstract
We recorded spontaneous extracellular action potentials (eAPs) from rat chromaffin cells (CCs) at 37 °C using microelectrode arrays (MEAs) and compared them with intracellularly recorded APs (iAPs) through conventional patch clamp recordings at 22 °C. We show the existence of two distinct firing modes on MEAs: a ~ 4 Hz irregular continuous firing and a frequent intermittent firing mode where periods of high-intraburst frequency (~ 8 Hz) of ~ 7 s duration are interrupted by silent periods of ~ 12 s. eAPs occurred either as negative- or positive-going signals depending on the contact between cell and microelectrode: either predominantly controlled by junction-membrane ion channels (negative-going) or capacitive/ohmic coupling (positive-going). Negative-going eAPs were found to represent the trajectory of the Na+, Ca2+, and K+ currents passing through the cell area in tight contact with the microelectrode during an AP (point-contact junction). The inward Nav component of eAPs was blocked by TTX in a dose-dependent manner (IC50 ~ 10 nM) while the outward component was strongly attenuated by the BK channel blocker paxilline (200 nM) or TEA (5 mM). The SK channel blocker apamin (200 nM) had no effect on eAPs. Inward Nav and Cav currents were well-resolved after block of Kv and BK channels or in cells showing no evident outward K+ currents. Unexpectedly, on the same type of cells, we could also resolve inward L-type currents after adding nifedipine (3 μM). In conclusion, MEAs provide a direct way to record different firing modes of rat CCs and to estimate the Na+, Ca2+, and K+ currents that sustain cell firing and spontaneous catecholamines secretion.
Collapse
Affiliation(s)
- Andrea Marcantoni
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Giuseppe Chiantia
- grid.7605.40000 0001 2336 6580Department of Neuroscience, University of Torino, 10125 Turin, Italy
| | - Giulia Tomagra
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Enis Hidisoglu
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Claudio Franchino
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Valentina Carabelli
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Emilio Carbone
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| |
Collapse
|
5
|
Herrera-Pérez S, Rueda-Ruzafa L, Campos-Ríos A, Fernández-Fernández D, Lamas J. Antiarrhythmic calcium channel blocker verapamil inhibits trek currents in sympathetic neurons. Front Pharmacol 2022; 13:997188. [PMID: 36188584 PMCID: PMC9522527 DOI: 10.3389/fphar.2022.997188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose: Verapamil, a drug widely used in certain cardiac pathologies, exert its therapeutic effect mainly through the blockade of cardiac L-type calcium channels. However, we also know that both voltage-dependent and certain potassium channels are blocked by verapamil. Because sympathetic neurons of the superior cervical ganglion (SCG) are known to express a good variety of potassium currents, and to finely tune cardiac activity, we speculated that the effect of verapamil on these SCG potassium channels could explain part of the therapeutic action of this drug. To address this question, we decided to study, the effects of verapamil on three different potassium currents observed in SCG neurons: delayed rectifier, A-type and TREK (a subfamily of K2P channels) currents. We also investigated the effect of verapamil on the electrical behavior of sympathetic SCG neurons. Experimental Approach: We employed the Patch-Clamp technique to mouse SCG neurons in culture. Key Results: We found that verapamil depolarizes of the resting membrane potential of SCG neurons. Moreover, we demonstrated that this drug also inhibits A-type potassium currents. Finally, and most importantly, we revealed that the current driven through TREK channels is also inhibited in the presence of verapamil. Conclusion and Implications: We have shown that verapamil causes a clear alteration of excitability in sympathetic nerve cells. This fact undoubtedly leads to an alteration of the sympathetic-parasympathetic balance which may affect cardiac function. Therefore, we propose that these possible peripheral alterations in the autonomic system should be taken into consideration in the prescription of this drug.
Collapse
Affiliation(s)
- S. Herrera-Pérez
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Grupo de Neurofisiología Experimental y Circuitos Neuronales, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- *Correspondence: S. Herrera-Pérez, ; J. A. Lamas,
| | - L. Rueda-Ruzafa
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - A. Campos-Ríos
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | | | - J.A. Lamas
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
- *Correspondence: S. Herrera-Pérez, ; J. A. Lamas,
| |
Collapse
|
6
|
Invertebrate neurons as a simple model to study the hyperexcitable state of epileptic disorders in single cells, monosynaptic connections, and polysynaptic circuits. Biophys Rev 2022; 14:553-568. [PMID: 35528035 PMCID: PMC9043075 DOI: 10.1007/s12551-022-00942-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by a hyperexcitable state in neurons from different brain regions. Much is unknown about epilepsy and seizures development, depicting a growing field of research. Animal models have provided important clues about the underlying mechanisms of seizure-generating neuronal circuits. Mammalian complexity still makes it difficult to define some principles of nervous system function, and non-mammalian models have played pivotal roles depending on the research question at hand. Mollusks and the Helix land snail have been used to study epileptic-like behavior in neurons. Neurons from these organisms confer advantages as single-cell identification, isolation, and culture, either as single cells or as physiological relevant monosynaptic or polysynaptic circuits, together with amenability to different protocols and treatments. This review's purpose consists in presenting relevant papers in order to gain a better understanding of Helix neurons, their characteristics, uses, and capabilities for studying the fundamental mechanisms of epileptic disorders and their treatment, to facilitate their more expansive use in epilepsy research.
Collapse
|
7
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
8
|
Pharmacological Dissection of the Crosstalk between Na V and Ca V Channels in GH3b6 Cells. Int J Mol Sci 2022; 23:ijms23020827. [PMID: 35055012 PMCID: PMC8775721 DOI: 10.3390/ijms23020827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023] Open
Abstract
Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na+ (NaV) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca2+ concentration ([Ca2+]i) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na+-Ca2+ homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the NaV1.3 channel subtype, which likely endorses their voltage-activated Na+ currents. Notably, these Na+ currents were blocked by ICA-121431 and activated by the β-scorpion toxin Tf2, two selective NaV1.3 channel ligands. Using Fura-2, we showed that VTD induced a [Ca2+]i increase. This effect was suppressed by the selective NaV channel blocker tetrodotoxin, as well by the selective L-type CaV channel (LTCC) blocker nifedipine. We also evidenced that crobenetine, a NaV channel blocker, abolished VTD-induced [Ca2+]i elevation, while it had no effects on LTCC. Altogether, our findings highlight a crosstalk between NaV and LTCC in GH3b6 cells, providing a new insight into the mode of action of neurotoxins.
Collapse
|
9
|
Shao J, Liu Y, Gao D, Tu J, Yang F. Neural Burst Firing and Its Roles in Mental and Neurological Disorders. Front Cell Neurosci 2021; 15:741292. [PMID: 34646123 PMCID: PMC8502892 DOI: 10.3389/fncel.2021.741292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
Neural firing patterns are critical for specific information coding and transmission, and abnormal firing is implicated in a series of neural pathologies. Recent studies have indicated that enhanced burst firing mediated by T-type voltage-gated calcium channels (T-VGCCs) in specific neuronal subtypes is involved in several mental or neurological disorders such as depression and epilepsy, while suppression of T-VGCCs relieve related symptoms. Burst firing consists of groups of relatively high-frequency spikes separated by quiescence. Neurons in a variety of brain areas, including the thalamus, hypothalamus, cortex, and hippocampus, display burst firing, but the ionic mechanisms that generating burst firing and the related physiological functions vary among regions. In this review, we summarize recent findings on the mechanisms underlying burst firing in various brain areas, as well as the roles of burst firing in several mental and neurological disorders. We also discuss the ion channels and receptors that may regulate burst firing directly or indirectly, with these molecules highlighted as potential intervention targets for the treatment of mental and neurological disorders.
Collapse
Affiliation(s)
- Jie Shao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yunhui Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Dashuang Gao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Sodium background currents in endocrine/neuroendocrine cells: Towards unraveling channel identity and contribution in hormone secretion. Front Neuroendocrinol 2021; 63:100947. [PMID: 34592201 DOI: 10.1016/j.yfrne.2021.100947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023]
Abstract
In endocrine/neuroendocrine tissues, excitability of secretory cells is patterned by the repertoire of ion channels and there is clear evidence that extracellular sodium (Na+) ions contribute to hormone secretion. While voltage-gated channels involved in action potential generation are well-described, the background 'leak' channels operating near the resting membrane potential are much less known, and in particular the channels supporting a background entry of Na+ ions. These background Na+ currents (called here 'INab') have the ability to modulate the resting membrane potential and subsequently affect action potential firing. Here we compile and analyze the data collected from three endocrine/neuroendocrine tissues: the anterior pituitary gland, the adrenal medulla and the endocrine pancreas. We also model how INab can be functionally involved in cellular excitability. Finally, towards deciphering the physiological role of INab in endocrine/neuroendocrine cells, its implication in hormone release is also discussed.
Collapse
|
11
|
Grainger N, Guarina L, Cudmore RH, Santana LF. The Organization of the Sinoatrial Node Microvasculature Varies Regionally to Match Local Myocyte Excitability. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab031. [PMID: 34250490 PMCID: PMC8259512 DOI: 10.1093/function/zqab031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023]
Abstract
The cardiac cycle starts when an action potential is produced by pacemaking cells in the sinoatrial node. This cycle is repeated approximately 100 000 times in humans and 1 million times in mice per day, imposing a monumental metabolic demand on the heart, requiring efficient blood supply via the coronary vasculature to maintain cardiac function. Although the ventricular coronary circulation has been extensively studied, the relationship between vascularization and cellular pacemaking modalities in the sinoatrial node is poorly understood. Here, we tested the hypothesis that the organization of the sinoatrial node microvasculature varies regionally, reflecting local myocyte firing properties. We show that vessel densities are higher in the superior versus inferior sinoatrial node. Accordingly, sinoatrial node myocytes are closer to vessels in the superior versus inferior regions. Superior and inferior sinoatrial node myocytes produce stochastic subthreshold voltage fluctuations and action potentials. However, the intrinsic action potential firing rate of sinoatrial node myocytes is higher in the superior versus inferior node. Our data support a model in which the microvascular densities vary regionally within the sinoatrial node to match the electrical and Ca2+ dynamics of nearby myocytes, effectively determining the dominant pacemaking site within the node. In this model, the high vascular density in the superior sinoatrial node places myocytes with metabolically demanding, high-frequency action potentials near vessels. The lower vascularization and electrical activity of inferior sinoatrial node myocytes could limit these cells to function to support sinoatrial node periodicity with sporadic voltage fluctuations via a stochastic resonance mechanism.
Collapse
|
12
|
Carbone E. Fast inactivation of Nav1.3 channels by FGF14 proteins: An unconventional way to regulate the slow firing of adrenal chromaffin cells. J Gen Physiol 2021; 153:211934. [PMID: 33792614 PMCID: PMC8020463 DOI: 10.1085/jgp.202112879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using Nav1.3 and FGF14 KO mice, Martinez-Espinosa et al. provide new findings on how intracellular FGF14 proteins interfere with the endogenous fast inactivation gating and regulate the “long-term inactivation” of Nav1.3 channels that sets Nav channel availability and spike adaptation during sustained stimulation in adrenal chromaffin cells.
Collapse
Affiliation(s)
- Emilio Carbone
- Department of Drug Science, Lab of Cell Physiology and Molecular Neuroscience, University of Torino, Torino, Italy
| |
Collapse
|
13
|
Martinez-Espinosa PL, Yang C, Xia XM, Lingle CJ. Nav1.3 and FGF14 are primary determinants of the TTX-sensitive sodium current in mouse adrenal chromaffin cells. J Gen Physiol 2021; 153:211839. [PMID: 33651884 PMCID: PMC8020717 DOI: 10.1085/jgp.202012785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
Adrenal chromaffin cells (CCs) in rodents express rapidly inactivating, tetrodotoxin (TTX)-sensitive sodium channels. The resulting current has generally been attributed to Nav1.7, although a possible role for Nav1.3 has also been suggested. Nav channels in rat CCs rapidly inactivate via two independent pathways which differ in their time course of recovery. One subpopulation recovers with time constants similar to traditional fast inactivation and the other ∼10-fold slower, but both pathways can act within a single homogenous population of channels. Here, we use Nav1.3 KO mice to probe the properties and molecular components of Nav current in CCs. We find that the absence of Nav1.3 abolishes all Nav current in about half of CCs examined, while a small, fast inactivating Nav current is still observed in the rest. To probe possible molecular components underlying slow recovery from inactivation, we used mice null for fibroblast growth factor homology factor 14 (FGF14). In these cells, the slow component of recovery from fast inactivation is completely absent in most CCs, with no change in the time constant of fast recovery. The use dependence of Nav current reduction during trains of stimuli in WT cells is completely abolished in FGF14 KO mice, directly demonstrating a role for slow recovery from inactivation in determining Nav current availability. Our results indicate that FGF14-mediated inactivation is the major determinant defining use-dependent changes in Nav availability in CCs. These results establish that Nav1.3, like other Nav isoforms, can also partner with FGF subunits, strongly regulating Nav channel function.
Collapse
Affiliation(s)
| | - Chengtao Yang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
14
|
Martinez-Espinosa PL, Neely A, Ding J, Lingle CJ. Fast inactivation of Nav current in rat adrenal chromaffin cells involves two independent inactivation pathways. J Gen Physiol 2021; 153:211834. [PMID: 33647101 PMCID: PMC7927663 DOI: 10.1085/jgp.202012784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Voltage-dependent sodium (Nav) current in adrenal chromaffin cells (CCs) is rapidly inactivating and tetrodotoxin (TTX)–sensitive. The fractional availability of CC Nav current has been implicated in regulation of action potential (AP) frequency and the occurrence of slow-wave burst firing. Here, through recordings of Nav current in rat CCs, primarily in adrenal medullary slices, we describe unique inactivation properties of CC Nav inactivation that help define AP firing rates in CCs. The key feature of CC Nav current is that recovery from inactivation, even following brief (5 ms) inactivation steps, exhibits two exponential components of similar amplitude. Various paired pulse protocols show that entry into the fast and slower recovery processes result from largely independent competing inactivation pathways, each of which occurs with similar onset times at depolarizing potentials. Over voltages from −120 to −80 mV, faster recovery varies from ∼3 to 30 ms, while slower recovery varies from ∼50 to 400 ms. With strong depolarization (above −10 mV), the relative entry into slow or fast recovery pathways is similar and independent of voltage. Trains of short depolarizations favor recovery from fast recovery pathways and result in cumulative increases in the slow recovery fraction. Dual-pathway fast inactivation, by promoting use-dependent accumulation in slow recovery pathways, dynamically regulates Nav availability. Consistent with this finding, repetitive AP clamp waveforms at 1–10 Hz frequencies reduce Nav availability 80–90%, depending on holding potential. These results indicate that there are two distinct pathways of fast inactivation, one leading to conventional fast recovery and the other to slower recovery, which together are well-suited to mediate use-dependent changes in Nav availability.
Collapse
Affiliation(s)
| | - Alan Neely
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Jiuping Ding
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
15
|
Milman A, Ventéo S, Bossu JL, Fontanaud P, Monteil A, Lory P, Guérineau NC. A sodium background conductance controls the spiking pattern of mouse adrenal chromaffin cells in situ. J Physiol 2021; 599:1855-1883. [PMID: 33450050 PMCID: PMC7986707 DOI: 10.1113/jp281044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Mouse chromaffin cells in acute adrenal slices exhibit two distinct spiking patterns, a repetitive mode and a bursting mode. A sodium background conductance operates at rest as demonstrated by the membrane hyperpolarization evoked by a low Na+ -containing extracellular saline. This sodium background current is insensitive to TTX, is not blocked by Cs+ ions and displays a linear I-V relationship at potentials close to chromaffin cell resting potential. Its properties are reminiscent of those of the sodium leak channel NALCN. In the adrenal gland, Nalcn mRNA is selectively expressed in chromaffin cells. The study fosters our understanding of how the spiking pattern of chromaffin cells is regulated and adds a sodium background conductance to the list of players involved in the stimulus-secretion coupling of the adrenomedullary tissue. ABSTRACT Chromaffin cells (CCs) are the master neuroendocrine units for the secretory function of the adrenal medulla and a finely-tuned regulation of their electrical activity is required for appropriate catecholamine secretion in response to the organismal demand. Here, we aim at deciphering how the spiking pattern of mouse CCs is regulated by the ion conductances operating near the resting membrane potential (RMP). At RMP, mouse CCs display a composite firing pattern, alternating between active periods composed of action potentials spiking with a regular or a bursting mode, and silent periods. RMP is sensitive to changes in extracellular sodium concentration, and a low Na+ -containing saline hyperpolarizes the membrane, regardless of the discharge pattern. This RMP drive reflects the contribution of a depolarizing conductance, which is (i) not blocked by tetrodotoxin or caesium, (ii) displays a linear I-V relationship between -110 and -40 mV, and (iii) is carried by cations with a conductance sequence gNa > gK > gCs . These biophysical attributes, together with the expression of the sodium-leak channel Nalcn transcript in CCs, state credible the contribution of NALCN. This inaugural report opens new research routes in the field of CC stimulus-secretion coupling, and extends the inventory of tissues in which NALCN is expressed to neuroendocrine glands.
Collapse
Affiliation(s)
- Alexandre Milman
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | | | - Jean-Louis Bossu
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Pierre Fontanaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| |
Collapse
|
16
|
Marcantoni A, Calorio C, Hidisoglu E, Chiantia G, Carbone E. Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome. Pflugers Arch 2020; 472:775-789. [PMID: 32621084 DOI: 10.1007/s00424-020-02430-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Cav1.2 L-type calcium channels play key roles in long-term synaptic plasticity, sensory transduction, muscle contraction, and hormone release. De novo mutations in the gene encoding Cav1.2 (CACNA1C) causes two forms of Timothy syndrome (TS1, TS2), characterized by a multisystem disorder inclusive of cardiac arrhythmias, long QT, autism, and adrenal gland dysfunction. In both TS1 and TS2, the missense mutation G406R is on the alternatively spliced exon 8 and 8A coding for the IS6-helix of Cav1.2 and is responsible for the penetrant form of autism in most TS individuals. The mutation causes specific gain-of-function changes to Cav1.2 channel gating: a "leftward shift" of voltage-dependent activation, reduced voltage-dependent inactivation, and a "leftward shift" of steady-state inactivation. How this occurs and how Cav1.2 gating changes alter neuronal firing and synaptic plasticity is still largely unexplained. Trying to better understanding the molecular basis of Cav1.2 gating dysfunctions leading to autism, here, we will present and discuss the properties of recently reported typical and atypical TS phenotypes and the effective gating changes exhibited by missense mutations associated with long QTs without extracardiac symptoms, unrelated to TS. We will also discuss new emerging views achieved from using iPSCs-derived neurons and the newly available autistic TS2-neo mouse model, both appearing promising for understanding neuronal mistuning in autistic TS patients. We will also analyze and describe recent proposals of molecular pathways that might explain mistuned Ca2+-mediated and Ca2+-independent excitation-transcription signals to the nucleus. Briefly, we will also discuss possible pharmacological approaches to treat autism associated with L-type channelopathies.
Collapse
Affiliation(s)
- Andrea Marcantoni
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Chiara Calorio
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Enis Hidisoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Giuseppe Chiantia
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
17
|
Yang L, Pierce S, Chatterjee I, Craviso GL, Leblanc N. Paradoxical effects on voltage-gated Na+ conductance in adrenal chromaffin cells by twin vs single high intensity nanosecond electric pulses. PLoS One 2020; 15:e0234114. [PMID: 32516325 PMCID: PMC7282663 DOI: 10.1371/journal.pone.0234114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
We previously reported that a single 5 ns high intensity electric pulse (NEP) caused an E-field-dependent decrease in peak inward voltage-gated Na+ current (INa) in isolated bovine adrenal chromaffin cells. This study explored the effects of a pair of 5 ns pulses on INa recorded in the same cell type, and how varying the E-field amplitude and interval between the pulses altered its response. Regardless of the E-field strength (5 to 10 MV/m), twin NEPs having interpulse intervals ≥ than 5 s caused the inhibition of TTX-sensitive INa to approximately double relative to that produced by a single pulse. However, reducing the interval from 1 s to 10 ms between twin NEPs at E-fields of 5 and 8 MV/m but not 10 MV/m decreased the magnitude of the additive inhibitory effect by the second pulse in a pair on INa. The enhanced inhibitory effects of twin vs single NEPs on INa were not due to a shift in the voltage-dependence of steady-state activation and inactivation but were associated with a reduction in maximal Na+ conductance. Paradoxically, reducing the interval between twin NEPs at 5 or 8 MV/m but not 10 MV/m led to a progressive interval-dependent recovery of INa, which after 9 min exceeded the level of INa reached following the application of a single NEP. Disrupting lipid rafts by depleting membrane cholesterol with methyl-β-cyclodextrin enhanced the inhibitory effects of twin NEPs on INa and ablated the progressive recovery of this current at short twin pulse intervals, suggesting a complete dissociation of the inhibitory effects of twin NEPs on this current from their ability to stimulate its recovery. Our results suggest that in contrast to a single NEP, twin NEPs may influence membrane lipid rafts in a manner that enhances the trafficking of newly synthesized and/or recycling of endocytosed voltage-gated Na+ channels, thereby pointing to novel means to regulate ion channels in excitable cells.
Collapse
Affiliation(s)
- Lisha Yang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Sophia Pierce
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Indira Chatterjee
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, NV, United States of America
| | - Gale L. Craviso
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| |
Collapse
|
18
|
Cui MR, Zhao W, Li XL, Xu CH, Xu JJ, Chen HY. Simultaneous monitoring of action potentials and neurotransmitter release from neuron-like PC12 cells. Anal Chim Acta 2020; 1105:74-81. [DOI: 10.1016/j.aca.2019.11.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
|
19
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Tomagra G, Picollo F, Battiato A, Picconi B, De Marchis S, Pasquarelli A, Olivero P, Marcantoni A, Calabresi P, Carbone E, Carabelli V. Quantal Release of Dopamine and Action Potential Firing Detected in Midbrain Neurons by Multifunctional Diamond-Based Microarrays. Front Neurosci 2019; 13:288. [PMID: 31024230 PMCID: PMC6465646 DOI: 10.3389/fnins.2019.00288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Micro-Graphitic Single Crystal Diamond Multi Electrode Arrays (μG-SCD-MEAs) have so far been used as amperometric sensors to detect catecholamines from chromaffin cells and adrenal gland slices. Besides having time resolution and sensitivity that are comparable with carbon fiber electrodes, that represent the gold standard for amperometry, μG-SCD-MEAs also have the advantages of simultaneous multisite detection, high biocompatibility and implementation of amperometric/potentiometric protocols, aimed at monitoring exocytotic events and neuronal excitability. In order to adapt diamond technology to record neuronal activity, the μG-SCD-MEAs in this work have been interfaced with cultured midbrain neurons to detect electrical activity as well as quantal release of dopamine (DA). μG-SCD-MEAs are based on graphitic sensing electrodes that are embedded into the diamond matrix and are fabricated using MeV ion beam lithography. Two geometries have been adopted, with 4 × 4 and 8 × 8 microelectrodes (20 μm × 3.5 μm exposed area, 200 μm spacing). In the amperometric configuration, the 4 × 4 μG-SCD-MEAs resolved quantal exocytosis from midbrain dopaminergic neurons. KCl-stimulated DA release occurred as amperometric spikes of 15 pA amplitude and 0.5 ms half-width, at a mean frequency of 0.4 Hz. When used as potentiometric multiarrays, the 8 × 8 μG-SCD-MEAs detected the spontaneous firing activity of midbrain neurons. Extracellularly recorded action potentials (APs) had mean amplitude of ∼-50 μV and occurred at a mean firing frequency of 0.7 Hz in 67% of neurons, while the remaining fired at 6.8 Hz. Comparable findings were observed using conventional MEAs (0.9 and 6.4 Hz, respectively). To test the reliability of potentiometric recordings with μG-SCD-MEAs, the D2-autoreceptor modulation of firing was investigated by applying levodopa (L-DOPA, 20 μM), and comparing μG-SCD-MEAs, conventional MEAs and current-clamp recordings. In all cases, L-DOPA reduced the spontaneous spiking activity in most neurons by 70%, while the D2-antagonist sulpiride reversed this effect. Cell firing inhibition was generally associated with increased APs amplitude. A minority of neurons was either insensitive to, or potentiated by L-DOPA, suggesting that AP recordings originate from different midbrain neuronal subpopulations and reveal different modulatory pathways. Our data demonstrate, for the first time, that μG-SCD-MEAs are multi-functional biosensors suitable to resolve real-time DA release and AP firing in in vitro neuronal networks.
Collapse
Affiliation(s)
- Giulia Tomagra
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | - Federico Picollo
- Department of Physics and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Turin, Italy
| | - Alfio Battiato
- Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Turin, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Pisana, University San Raffaele, Rome, Italy.,University San Raffaele, Rome, Italy
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology and "NICO" Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Turin, Italy
| | | | - Paolo Olivero
- Department of Physics and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Turin, Italy
| | - Andrea Marcantoni
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | - Paolo Calabresi
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Emilio Carbone
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| |
Collapse
|
21
|
Calorio C, Gavello D, Guarina L, Salio C, Sassoè-Pognetto M, Riganti C, Bianchi FT, Hofer NT, Tuluc P, Obermair GJ, Defilippi P, Balzac F, Turco E, Bett GC, Rasmusson RL, Carbone E. Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2-neo mouse rescued by L-type calcium channel blockers. J Physiol 2019; 597:1705-1733. [PMID: 30629744 DOI: 10.1113/jp277487] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Tymothy syndrome (TS) is a multisystem disorder featuring cardiac arrhythmias, autism and adrenal gland dysfunction that originates from a de novo point mutation in the gene encoding the Cav1.2 (CACNA1C) L-type channel. To study the role of Cav1.2 channel signals in autism, the autistic TS2-neo mouse has been generated bearing the G406R point-mutation associated with TS type-2. Using heterozygous TS2-neo mice, we report that the G406R mutation reduces the rate of inactivation and shifts leftward the activation and inactivation of L-type channels, causing marked increase of resting Ca2+ influx ('window' Ca2+ current). The increased 'window current' causes marked reduction of NaV channel density, switches normal tonic firing to abnormal burst firing, reduces mitochondrial metabolism, induces cell swelling and decreases catecholamine release. Overnight incubations with nifedipine rescue NaV channel density, normal firing and the quantity of catecholamine released. We provide evidence that chromaffin cell malfunction derives from altered Cav1.2 channel gating. ABSTRACT L-type voltage-gated calcium (Cav1) channels have a key role in long-term synaptic plasticity, sensory transduction, muscle contraction and hormone release. A point mutation in the gene encoding Cav1.2 (CACNA1C) causes Tymothy syndrome (TS), a multisystem disorder featuring cardiac arrhythmias, autism spectrum disorder (ASD) and adrenal gland dysfunction. In the more severe type-2 form (TS2), the missense mutation G406R is on exon 8 coding for the IS6-helix of the Cav1.2 channel. The mutation causes reduced inactivation and induces autism. How this occurs and how Cav1.2 gating-changes alter cell excitability, neuronal firing and hormone release on a molecular basis is still largely unknown. Here, using the TS2-neo mouse model of TS we show that the G406R mutation altered excitability and reduced secretory activity in adrenal chromaffin cells (CCs). Specifically, the TS2 mutation reduced the rate of voltage-dependent inactivation and shifted leftward the activation and steady-state inactivation of L-type channels. This markedly increased the resting 'window' Ca2+ current that caused an increased percentage of CCs undergoing abnormal action potential (AP) burst firing, cell swelling, reduced mitochondrial metabolism and decreased catecholamine release. The increased 'window' Ca2+ current caused also decreased NaV channel density and increased steady-state inactivation, which contributed to the increased abnormal burst firing. Overnight incubation with the L-type channel blocker nifedipine rescued the normal AP firing of CCs, the density of functioning NaV channels and their steady-state inactivation. We provide evidence that CC malfunction derives from the altered Cav1.2 channel gating and that dihydropyridines are potential therapeutics for ASD.
Collapse
Affiliation(s)
- Chiara Calorio
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Daniela Gavello
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Laura Guarina
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Chiara Salio
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Marco Sassoè-Pognetto
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Nadja T Hofer
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Department of Physiology & Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Fiorella Balzac
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Glenna C Bett
- Department of Physiology & Biophysics, State University of New York, Buffalo, NY, USA
| | - Randall L Rasmusson
- Department of Physiology & Biophysics, State University of New York, Buffalo, NY, USA
| | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| |
Collapse
|
22
|
Sahu BS, Mahata S, Bandyopadhyay K, Mahata M, Avolio E, Pasqua T, Sahu C, Bandyopadhyay GK, Bartolomucci A, Webster NJG, Van Den Bogaart G, Fischer-Colbrie R, Corti A, Eiden LE, Mahata SK. Catestatin regulates vesicular quanta through modulation of cholinergic and peptidergic (PACAPergic) stimulation in PC12 cells. Cell Tissue Res 2018; 376:51-70. [PMID: 30467710 DOI: 10.1007/s00441-018-2956-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/30/2018] [Indexed: 12/23/2022]
Abstract
We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 μM) and PACAP (0.1 μM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 μM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.
Collapse
Affiliation(s)
- Bhavani Shankar Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA. .,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.
| | - Sumana Mahata
- California Institute of Technology, Pasadena, CA, USA
| | - Keya Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | - Manjula Mahata
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | | | | | - Chinmayi Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Gautam K Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
23
|
de Diego AMG, García AG. Altered exocytosis in chromaffin cells from mouse models of neurodegenerative diseases. Acta Physiol (Oxf) 2018; 224:e13090. [PMID: 29742321 DOI: 10.1111/apha.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022]
Abstract
Chromaffin cells from the adrenal gland (CCs) have extensively been used to explore the molecular structure and function of the exocytotic machinery, neurotransmitter release and synaptic transmission. The CC is integrated in the sympathoadrenal axis that helps the body maintain homoeostasis during both routine life and in acute stress conditions. This function is exquisitely controlled by the cerebral cortex and the hypothalamus. We propose the hypothesis that damage undergone by the brain during neurodegenerative diseases is also affecting the neurosecretory function of adrenal medullary CCs. In this context, we review here the following themes: (i) How the discharge of catecholamines is centrally and peripherally regulated at the sympathoadrenal axis; (ii) which are the intricacies of the amperometric techniques used to study the quantal release of single-vesicle exocytotic events; (iii) which are the alterations of the exocytotic fusion pore so far reported, in CCs of mouse models of neurodegenerative diseases; (iv) how some proteins linked to neurodegenerative pathologies affect the kinetics of exocytotic events; (v) finally, we try to integrate available data into a hypothesis to explain how the centrally originated neurodegenerative diseases may alter the kinetics of single-vesicle exocytotic events in peripheral adrenal medullary CCs.
Collapse
Affiliation(s)
- A. M. García de Diego
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Instituto de Investigación Sanitaria; Hospital Universitario de la Princesa; Universidad Autónoma de Madrid; Madrid Spain
- DNS Neuroscience; Parque Científico de Madrid; Madrid Spain
| | - A. García García
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Instituto de Investigación Sanitaria; Hospital Universitario de la Princesa; Universidad Autónoma de Madrid; Madrid Spain
- DNS Neuroscience; Parque Científico de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
24
|
Sodium channel Na V1.3 is important for enterochromaffin cell excitability and serotonin release. Sci Rep 2017; 7:15650. [PMID: 29142310 PMCID: PMC5688111 DOI: 10.1038/s41598-017-15834-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022] Open
Abstract
In the gastrointestinal (GI) epithelium, enterochromaffin (EC) cells are enteroendocrine cells responsible for producing >90% of the body's serotonin (5-hydroxytryptamine, 5-HT). However, the molecular mechanisms of EC cell function are poorly understood. Here, we found that EC cells in mouse primary cultures fired spontaneous bursts of action potentials. We examined the repertoire of voltage-gated sodium channels (NaV) in fluorescence-sorted mouse EC cells and found that Scn3a was highly expressed. Scn3a-encoded NaV1.3 was specifically and densely expressed at the basal side of both human and mouse EC cells. Using electrophysiology, we found that EC cells expressed robust NaV1.3 currents, as determined by their biophysical and pharmacologic properties. NaV1.3 was not only critical for generating action potentials in EC cells, but it was also important for regulating 5-HT release by these cells. Therefore, EC cells use Scn3a-encoded voltage-gated sodium channel NaV1.3 for electrical excitability and 5-HT release. NaV1.3-dependent electrical excitability and its contribution to 5-HT release is a novel mechanism of EC cell function.
Collapse
|
25
|
PACAP signaling in stress: insights from the chromaffin cell. Pflugers Arch 2017; 470:79-88. [PMID: 28965274 DOI: 10.1007/s00424-017-2062-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 10/18/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was first identified in hypothalamus, based on its ability to elevate cyclic AMP in the anterior pituitary. PACAP has been identified as the adrenomedullary neurotransmitter in stress through a combination of ex vivo, in vivo, and in cellula experiments over the past two decades. PACAP causes catecholamine secretion, and activation of catecholamine biosynthetic enzymes, during episodes of stress in mammals. Features of PACAP signaling allowing stress transduction at the splanchnicoadrenomedullary synapse have yielded insights into the contrasting roles of acetylcholine's and PACAP's actions as first messengers at the chromaffin cell, via differential release at low and high rates of splanchnic nerve firing, and differential signaling pathway engagement leading to catecholamine secretion and chromaffin cell gene transcription. Secretion stimulated by PACAP, via calcium influx independent of action potential generation, is under active investigation in several laboratories both at the chromaffin cell and within autonomic ganglia of both the parasympathetic and sympathetic nervous systems. PACAP is a neurotransmitter important in stress transduction in the central nervous system as well, and is found at stress-transduction nuclei in brain including the paraventricular nucleus of hypothalamus, the amygdala and extended amygdalar nuclei, and the prefrontal cortex. The current status of PACAP as a master regulator of stress signaling in the nervous system derives fundamentally from the establishment of its role as the splanchnicoadrenomedullary transmitter in stress. Experimental elucidation of PACAP action at this synapse remains at the forefront of understanding PACAP's role in stress signaling throughout the nervous system.
Collapse
|
26
|
How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 2017; 470:155-167. [DOI: 10.1007/s00424-017-2052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
27
|
Roles of Na +, Ca 2+, and K + channels in the generation of repetitive firing and rhythmic bursting in adrenal chromaffin cells. Pflugers Arch 2017; 470:39-52. [PMID: 28776261 DOI: 10.1007/s00424-017-2048-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/23/2017] [Indexed: 12/30/2022]
Abstract
Adrenal chromaffin cells (CCs) are the main source of circulating catecholamines (CAs) that regulate the body response to stress. Release of CAs is controlled neurogenically by the activity of preganglionic sympathetic neurons through trains of action potentials (APs). APs in CCs are generated by robust depolarization following the activation of nicotinic and muscarinic receptors that are highly expressed in CCs. Bovine, rat, mouse, and human CCs also express a composite array of Na+, K+, and Ca2+ channels that regulate the resting potential, shape the APs, and set the frequency of AP trains. AP trains of increasing frequency induce enhanced release of CAs. If the primary role of CCs is simply to relay preganglionic nerve commands to CA secretion, why should they express such a diverse set of ion channels? An answer to this comes from recent observations that, like in neurons, CCs undergo complex firing patterns of APs suggesting the existence of an intrinsic CC excitability (non-neurogenically controlled). Recent work has shown that CCs undergo occasional or persistent burst firing elicited by altered physiological conditions or deletion of pore-regulating auxiliary subunits. In this review, we aim to give a rationale to the role of the many ion channel types regulating CC excitability. We will first describe their functional properties and then analyze how they contribute to pacemaking, AP shape, and burst waveforms. We will also furnish clear indications on missing ion conductances that may be involved in pacemaking and highlight the contribution of the crucial channels involved in burst firing.
Collapse
|
28
|
Pinggera A, Mackenroth L, Rump A, Schallner J, Beleggia F, Wollnik B, Striessnig J. New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy. Hum Mol Genet 2017; 26:2923-2932. [PMID: 28472301 PMCID: PMC5886262 DOI: 10.1093/hmg/ddx175] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 11/12/2022] Open
Abstract
CACNA1D encodes the pore-forming α1-subunit of Cav1.3, an L-type voltage-gated Ca2+-channel. Despite the recent discovery of two de novo missense gain-of-function mutations in Cav1.3 in two individuals with autism spectrum disorder (ASD) and intellectual disability CACNA1D has not been considered a prominent ASD-risk gene in large scale genetic analyses, since such studies primarily focus on likely-disruptive genetic variants. Here we report the discovery and characterization of a third de novo missense mutation in CACNA1D (V401L) in a patient with ASD and epilepsy. For the functional characterization we introduced mutation V401L into two major C-terminal long and short Cav1.3 splice variants, expressed wild-type or mutant channel complexes in tsA-201 cells and performed whole-cell patch-clamp recordings. Mutation V401L, localized within the channel's activation gate, significantly enhanced current densities, shifted voltage dependence of activation and inactivation to more negative voltages and reduced channel inactivation in both Cav1.3 splice variants. Altogether, these gating changes are expected to result in enhanced Ca2+-influx through the channel, thus representing a strong gain-of-function phenotype. Additionally, we also found that mutant channels retained full sensitivity towards the clinically available Ca2+ -channel blocker isradipine. Our findings strengthen the evidence for CACNA1D as a novel candidate autism risk gene and encourage experimental therapy with available channel-blockers for this mutation. The additional presence of seizures and neurological abnormalities in our patient define a novel phenotype partially overlapping with symptoms in two individuals with PASNA (congenital primary aldosteronism, seizures and neurological abnormalities) caused by similar Cav1.3 gain-of-function mutations.
Collapse
Affiliation(s)
- Alexandra Pinggera
- Department of Pharmacology and Toxicology Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | - Jens Schallner
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Filippo Beleggia
- Department I of Internal Medicine, University Hospital of Cologne, 50923 Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
29
|
Wang L, He J, Xia A, Cheng M, Yang Q, Du C, Wei H, Huang X, Zhou Q. Toxic effects of environmental rare earth elements on delayed outward potassium channels and their mechanisms from a microscopic perspective. CHEMOSPHERE 2017; 181:690-698. [PMID: 28476009 DOI: 10.1016/j.chemosphere.2017.04.141] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
The wide applications cause a large amount of rare earth elements (REEs) to be released into the environment, and ultimately into the human body through food chain. Toxic effects of REEs on humans have been extensively studied, but their toxic effects and binding targets in cells are not understood. Delayed outward potassium channels (K+ channels) are good targets for exogenous substances or clinical drugs. To evaluate cellular toxicities of REEs and clarify toxic mechanisms, the toxicities of REEs on the K+ channel and their structural basis were investigated. The results showed that delayed outward potassium channels on the plasma membrane are the targets of REEs acting on living organisms, and the changes in the thermodynamic and kinetic characteristics of the K+ channel are the reasons of diseases induced by REEs. Two types of REEs, a light REE La3+ and a heavy REE Tb3+, displayed different intensity of toxicities on the K+ channel, in which the toxicity of Tb3+ was stronger than that of La3+. More interestingly, in comparison with that of heavy metal Cd2+, the cytotoxicities of the light and heavy REEs showed discriminative differences, and the cytotoxicity of Tb3+ was higher than that of Cd2+, while the cytotoxicity of La3+ was lower than that of Cd2+. These different cytotoxicities of La3+, Tb3+ and Cd2+ on human resulted from the varying binding abilities of the metals to this channel protein.
Collapse
Affiliation(s)
- Lihong Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China; State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingfang He
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Ao Xia
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Mengzhu Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Qing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Chunlei Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Haiyan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
30
|
Guarina L, Vandael DHF, Carabelli V, Carbone E. Low pH o boosts burst firing and catecholamine release by blocking TASK-1 and BK channels while preserving Cav1 channels in mouse chromaffin cells. J Physiol 2017; 595:2587-2609. [PMID: 28026020 DOI: 10.1113/jp273735] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/07/2016] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Mouse chromaffin cells (MCCs) generate spontaneous burst-firing that causes large increases of Ca2+ -dependent catecholamine release, and is thus a key mechanism for regulating the functions of MCCs. With the aim to uncover a physiological role for burst-firing we investigated the effects of acidosis on MCC activity. Lowering the extracellular pH (pHo ) from 7.4 to 6.6 induces cell depolarizations of 10-15 mV that generate bursts of ∼330 ms at 1-2 Hz and a 7.4-fold increase of cumulative catecholamine-release. Burst-firing originates from the inhibition of the pH-sensitive TASK-1-channels and a 60% reduction of BK-channel conductance at pHo 6.6. Blockers of the two channels (A1899 and paxilline) mimic the effects of pHo 6.6, and this is reverted by the Cav1 channel blocker nifedipine. MCCs act as pH-sensors. At low pHo , they depolarize, undergo burst-firing and increase catecholamine-secretion, generating an effective physiological response that may compensate for the acute acidosis and hyperkalaemia generated during heavy exercise and muscle fatigue. ABSTRACT Mouse chromaffin cells (MCCs) generate action potential (AP) firing that regulates the Ca2+ -dependent release of catecholamines (CAs). Recent findings indicate that MCCs possess a variety of spontaneous firing modes that span from the common 'tonic-irregular' to the less frequent 'burst' firing. This latter is evident in a small fraction of MCCs but occurs regularly when Nav1.3/1.7 channels are made less available or when the Slo1β2-subunit responsible for BK channel inactivation is deleted. Burst firing causes large increases of Ca2+ -entry and potentiates CA release by ∼3.5-fold and thus may be a key mechanism for regulating MCC function. With the aim to uncover a physiological role for burst-firing we investigated the effects of acidosis on MCC activity. Lowering the extracellular pH (pHo ) from 7.4 to 7.0 and 6.6 induces cell depolarizations of 10-15 mV that generate repeated bursts. Bursts at pHo 6.6 lasted ∼330 ms, occurred at 1-2 Hz and caused an ∼7-fold increase of CA cumulative release. Burst firing originates from the inhibition of the pH-sensitive TASK-1/TASK-3 channels and from a 40% BK channel conductance reduction at pHo 7.0. The same pHo had little or no effect on Nav, Cav, Kv and SK channels that support AP firing in MCCs. Burst firing of pHo 6.6 could be mimicked by mixtures of the TASK-1 blocker A1899 (300 nm) and BK blocker paxilline (300 nm) and could be prevented by blocking L-type channels by adding 3 μm nifedipine. Mixtures of the two blockers raised cumulative CA-secretion even more than low pHo (∼12-fold), showing that the action of protons on vesicle release is mainly a result of the ionic conductance changes that increase Ca2+ -entry during bursts. Our data provide direct evidence suggesting that MCCs respond to low pHo with sustained depolarization, burst firing and enhanced CA-secretion, thus mimicking the physiological response of CCs to acute acidosis and hyperkalaemia generated during heavy exercise and muscle fatigue.
Collapse
Affiliation(s)
- Laura Guarina
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, NIS Centre, CNISM Unit, Torino, Italy
| | - David H F Vandael
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, NIS Centre, CNISM Unit, Torino, Italy.,Present address: Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Valentina Carabelli
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, NIS Centre, CNISM Unit, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, NIS Centre, CNISM Unit, Torino, Italy
| |
Collapse
|
31
|
Toft-Bertelsen TL, Ziomkiewicz I, Houy S, Pinheiro PS, Sørensen JB. Regulation of Ca2+ channels by SNAP-25 via recruitment of syntaxin-1 from plasma membrane clusters. Mol Biol Cell 2016; 27:3329-3341. [PMID: 27605709 PMCID: PMC5170865 DOI: 10.1091/mbc.e16-03-0184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
SNAP-25 regulates Ca2+ channels in an unknown manner. Endogenous and exogenous SNAP-25 inhibit Ca2+ currents indirectly by recruiting syntaxin-1 from clusters on the plasma membrane, thereby making it available for Ca2+ current inhibition. Thus the cell can regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters. SNAP-25 regulates Ca2+ channels, with potentially important consequences for diseases involving an aberrant SNAP-25 expression level. How this regulation is executed mechanistically remains unknown. We investigated this question in mouse adrenal chromaffin cells and found that SNAP-25 inhibits Ca2+ currents, with the B-isoform being more potent than the A-isoform, but not when syntaxin-1 is cleaved by botulinum neurotoxin C. In contrast, syntaxin-1 inhibits Ca2+ currents independently of SNAP-25. Further experiments using immunostaining showed that endogenous or exogenous SNAP-25 expression recruits syntaxin-1 from clusters on the plasma membrane, thereby increasing the immunoavailability of syntaxin-1 and leading indirectly to Ca2+ current inhibition. Expression of Munc18-1, which recruits syntaxin-1 within the exocytotic pathway, does not modulate Ca2+ channels, whereas overexpression of the syntaxin-binding protein Doc2B or ubMunc13-2 increases syntaxin-1 immunoavailability and concomitantly down-regulates Ca2+ currents. Similar findings were obtained upon chemical cholesterol depletion, leading directly to syntaxin-1 cluster dispersal and Ca2+ current inhibition. We conclude that clustering of syntaxin-1 allows the cell to maintain a high syntaxin-1 expression level without compromising Ca2+ influx, and recruitment of syntaxin-1 from clusters by SNAP-25 expression makes it available for regulating Ca2+ channels. This mechanism potentially allows the cell to regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters.
Collapse
Affiliation(s)
- Trine Lisberg Toft-Bertelsen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Iwona Ziomkiewicz
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Paulo S Pinheiro
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jakob B Sørensen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
32
|
Subconvulsant doses of pentylenetetrazol uncover the epileptic phenotype of cultured synapsin-deficient Helix serotonergic neurons in the absence of excitatory and inhibitory inputs. Epilepsy Res 2016; 127:241-251. [PMID: 27639349 DOI: 10.1016/j.eplepsyres.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
Abstract
Synapsins are a family of presynaptic proteins related to several processes of synaptic functioning. A variety of reports have linked mutations in synapsin genes with the development of epilepsy. Among the proposed mechanisms, a main one is based on the synapsin-mediated imbalance towards network hyperexcitability due to differential effects on neurotransmitter release in GABAergic and glutamatergic synapses. Along this line, a non-synaptic effect of synapsin depletion increasing neuronal excitability has recently been described in Helix neurons. To further investigate this issue, we examined the effect of synapsin knock-down on the development of pentylenetetrazol (PTZ)-induced epileptic-like activity using single neurons or isolated monosynaptic circuits reconstructed on microelectrode arrays (MEAs). Compared to control neurons, synapsin-silenced neurons showed a lower threshold for the development of epileptic-like activity and prolonged periods of activity, together with the occurrence of spontaneous firing after recurrent PTZ-induced epileptic-like activity. These findings highlight the crucial role of synapsin on neuronal excitability regulation in the absence of inhibitory or excitatory inputs.
Collapse
|
33
|
Jia JJ, Zeng XS, Li K, Ma LF, Chen L, Song XQ. The expression of thioredoxin-1 in acute epinephrine stressed mice. Cell Stress Chaperones 2016; 21:935-41. [PMID: 27511023 PMCID: PMC5003811 DOI: 10.1007/s12192-016-0722-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
Stress, a state of perceived threat to homeostasis, regulates a panel of important physiological functions. The human mind and body respond to stress by activating the sympathetic nervous system and secreting the catecholamines epinephrine and norepinephrine in the "fight-or-flight" response. However, the protective mechanism of acute stress is still unknown. In the present study, an acute stress mouse model was constructed by intraperitoneal injection of epinephrine (0.2 mg kg(-1)) for 4 h. Epinephrine treatment induced heat shock 70(Hsp70) expression in the stress responsive tissues, such as the cortex, hippocampus, thymus, and kidney. Further, the expression of thioredoxin-1(Trx-1), a cytoprotective protein, was also upregulated in these stress responsive tissues. In addition, the phosphorylation of cAMP-response element binding protein (CREB), a transcription factor of Trx-1, was increased after treatment with epinephrine. The block of CREB activation by H89 inhibited the acute epinephrine stress-induced Trx-1 and Hsp70 expression. Taken together, our data suggest that acute stimuli of epinephrine induced Trx-1 expression through activating CREB and may represent a protective role against stress.
Collapse
Affiliation(s)
- Jin-Jing Jia
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Xian-Si Zeng
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Kun Li
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Li-Fang Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Lei Chen
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Xin-Qiang Song
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
34
|
Jia JJ, Zeng XS, Li K, Ma LF, Chen L, Song XQ. The expression of thioredoxin-1 in acute epinephrine stressed mice. Cell Stress Chaperones 2016; 21:935-941. [PMID: 27511023 DOI: 10.1007/s12192-016-0722-4if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/16/2024] Open
Abstract
Stress, a state of perceived threat to homeostasis, regulates a panel of important physiological functions. The human mind and body respond to stress by activating the sympathetic nervous system and secreting the catecholamines epinephrine and norepinephrine in the "fight-or-flight" response. However, the protective mechanism of acute stress is still unknown. In the present study, an acute stress mouse model was constructed by intraperitoneal injection of epinephrine (0.2 mg kg(-1)) for 4 h. Epinephrine treatment induced heat shock 70(Hsp70) expression in the stress responsive tissues, such as the cortex, hippocampus, thymus, and kidney. Further, the expression of thioredoxin-1(Trx-1), a cytoprotective protein, was also upregulated in these stress responsive tissues. In addition, the phosphorylation of cAMP-response element binding protein (CREB), a transcription factor of Trx-1, was increased after treatment with epinephrine. The block of CREB activation by H89 inhibited the acute epinephrine stress-induced Trx-1 and Hsp70 expression. Taken together, our data suggest that acute stimuli of epinephrine induced Trx-1 expression through activating CREB and may represent a protective role against stress.
Collapse
Affiliation(s)
- Jin-Jing Jia
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Xian-Si Zeng
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Kun Li
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Li-Fang Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Lei Chen
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Xin-Qiang Song
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
35
|
Cai W, Cao J, Ren X, Qiao L, Chen X, Li M, Zang W. shRNA mediated knockdown of Nav1.7 in rat dorsal root ganglion attenuates pain following burn injury. BMC Anesthesiol 2016; 16:59. [PMID: 27514860 PMCID: PMC4982321 DOI: 10.1186/s12871-016-0215-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/21/2016] [Indexed: 11/16/2022] Open
Abstract
Background Abnormal acute pain after burn injury still torments patients severely. In this study, we investigated that one voltage gated sodium channel Nav1.7 plays a vital role in lowering heat pain threshold after burn injury, and the hypothesis that knockdown of Nav1.7 attenuates pain following burn injury. Methods Sixty eight adult male Sprague–Dawley rats were divided into 4 treatment groups: (1) sham, which hind paw was put on the room temperature metal plate for 15 s (2) burn model, which hind paw was put on the 85 °C metal plate for 15 s. (3) Burn injury + lentiviral vector -SCN9AsiRNA-GFP (LV- SCN9AsiRNA-GFP group, n = 18), which receive the DRG microinjection of LV- SCN9AsiRNA-GFP on the zero day. (4) Burn injury + lentiviral vector negative control (LV-NC-GFP group, n = 18), which receive the DRG microinjection of empty lentiviral vector on the zero day. Results Both mechanical and heat threshold were measured from day 1 to 21. Meanwhile, expression of sodium channels Nav1.7 in injured dorsal root ganglia were measured on post-operative days 7(POD 7). Rats exhibited decreased thresholds on both mechanical allodynia and thermal withdrawl latency, accompanied by increased Nav1.7 and c-fos expression in dorsal root ganglion (DRG). And knockdown of Nav1.7 in L5DRG led to the attenuation of burn injury-induced mechanical allodynia and thermal hyperalgesia in the rats. Conclusion We provide evidence that shRNA mediated knockdown of Nav1.7 attenuates burn induced pain in rats as well as decreased the activiation of c-fos protein.
Collapse
Affiliation(s)
- Weihua Cai
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Henan, China
| | - Jing Cao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Henan, China
| | - Xiuhua Ren
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Henan, China
| | - Liang Qiao
- Department of E.N.T, Zhoukou Central Hospital, Henan, China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Henan, China
| | - Ming Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Henan, China
| | - Weidong Zang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Henan, China.
| |
Collapse
|
36
|
Picollo F, Battiato A, Bernardi E, Marcantoni A, Pasquarelli A, Carbone E, Olivero P, Carabelli V. Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands. Anal Chem 2016; 88:7493-9. [DOI: 10.1021/acs.analchem.5b04449] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Federico Picollo
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Alfio Battiato
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Ettore Bernardi
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Andrea Marcantoni
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, Ulm University, 89081 Ulm, Germany
| | - Emilio Carbone
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Paolo Olivero
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Valentina Carabelli
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| |
Collapse
|
37
|
Scott AL, Zhang M, Nurse CA. Enhanced BDNF signalling following chronic hypoxia potentiates catecholamine release from cultured rat adrenal chromaffin cells. J Physiol 2016; 593:3281-99. [PMID: 26095976 DOI: 10.1113/jp270725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/06/2015] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS We investigated the role of the neurotrophin BDNF signalling via the TrkB receptor in rat adrenomedullary chromaffin cells (AMCs) exposed to normoxia (Nox; 21% O2) and chronic hypoxia (CHox; 2% O2) in vitro for ∼ 48 h. TrkB receptor expression was upregulated in primary AMCs and in immortalized chromaffin (MAH) cells exposed to CHox; this effect was absent in MAH cells deficient in the transcription factor, hypoxia inducible factor (HIF)-2α. Relative to normoxic controls, activation of the TrkB receptor in chronically hypoxic AMCs led to a marked increase in membrane excitability, intracellular [Ca(2+)], and catecholamine secretion. The BDNF-induced rise of intracellular [Ca(2+)] in CHox cells was sensitive to the selective T-type Ca(2+) channel blocker TTA-P2 and tetrodotoxin (TTX), suggesting key roles of low threshold T-type Ca(2+) and voltage-gated Na(+) channels in the signalling pathway. Environmental stressors, including chronic hypoxia, enhance the ability of adrenomedullary chromaffin cells (AMCs) to secrete catecholamines; however, the underlying molecular mechanisms remain unclear. Here, we investigated the role of brain-derived neurotrophic factor (BDNF) signalling in rat AMCs exposed to chronic hypoxia. In rat adrenal glands, BDNF and its tropomyosin-related kinase B (TrkB) receptor are highly expressed in the cortex and medulla, respectively. Exposure of AMCs to chronic hypoxia (2% O2; 48 h) in vitro caused a significant increase to TrkB mRNA expression. A similar increase was observed in an immortalized chromaffin cell line (MAH cells); however, it was absent in MAH cells deficient in the transcription factor HIF-2α. A specific TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), stimulated quantal catecholamine secretion from chronically hypoxic (CHox; 2% O2) AMCs to a greater extent than normoxic (Nox; 21% O2) controls. Activation of TrkB by BDNF or 7,8-DHF increased intracellular Ca(2+) ([Ca(2+)]i), an effect that was significantly larger in CHox cells. The 7,8-DHF-induced [Ca(2+)]i rise was sensitive to the tyrosine kinase inhibitor K252a and nickel (2 mm), but not the Ca(2+) store-depleting agent cyclopiazonic acid. Blockade of T-type calcium channels with TTA-P2 (1 μm) or voltage-gated Na(+) channels with TTX inhibited BDNF-induced [Ca(2+)]i increases. BDNF also induced a dose-dependent enhancement of action potential firing in CHox cells. These data demonstrate that during chronic hypoxia, enhancement of BDNF-TrkB signalling increases voltage-dependent Ca(2+) influx and catecholamine secretion in chromaffin cells, and that T-type Ca(2+) channels play a key role in the signalling pathway.
Collapse
Affiliation(s)
- Angela L Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Min Zhang
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
38
|
Stagkourakis S, Kim H, Lyons DJ, Broberger C. Dopamine Autoreceptor Regulation of a Hypothalamic Dopaminergic Network. Cell Rep 2016; 15:735-747. [PMID: 27149844 PMCID: PMC4850423 DOI: 10.1016/j.celrep.2016.03.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 02/01/2023] Open
Abstract
How autoreceptors contribute to maintaining a stable output of rhythmically active neuronal circuits is poorly understood. Here, we examine this issue in a dopamine population, spontaneously oscillating hypothalamic rat (TIDA) neurons, that underlie neuroendocrine control of reproduction and neuroleptic side effects. Activation of dopamine receptors of the type 2 family (D2Rs) at the cell-body level slowed TIDA oscillations through two mechanisms. First, they prolonged the depolarizing phase through a combination of presynaptic increases in inhibition and postsynaptic hyperpolarization. Second, they extended the discharge phase through presynaptic attenuation of calcium currents and decreased synaptic inhibition. Dopamine reuptake blockade similarly reconfigured the oscillation, indicating that ambient somatodendritic transmitter concentration determines electrical behavior. In the absence of D2R feedback, however, discharge was abolished by depolarization block. These results indicate the existence of an ultra-short feedback loop whereby neuroendocrine dopamine neurons tune network behavior to echoes of their own activity, reflected in ambient somatodendritic dopamine, and also suggest a mechanism for antipsychotic side effects.
Collapse
Affiliation(s)
| | - Hoseok Kim
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - David J Lyons
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christian Broberger
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
39
|
Derinat Protects Skin against Ultraviolet-B (UVB)-Induced Cellular Damage. Molecules 2015; 20:20297-311. [PMID: 26569211 PMCID: PMC6331914 DOI: 10.3390/molecules201119693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023] Open
Abstract
Ultraviolet-B (UVB) is one of the most cytotoxic and mutagenic stresses that contribute to skin damage and aging through increasing intracellular Ca2+ and reactive oxygen species (ROS). Derinat (sodium deoxyribonucleate) has been utilized as an immunomodulator for the treatment of ROS-associated diseases in clinics. However, the molecular mechanism by which Derinat protects skin cells from UVB-induced damage is poorly understood. Here, we show that Derinat significantly attenuated UVB-induced intracellular ROS production and decreased DNA damage in primary skin cells. Furthermore, Derinat reduced intracellular ROS, cyclooxygenase-2 (COX-2) expression and DNA damage in the skin of the BALB/c-nu mice exposed to UVB for seven days in vivo. Importantly, Derinat blocked the transient receptor potential canonical (TRPC) channels (TRPCs), as demonstrated by calcium imaging. Together, our results indicate that Derinat acts as a TRPCs blocker to reduce intracellular ROS production and DNA damage upon UVB irradiation. This mechanism provides a potential new application of Derinat for the protection against UVB-induced skin damage and aging.
Collapse
|
40
|
Knock-down of synapsin alters cell excitability and action potential waveform by potentiating BK and voltage-gated Ca(2+) currents in Helix serotonergic neurons. Neuroscience 2015; 311:430-43. [PMID: 26522789 DOI: 10.1016/j.neuroscience.2015.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/23/2015] [Accepted: 10/25/2015] [Indexed: 11/21/2022]
Abstract
Synapsins (Syns) are an evolutionarily conserved family of presynaptic proteins crucial for the fine-tuning of synaptic function. A large amount of experimental evidences has shown that Syns are involved in the development of epileptic phenotypes and several mutations in Syn genes have been associated with epilepsy in humans and animal models. Syn mutations induce alterations in circuitry and neurotransmitter release, differentially affecting excitatory and inhibitory synapses, thus causing an excitation/inhibition imbalance in network excitability toward hyperexcitability that may be a determinant with regard to the development of epilepsy. Another approach to investigate epileptogenic mechanisms is to understand how silencing Syn affects the cellular behavior of single neurons and is associated with the hyperexcitable phenotypes observed in epilepsy. Here, we examined the functional effects of antisense-RNA inhibition of Syn expression on individually identified and isolated serotonergic cells of the Helix land snail. We found that Helix synapsin silencing increases cell excitability characterized by a slightly depolarized resting membrane potential, decreases the rheobase, reduces the threshold for action potential (AP) firing and increases the mean and instantaneous firing rates, with respect to control cells. The observed increase of Ca(2+) and BK currents in Syn-silenced cells seems to be related to changes in the shape of the AP waveform. These currents sustain the faster spiking in Syn-deficient cells by increasing the after hyperpolarization and limiting the Na(+) and Ca(2+) channel inactivation during repetitive firing. This in turn speeds up the depolarization phase by reaching the AP threshold faster. Our results provide evidence that Syn silencing increases intrinsic cell excitability associated with increased Ca(2+) and Ca(2+)-dependent BK currents in the absence of excitatory or inhibitory inputs.
Collapse
|
41
|
Crespo-Castrillo A, Punzón E, de Pascual R, Maroto M, Padín JF, García-Álvarez I, Nanclares C, Ruiz-Pascual L, Gandía L, Fernández-Mayoralas A, García AG. Novel synthetic sulfoglycolipid IG20 facilitates exocytosis in chromaffin cells through the regulation of sodium channels. J Neurochem 2015; 135:880-96. [DOI: 10.1111/jnc.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/03/2015] [Accepted: 08/19/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Crespo-Castrillo
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Eva Punzón
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Ricardo de Pascual
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Marcos Maroto
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Juan Fernando Padín
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | | | - Carmen Nanclares
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Lucía Ruiz-Pascual
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Luis Gandía
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | | | - Antonio G. García
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria; Hospital Universitario de La Princesa; Madrid Spain
| |
Collapse
|
42
|
Gavello D, Vandael D, Gosso S, Carbone E, Carabelli V. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells. J Physiol 2015; 593:4835-53. [PMID: 26282459 DOI: 10.1113/jp271078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/12/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect and, as such, exerts a relevant action on the adipo-adrenal axis. Leptin has a dual action on adrenal mouse chromaffin cells both at rest and during stimulation. At rest, the adipokine inhibits the spontaneous firing of most cells by enhancing the probability of BK channel opening through the phosphoinositide 3-kinase signalling cascade. This inhibitory effect is absent in db(-) /db(-) mice deprived of Ob receptors. During sustained stimulation, leptin preserves cell excitability by generating well-adapted action potential (AP) trains of lower frequency and broader width and increases catecholamine secretion by increasing the size of the ready-releasable pool and the rate of vesicle release. In conclusion, leptin dampens AP firing at rest but preserves AP firing and enhances catecholamine release during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release. ABSTRACT Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect. Besides being expressed in the hypothalamus and hippocampus, leptin receptors (ObRs) are also present in chromaffin cells of the adrenal medulla. In the present study, we report the effect of leptin on mouse chromaffin cell (MCC) functionality, focusing on cell excitability and catecholamine secretion. Acute application of leptin (1 nm) on spontaneously firing MCCs caused a slowly developing membrane hyperpolarization followed by complete blockade of action potential (AP) firing. This inhibitory effect at rest was abolished by the BK channel blocker paxilline (1 μm), suggesting the involvement of BK potassium channels. Single-channel recordings in 'perforated microvesicles' confirmed that leptin increased BK channel open probability without altering its unitary conductance. BK channel up-regulation was associated with the phosphoinositide 3-kinase (PI3K) signalling cascade because the PI3K specific inhibitor wortmannin (100 nm) fully prevented BK current increase. We also tested the effect of leptin on evoked AP firing and Ca(2+) -driven exocytosis. Although leptin preserves well-adapted AP trains of lower frequency, APs are broader and depolarization-evoked exocytosis is increased as a result of the larger size of the ready-releasable pool and higher frequency of vesicle release. The kinetics and quantal size of single secretory events remained unaltered. Leptin had no effect on firing and secretion in db(-) /db(-) mice lacking the ObR gene, confirming its specificity. In conclusion, leptin exhibits a dual action on MCC activity. It dampens AP firing at rest but preserves AP firing and increases catecholamine secretion during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release.
Collapse
Affiliation(s)
- Daniela Gavello
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - David Vandael
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy.,Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Sara Gosso
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| |
Collapse
|
43
|
Lingle CJ. NAVigating a transition from single action potential firing to bursting in chromaffin cells. J Physiol 2015; 593:761-2. [PMID: 25708919 DOI: 10.1113/jphysiol.2014.288464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/01/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Christopher J Lingle
- Department of Anaesthesiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
44
|
Vandael DHF, Marcantoni A, Carbone E. Cav1.3 Channels as Key Regulators of Neuron-Like Firings and Catecholamine Release in Chromaffin Cells. Curr Mol Pharmacol 2015; 8:149-61. [PMID: 25966692 PMCID: PMC5384372 DOI: 10.2174/1874467208666150507105443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/31/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
Neuronal and neuroendocrine L-type calcium channels (Cav1.2, Cav1.3) open readily at relatively low membrane potentials and allow Ca(2+) to enter the cells near resting potentials. In this way, Cav1.2 and Cav1.3 shape the action potential waveform, contribute to gene expression, synaptic plasticity, neuronal differentiation, hormone secretion and pacemaker activity. In the chromaffin cells (CCs) of the adrenal medulla, Cav1.3 is highly expressed and is shown to support most of the pacemaking current that sustains action potential (AP) firings and part of the catecholamine secretion. Cav1.3 forms Ca(2+)-nanodomains with the fast inactivating BK channels and drives the resting SK currents. These latter set the inter-spike interval duration between consecutive spikes during spontaneous firing and the rate of spike adaptation during sustained depolarizations. Cav1.3 plays also a primary role in the switch from "tonic" to "burst" firing that occurs in mouse CCs when either the availability of voltage-gated Na channels (Nav) is reduced or the β2 subunit featuring the fast inactivating BK channels is deleted. Here, we discuss the functional role of these "neuron-like" firing modes in CCs and how Cav1.3 contributes to them. The open issue is to understand how these novel firing patterns are adapted to regulate the quantity of circulating catecholamines during resting condition or in response to acute and chronic stress.
Collapse
Affiliation(s)
| | | | - Emilio Carbone
- Department of Drug Science, Corso Raffaello 30, I - 10125 Torino, Italy.
| |
Collapse
|