1
|
Li X, Liang X, Ma S, Zhao S, Wang W, Li M, Feng D, Tang M. SERT and OCT mediate 5-HT 1B receptor regulation of immobility behavior and uptake of 5-HT and HIS. Biomed Pharmacother 2024; 177:117017. [PMID: 38917762 DOI: 10.1016/j.biopha.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
5-HT clearance, commonly mediated by transporters in the uptake-1 and uptake-2 families, has been linked to 5-HT1B receptor's action on behaviors. Since no specific transporters identified yet, effects of serotonin transporter (SERT) and organic cation transporter (OCTs) on 5-HT1B-elicited immobility phenotype, and 5-HT and HIS uptake were then investigated. Intraperitoneal injections of SERT inhibitor fluoxetine (FLX) and/or OCTs inhibitor decynium (D22) were used prior to local perfusion of 5-HT1B agonist CP93129 into the ventral hippocampus to measure immobility times in the FST and TST, to measure 5-HT uptake efficiencies and HIS uptake efficiencies derived from linear regressions using the transient no-net-flux quantitative microdialysis in C57BL/6 mice. Exogenous 5-HT and HIS uptake were measured following incubation of FLX and/or D22 with CP93129 in the RBL-2H3 cells. Moreover, surface membrane levels of SERT and OCT were detected in response to CP93129. Local CP93129 prolonged immobility times, which were attenuated following pretreatment of either inhibitor. Local CP93129 lowered the slopes obtained from the lineal regressions for 5-HT and HIS (slope is reciprocal to uptake efficiency), which were then weakened following pretreatment of either inhibitor. Similar findings were obtained following CP93129 incubation, and co-incubation of CP93129 with either inhibitor in the RBL-2H3. Moreover, CP93129 dose-dependently moved SERT and OCT3 in the cytosol to the surface membrane. Both SERT and OCT are the target effectors mediating 5-HT1B regulation of immobility time and 5-HT uptake, OCT mediates 5-HT1B regulation of HIS uptake. Their underlying signal transductions need to be further explored.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shenglu Ma
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingxing Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dan Feng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Activation of 5-HT3 receptors in the medulla oblongata is involved in the phasic control of urinary bladder. Neurosci Lett 2022; 790:136886. [PMID: 36179901 DOI: 10.1016/j.neulet.2022.136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
Abstract
The control of micturition depends on reflex mechanisms, however, it undergoes modulation from cortex, pons and medullary areas. This study investigated if the activation of 5-HT3 receptors in the medulla influences the urinary bladder (UB) regulation in rats. Isoflurane female Wistar rats were submitted to catheterization of the femoral artery and vein for mean arterial pressure (MAP) and heart rate (HR) recordings and injection of drugs, respectively. The UB was cannulated for intravesical pressure (IP) measurement. The Doppler flow probe was placed around the left renal artery for renal conductance (RC) recordings. Phenylbiguanide (PB) and granisetron (GN) were injected into the 4th brain ventricle in rats with guide cannulas implanted 5 days prior to the experiments; or PB and GN were randomly injected intravenously or applied topically (in situ) on the UB. PB injection into 4th V significantly increased IP (68.67 ± 11.70%) and decreased MAP (-29 ± 6 mmHg) compared to saline (0.34 ± 0.64% and -2 ± 2 mmHg), with no changes in the HR and RC. GN injection into the 4th V did not significantly change the IP and RC compared to saline, nevertheless, significantly increased MAP (25 ± 4 mmHg) and heart rate (36 ± 9 bpm) compared to saline. Intravenous PB and GN only produced cardiovascular effects, whilst PB but not GN in situ on the UB evoked increase in IP (111.60 ± 30.36%). Therefore, the activation of 5HT-3 receptors in medullary areas increases the intravesical pressure and these receptors are involved in the phasic control of UB. In contrast, 5-HT3 receptors in the medulla oblongata are involved in the pathways of the tonic control of the cardiovascular system. The activation of 5-HT3 receptors in the bladder cause increase in intravesical pressure and this regulation seem to be under phasic control as the blockade of such receptors elicits no changes in baseline intravesical pressure.
Collapse
|
3
|
Leon RM, Borner T, Stein LM, Urrutia NA, De Jonghe BC, Schmidt HD, Hayes MR. Activation of PPG neurons following acute stressors differentially involves hindbrain serotonin in male rats. Neuropharmacology 2021; 187:108477. [PMID: 33581143 DOI: 10.1016/j.neuropharm.2021.108477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Within the hindbrain, serotonin (5-HT) functions as a modulator of the central glucagon-like peptide-1 (GLP-1) system. This interaction between 5-HT and GLP-1 is achieved via 5-HT2C and 5-HT3 receptors and is relevant for GLP-1-mediated feeding behavior. The central GLP-1 system is activated by various stressors, activates the hypothalamic pituitary adrenocortical (HPA) axis, and contributes to stress-related behaviors. Whether 5-HT modulates GLP-1's role in the stress response in unknown. We hypothesized that the serotonergic modulation of GLP-1-producing neurons (i.e., PPG neurons) is stimuli-specific and that stressed-induced PPG activity is one of the modalities in which 5-HT plays a role. In this study, we investigated the roles of 5-HT2C and 5-HT3 receptors in mediating the activation of PPG neurons in the nucleus tractus solitarius (NTS) following exposure to three different acute stressors: lithium chloride (LiCl), noncontingent cocaine (Coc), and novel restraint stress (RES). Results showed that increased c-Fos expression in PPG neurons following LiCl and RES-but not Coc-is dependent on hindbrain 5-HT2C and 5-HT3 receptor signaling. Additionally, stressors that depend on 5-HT signaling to activate PPG neurons (i.e., LiCl and RES) increased c-Fos expression in 5-HT-expressing neurons within the caudal raphe (CR), specifically in the raphe magnus (RMg). Finally, we showed that RMg neurons innervate NTS PPG neurons and that some of these PPG neurons lie in close proximity to 5-HT axons, suggesting RMg 5-HT-expressing neurons are the source of 5-HT input responsible for engaging NTS PPG neurons. Together, these findings identify a direct RMg to NTS pathway responsible for the modulatory effect of 5-HT on the central GLP-1 system-specifically via activation of 5-HT2C and 5-HT3 receptors-in the facilitation of acute stress responses.
Collapse
Affiliation(s)
- Rosa M Leon
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norma A Urrutia
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Abstract
Inhibitors of Na+/Cl- dependent high affinity transporters for norepinephrine (NE), serotonin (5-HT), and/or dopamine (DA) represent frequently used drugs for treatment of psychological disorders such as depression, anxiety, obsessive-compulsive disorder, attention deficit hyperactivity disorder, and addiction. These transporters remove NE, 5-HT, and/or DA after neuronal excitation from the interstitial space close to the synapses. Thereby they terminate transmission and modulate neuronal behavioral circuits. Therapeutic failure and undesired central nervous system side effects of these drugs have been partially assigned to neurotransmitter removal by low affinity transport. Cloning and functional characterization of the polyspecific organic cation transporters OCT1 (SLC22A1), OCT2 (SLC22A2), OCT3 (SLC22A3) and the plasma membrane monoamine transporter PMAT (SLC29A4) revealed that every single transporter mediates low affinity uptake of NE, 5-HT, and DA. Whereas the organic transporters are all located in the blood brain barrier, OCT2, OCT3, and PMAT are expressed in neurons or in neurons and astrocytes within brain areas that are involved in behavioral regulation. Areas of expression include the dorsal raphe, medullary motoric nuclei, hypothalamic nuclei, and/or the nucleus accumbens. Current knowledge of the transport of monoamine neurotransmitters by the organic cation transporters, their interactions with psychotropic drugs, and their locations in the brain is reported in detail. In addition, animal experiments including behavior tests in wildtype and knockout animals are reported in which the impact of OCT2, OCT3, and/or PMAT on regulation of salt intake, depression, mood control, locomotion, and/or stress effect on addiction is suggested.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology, University Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Abstract
Precise control of monoamine neurotransmitter levels in the central nervous system (CNS) is crucial for proper brain function. Dysfunctional monoamine signaling is associated with several neuropsychiatric and neurodegenerative disorders. The plasma membrane monoamine transporter (PMAT) is a new polyspecific organic cation transporter encoded by the SLC29A4 gene. Capable of transporting monoamine neurotransmitters with low affinity and high capacity, PMAT represents a major uptake2 transporter in the brain. Broadly expressed in multiple brain regions, PMAT can complement the high-affinity, low-capacity monoamine uptake mediated by uptake1 transporters, the serotonin, dopamine, and norepinephrine transporters (SERT, DAT, and NET, respectively). This chapter provides an overview of the molecular and functional characteristics of PMAT together with its regional and cell-type specific expression in the mammalian brain. The physiological functions of PMAT in brain monoamine homeostasis are evaluated in light of its unique transport kinetics and brain location, and in comparison with uptake1 and other uptake2 transporters (e.g., OCT3) along with corroborating experimental evidences. Lastly, the possibility of PMAT's involvement in brain pathophysiological processes, such as autism, depression, and Parkinson's disease, is discussed in the context of disease pathology and potential link to aberrant monoamine pathways.
Collapse
|
6
|
Sata Y, Marques FZ, Kaye DM. The Emerging Role of Gut Dysbiosis in Cardio-metabolic Risk Factors for Heart Failure. Curr Hypertens Rep 2020; 22:38. [DOI: 10.1007/s11906-020-01046-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Mastitskaya S, Turovsky E, Marina N, Theparambil SM, Hadjihambi A, Kasparov S, Teschemacher AG, Ramage AG, Gourine AV, Hosford PS. Astrocytes Modulate Baroreflex Sensitivity at the Level of the Nucleus of the Solitary Tract. J Neurosci 2020; 40:3052-3062. [PMID: 32132265 PMCID: PMC7141885 DOI: 10.1523/jneurosci.1438-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/16/2019] [Accepted: 01/12/2020] [Indexed: 11/21/2022] Open
Abstract
Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca2+]i elevations. Astroglial [Ca2+]i responses are triggered by transmitters released by vagal afferents, glutamate acting at AMPA receptors and 5-HT acting at 5-HT2A receptors. In conscious freely behaving animals blockade of Ca2+-dependent vesicular release mechanisms in NTS astrocytes by virally driven expression of a dominant-negative SNARE protein (dnSNARE) increased baroreflex sensitivity by 70% (p < 0.001). This effect of compromised astroglial function was specific to the NTS as expression of dnSNARE in astrocytes of the ventrolateral brainstem had no effect. ATP is considered the principle gliotransmitter and is released by vesicular mechanisms blocked by dnSNARE expression. Consistent with this hypothesis, in anesthetized rats, pharmacological activation of P2Y1 purinoceptors in the NTS decreased baroreflex gain by 40% (p = 0.031), whereas blockade of P2Y1 receptors increased baroreflex gain by 57% (p = 0.018). These results suggest that glutamate and 5-HT, released by NTS afferent terminals, trigger Ca2+-dependent astroglial release of ATP to modulate baroreflex sensitivity via P2Y1 receptors. These data add to the growing body of evidence supporting an active role of astrocytes in brain information processing.SIGNIFICANCE STATEMENT Cardiorespiratory reflexes maintain autonomic balance and ensure cardiovascular health. Impaired baroreflex may contribute to the development of cardiovascular disease and serves as a robust predictor of cardiovascular and all-cause mortality. The data obtained in this study suggest that astrocytes are integral components of the brainstem mechanisms that process afferent information and modulate baroreflex sensitivity via the release of ATP. Any condition associated with higher levels of "ambient" ATP in the NTS would be expected to decrease baroreflex gain by the mechanism described here. As ATP is the primary signaling molecule of glial cells (astrocytes, microglia), responding to metabolic stress and inflammatory stimuli, our study suggests a plausible mechanism of how the central component of the baroreflex is affected in pathological conditions.
Collapse
Affiliation(s)
- Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Egor Turovsky
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russian Federation
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Sergey Kasparov
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
- Baltic Federal University, Kaliningrad 236041, Russian Federation, and
| | - Anja G Teschemacher
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Andrew G Ramage
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom,
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom,
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
8
|
Hosford PS, Wells JA, Christie IN, Lythgoe MF, Millar J, Gourine AV. Electrochemical carbon fiber-based technique for simultaneous recordings of brain tissue PO 2, pH, and extracellular field potentials. BIOSENSORS & BIOELECTRONICS: X 2019; 3:100034. [PMID: 32685919 PMCID: PMC7357830 DOI: 10.1016/j.biosx.2020.100034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 04/25/2023]
Abstract
A method for simultaneous electrochemical detection of brain tissue PO2 (PtO2) and pH changes together with neuronal activity using a modified form of fast cyclic voltammetry with carbon fiber electrodes is described. This technique has been developed for in vivo applications and recordings from discrete brain nuclei in experimental animals. The small size of the carbon fiber electrode (⌀7 μm, length <100 μm) ensures minimal disruption of the brain tissue and allows recordings from small brain areas. Sample rate (up to 4 Hz) is sufficient to resolve rapid changes in PtO2 and pH that follow changes in neuronal activity and metabolism. Rapid switching between current and voltage recordings allows combined electrochemical detection and monitoring of extracellular action potentials. For simultaneous electrochemical detection of PtO2 and pH, two consecutive trapezoidal voltage ramps are applied with double differential-subtraction of the background current. This enables changes in current caused by protons and oxygen to be detected separately with minimal interference between the two. The profile of PtO2 changes evoked by increases in local neuronal activity recorded using the described technique was very similar to that of blood-oxygen-level-dependent responses recorded using fMRI. This voltammetric technique can be combined with fMRI and brain vessel imaging to study the metabolic mechanisms underlying neurovascular coupling response with much greater spatial and temporal resolution than is currently possible.
Collapse
Affiliation(s)
- Patrick S. Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Corresponding author. William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Jack A. Wells
- Centre for Advanced Biomedical Imaging, Department of Medicine, University College London, London, UK
| | - Isabel N. Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, Department of Medicine, University College London, London, UK
| | - Julian Millar
- Department of Medical Education, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
- Corresponding author. Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK.
| |
Collapse
|
9
|
Belikova J, Lizogub V, Kuzminets A, Lavrenchuk I. Normalization of heart rate variability with taurine and meldonium complex in post-infarction patients with type 2 diabetes mellitus. J Med Life 2019; 12:290-295. [PMID: 31666833 PMCID: PMC6814880 DOI: 10.25122/jml-2019-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study is to scrutiny the Dynamics of heart rate variability (HRV) in patients with PICS with 2nd type DM against the background of Taurine (TN) and meldonium (ME). The results of the investigations prove the decrease of the oxidative stress, which is basis of DACN, under the influence of sulfur-containing amino acid taurine (TN), and meldonium (ME) — a competitive inhibitor of gamma-butyrobetaine hydroxylase. Biochemical mechanisms of synergistic action of ME and TN are also described. The results of the studies of 98 patients with PICS and concomitant 2nd type diabetes mellitus were analyzed. They were distributed by simple randomization method into two groups, comparable according to age and sex: the main group (MG) (n = 68): and group of comparison (GoC) (n = 30). HRV was evaluated twice daily at the Cardiosense HMEGG system: at baseline and after 12 weeks of treatment. For the assessment of HRV the frequency and spectral parameters were used. While evaluating the different methods of treatment, their influence on the range of spectral and time indices of HRV was determined (p = 0.001 by the criterion of Kruskall-Wallis). It was learned that the combined application of ME and TN gives a statistically significant (p <0.01) increase of SDNN, HF at night, pNN — on 50% by day (p <0.01, p <0.001 and p <0.01 respectively), and statistically significant decrease in LF at night, compared to GHG.
Collapse
Affiliation(s)
- Juliia Belikova
- Department of Internal Medicine No 4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Victor Lizogub
- Department of Internal Medicine No 4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Andrii Kuzminets
- Department of the Therapy, Infectious Disease and Dermatology Postgraduate Education, Bogomolets National Medical University, Kyiv, Ukraine
| | - Iryna Lavrenchuk
- Department of the Therapy, Infectious Disease and Dermatology Postgraduate Education, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
10
|
5-HT 3R-sourced calcium enhances glutamate release from a distinct vesicle pool. Brain Res 2019; 1721:146346. [PMID: 31348913 DOI: 10.1016/j.brainres.2019.146346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/18/2019] [Accepted: 07/21/2019] [Indexed: 01/01/2023]
Abstract
The serotonin 3 receptor (5-HT3R) is a calcium-permeant channel heterogeneously expressed in solitary tract (ST) afferents. ST afferents synapse in the nucleus of the solitary tract (NTS) and rely on a mix of voltage-dependent calcium channels (CaVs) to control synchronous glutamate release (ST-EPSCs). CaV activation triggers additional, delayed release of glutamate (asynchronous EPSCs) that trails after the ST-EPSCs but only from afferents expressing the calcium-permeable, transient receptor potential vanilloid type 1 receptor (TRPV1). Most afferents express TRPV1 and have high rates of spontaneous glutamate release (sEPSCs) that is independent of CaVs. Here, we tested whether 5-HT3R-sourced calcium contributes to these different forms of glutamate release in horizontal NTS slices from rats. The 5-HT3R selective agonist, m-chlorophenyl biguanide hydrochloride (PBG), enhanced sEPSCs and/or delayed the arrival times of ST-EPSCs (i.e. increased latency). The specific 5-HT3R antagonist, ondansetron, attenuated these effects consistent with direct activation of 5-HT3Rs. PBG did not alter ST-EPSC amplitude or asynchronous EPSCs. These independent actions suggest two distinct 5-HT3R locations; axonal expression that impedes conduction and terminal expression that mobilizes a spontaneous vesicle pool. Calcium chelation with EGTA-AM attenuated the frequency of 5-HT3R-activated sEPSCs by half. The mixture of chelation-sensitive and resistant sEPSCs suggests that 5-HT3R-activated vesicles span calcium diffusion distances that are both distal (micro-) and proximal (nanodomains) to the channel. Our results demonstrate that the calcium domains of 5-HT3Rs do not overlap other calcium sources or their respective vesicle pools. 5-HT3Rs add a unique calcium source on ST afferents as part of multiple independent synaptic signaling mechanisms.
Collapse
|
11
|
Electrophysiological Characterization of Novel Effects of the Uptake-2 Blocker Decynium-22 (D-22) on Dopaminergic Neurons in the Substantia Nigra Pars Compacta. Neuroscience 2019; 396:154-165. [PMID: 30447392 DOI: 10.1016/j.neuroscience.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023]
Abstract
Extracellular levels of dopamine (DA) and other monoamines in the brain depend not only on the classic transporters encoded by SLC6A gene family such as DAT, NET and SERT, but also a more recently identified group of low-affinity/high-capacity 'Uptake-2' transporters, mainly OCT3 and PMAT. The most frequently used pharmacological tool in functional studies of Uptake-2 is decynium-22 (D-22) known to block these transporters. However, the effectiveness of this drug in enhancing extracellular DA remains uncertain. Our aim was to test the hypothesis that D-22 increases extracellular levels of DA released from the somatodendritic region of dopaminergic neurons in the substantia nigra pars compacta (SNc) by reducing the OCT3/PMAT-dependent component of DA uptake. Extracellular DA was assessed indirectly, by evoking D2-IPSCs in SNc neurons following stimulated release of this neurotransmitter in midbrain slices obtained from mice. Recordings were conducted after partial inhibition of DAT with nomifensine, and after application of L-DOPA which increased the releasable DA pool. Contrary to our expectations, D-22 reduced, rather than increased, the amplitude of D2-IPSCs. Other effects included inhibition of GABAB-IPSCs and Ih current, and a reduction in firing frequency of nigral neurons. These results show that in addition to the previously known non-specific inhibitory action on α1 adrenoceptors, D-22 exerts additional off-target effects by inhibiting dopaminergic and GABAergic synaptic transmission in the SNc and the spontaneous (pacemaker) activity of nigral neurons. It remains to be established if these novel effects contribute to a reduction in spontaneous locomotor activity reported in previous studies after systemic drug administration.
Collapse
|
12
|
Onishi M, Yamanaka K, Miyamoto Y, Waki H, Gouraud S. Trpv4 involvement in the sex differences in blood pressure regulation in spontaneously hypertensive rats. Physiol Genomics 2018; 50:272-286. [PMID: 29373075 DOI: 10.1152/physiolgenomics.00096.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Arterial pressure (AP) is lower in premenopausal women than in men of a similar age. Premenopausal women exhibit a lower sympathetic activity and a greater baroreceptor reflex; however, mechanisms controlling sex differences in blood pressure regulation are not well understood. We hypothesized that different neuronal functions in the cardiovascular centers of the brains of men and women may contribute to the sex difference in cardiovascular homeostasis. Our previous studies on male spontaneously hypertensive rats (SHRs) and their normotensive counterparts, Wistar Kyoto (WKY) rats, revealed that the gene-expression profile of the nucleus tractus solitarius (NTS), a region of the medulla oblongata that is pivotal for regulating the set point of AP, is strongly associated with AP. Thus, we hypothesized that gene-expression profiles in the rat NTS are related to sex differences in AP regulation. Because female SHRs clearly exhibit lower AP than their male counterparts of a similar age, we investigated whether SHR NTS exhibits sex differences in gene expression by using microarray and RT-qPCR experiments. The transcript for transient receptor potential cation channel subfamily V member 4 ( Trpv4) was found to be upregulated in SHR NTS in females compared with that in males. The channel was expressed in neurons and glial cells within NTS. The TRPV4 agonist 4-alpha-phorbol-12,13-didecanoate (4α-PDD) decreased blood pressure when injected into NTS of rats. These findings suggest that altered TRPV4 expression might be involved in the sex differences in blood pressure regulation.
Collapse
Affiliation(s)
- Makiko Onishi
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Inzai-city, Chiba , Japan
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Program for Leading Graduate Schools, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Inzai-city, Chiba , Japan
| | - Sabine Gouraud
- Program for Leading Graduate Schools, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Department of Biology, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan
| |
Collapse
|
13
|
Hosford PS, Millar J, Ramage AG, Marina N. Abnormal oxygen homeostasis in the nucleus tractus solitarii of the spontaneously hypertensive rat. Exp Physiol 2017; 102:389-396. [PMID: 28120502 PMCID: PMC5396378 DOI: 10.1113/ep086023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS What is the central question of this study? Arterial hypertension is associated with impaired neurovascular coupling in the somatosensory cortex. Abnormalities in activity-dependent oxygen consumption in brainstem regions involved in the control of cardiovascular reflexes have not been explored previously. What is the main finding and its importance? Using fast-cyclic voltammetry, we found that changes in local tissue PO2 in the nucleus tractus solitarii induced by electrical stimulation of the vagus nerve are significantly impaired in spontaneously hypertensive rats. This is consistent with previous observations showing that brainstem hypoxia plays an important role in the pathogenesis of arterial hypertension. The effects of arterial hypertension on cerebral blood flow remain poorly understood. Haemodynamic responses within the somatosensory cortex have been shown to be impaired in the spontaneously hypertensive rat (SHR) model. However, it is unknown whether arterial hypertension affects oxygen homeostasis in vital brainstem areas that control cardiovascular reflexes. In this study, we assessed vagus nerve stimulation-induced changes in local tissue PO2 (PtO2) in the caudal nucleus tractus solitarii (cNTS) of SHRs and normotensive Wistar rats. Measurements of PtO2 were performed using a novel application of fast-cyclic voltammetry, which allows higher temporal resolution of O2 changes than traditional optical fluorescence techniques. Electrical stimulation of the central cut end of the vagus nerve (ESVN) caused profound reductions in arterial blood pressure along with biphasic changes in PtO2 in the cNTS, characterized by a rapid decrease in PtO2 ('initial dip') followed by a post-stimulus overshoot above baseline. The initial dip was found to be significantly smaller in SHRs compared with normotensive Wistar rats even after ganglionic blockade. The post-ESVN overshoot was similar in both groups but was reduced in Wistar rats after ganglionic blockade. In conclusion, neural activity-dependent changes in tissue oxygen in brainstem cardiovascular autonomic centres are significantly impaired in animals with arterial hypertension.
Collapse
Affiliation(s)
- Patrick S Hosford
- Center for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Julian Millar
- Barts and the London School of Medicine and Dentistry, London, UK
| | - Andrew G Ramage
- Center for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nephtali Marina
- Center for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Clinical Pharmacology and Experimental Therapeutics, Division of Medicine, University College London, London, UK
| |
Collapse
|
14
|
Miura Y, Yoshikawa T, Naganuma F, Nakamura T, Iida T, Kárpáti A, Matsuzawa T, Mogi A, Harada R, Yanai K. Characterization of murine polyspecific monoamine transporters. FEBS Open Bio 2017; 7:237-248. [PMID: 28174689 PMCID: PMC5292661 DOI: 10.1002/2211-5463.12183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/11/2023] Open
Abstract
The dysregulation of monoamine clearance in the central nervous system occurs in various neuropsychiatric disorders, and the role of polyspecific monoamine transporters in monoamine clearance is increasingly highlighted in recent studies. However, no study to date has properly characterized polyspecific monoamine transporters in the mouse brain. In the present study, we examined the kinetic properties of three mouse polyspecific monoamine transporters [organic cation transporter 2 (Oct2), Oct3, and plasma membrane monoamine transporter (Pmat)] and compared the absolute mRNA expression levels of these transporters in various brain areas. First, we evaluated the affinities of each transporter for noradrenaline, dopamine, serotonin, and histamine, and found that mouse ortholog substrate affinities were similar to those of human orthologs. Next, we performed drug inhibition assays and identified interspecies differences in the pharmacological properties of polyspecific monoamine transporters; in particular, corticosterone and decynium‐22, which are widely recognized as typical inhibitors of human OCT3, enhanced the transport activity of mouse Oct3. Finally, we quantified absolute mRNA expression levels of each transporter in various regions of the mouse brain and found that while all three transporters were ubiquitously expressed, Pmat was the most highly expressed transporter. These results provide an important foundation for future translational research investigating the roles of polyspecific monoamine transporters in neurological and neuropsychiatric disease.
Collapse
Affiliation(s)
- Yamato Miura
- Department of Pharmacology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Takeo Yoshikawa
- Department of Pharmacology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Fumito Naganuma
- Department of Pharmacology Tohoku University Graduate School of Medicine Sendai Miyagi Japan; Division of Pharmacology Faculty of Medicine Tohoku Medical and Pharmaceutical University Sendai Miyagi Japan
| | - Tadaho Nakamura
- Department of Pharmacology Tohoku University Graduate School of Medicine Sendai Miyagi Japan; Division of Pharmacology Faculty of Medicine Tohoku Medical and Pharmaceutical University Sendai Miyagi Japan
| | - Tomomitsu Iida
- Department of Pharmacology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Anikó Kárpáti
- Department of Pharmacology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Takuro Matsuzawa
- Department of Pharmacology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Asuka Mogi
- Department of Pharmacology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Ryuichi Harada
- Department of Pharmacology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Kazuhiko Yanai
- Department of Pharmacology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| |
Collapse
|
15
|
Avetisyan EA, Petrosyan AA, Khachiyan MS, Saakyan NA, Simonyan LY, Shogheryan SA. The role of taurine in adaptation of visceral systems under psycho-emotional stress in rats. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Wang J. The plasma membrane monoamine transporter (PMAT): Structure, function, and role in organic cation disposition. Clin Pharmacol Ther 2016; 100:489-499. [PMID: 27506881 DOI: 10.1002/cpt.442] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022]
Abstract
Plasma membrane monoamine transporter (PMAT) is a new polyspecific organic cation transporter that transports a variety of biogenic amines and xenobiotic cations. Highly expressed in the brain, PMAT represents a major uptake2 transporter for monoamine neurotransmitters. At the blood-cerebrospinal fluid (CSF) barrier, PMAT is the principal organic cation transporter for removing neurotoxins and drugs from the CSF. Here I summarize our latest understanding of PMAT and its roles in monoamine uptake and xenobiotic disposition.
Collapse
Affiliation(s)
- J Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
17
|
Burrell MH, Atcherley CW, Heien ML, Lipski J. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices. ACS Chem Neurosci 2015; 6:1802-12. [PMID: 26322962 DOI: 10.1021/acschemneuro.5b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tonic dopamine (DA) levels influence the activity of dopaminergic neurons and the dynamics of fast dopaminergic transmission. Although carbon fiber microelectrodes and fast-scan cyclic voltammetry (FSCV) have been extensively used to quantify stimulus-induced release and uptake of DA in vivo and in vitro, this technique relies on background subtraction and thus cannot provide information about absolute extracellular concentrations. It is also generally not suitable for prolonged (>90 s) recordings due to drift of the background current. A recently reported, modified FSCV approach called fast-scan controlled-adsorption voltammetry (FSCAV) has been used to assess tonic DA levels in solution and in the anesthetized mouse brain. Here we describe a novel extension of FSCAV to investigate pharmacologically induced, slowly occurring changes in tonic (background) extracellular DA concentration, and phasic (stimulated) DA release in brain slices. FSCAV was used to measure adsorption dynamics and changes in DA concentration (for up to 1.5 h, sampling interval 30 s, detection threshold < 10 nM) evoked by drugs affecting DA release and uptake (amphetamine, l-DOPA, pargyline, cocaine, Ro4-1284) in submerged striatal slices obtained from rats. We also show that combined FSCAV-FSCV recordings can be used for concurrent study of stimulated release and changes in tonic DA concentration. Our results demonstrate that FSCAV can be effectively used in brain slices to measure prolonged changes in extracellular level of endogenous DA expressed as absolute values, complementing studies conducted in vivo with microdialysis.
Collapse
Affiliation(s)
- Mark H. Burrell
- Department
of Physiology and Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Christopher W. Atcherley
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael L. Heien
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Janusz Lipski
- Department
of Physiology and Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Duan H, Hu T, Foti RS, Pan Y, Swaan PW, Wang J. Potent and Selective Inhibition of Plasma Membrane Monoamine Transporter by HIV Protease Inhibitors. Drug Metab Dispos 2015; 43:1773-80. [PMID: 26285765 DOI: 10.1124/dmd.115.064824] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
Plasma membrane monoamine transporter (PMAT) is a major uptake-2 monoamine transporter that shares extensive substrate and inhibitor overlap with organic cation transporters 1-3 (OCT1-3). Currently, there are no PMAT-specific inhibitors available that can be used in in vitro and in vivo studies to differentiate between PMAT and OCT activities. In this study, we showed that IDT307 (4-(4-(dimethylamino)phenyl)-1-methylpyridinium iodide), a fluorescent analog of 1-methyl-4-phenylpyridinium (MPP+), is a transportable substrate for PMAT and that IDT307-based fluorescence assay can be used to rapidly identify and characterize PMAT inhibitors. Using the fluorescent substrate-based assays, we analyzed the interactions of eight human immunodeficiency virus (HIV) protease inhibitors (PIs) with human PMAT and OCT1-3 in human embryonic kidney 293 (HEK293) cells stably transfected with individual transporters. Our data revealed that PMAT and OCTs exhibit distinct sensitivity and inhibition patterns toward HIV PIs. PMAT is most sensitive to PI inhibition whereas OCT2 and OCT3 are resistant. OCT1 showed an intermediate sensitivity and a distinct inhibition profile from PMAT. Importantly, lopinavir is a potent PMAT inhibitor and exhibited >120 fold selectivity toward PMAT (IC₅₀ = 1.4 ± 0.2 µM) over OCT1 (IC₅₀ = 174 ± 40 µM). Lopinavir has no inhibitory effect on OCT2 or OCT3 at maximal tested concentrations. Lopinavir also exhibited no or much weaker interactions with uptake-1 monoamine transporters. Together, our results reveal that PMAT and OCTs have distinct specificity exemplified by their differential interaction with HIV PIs. Further, we demonstrate that lopinavir can be used as a selective PMAT inhibitor to differentiate PMAT-mediated monoamine and organic cation transport from those mediated by OCT1-3.
Collapse
Affiliation(s)
- Haichuan Duan
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.D., T.H., J.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (Y.P., P.W.S.)
| | - Tao Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.D., T.H., J.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (Y.P., P.W.S.)
| | - Robert S Foti
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.D., T.H., J.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (Y.P., P.W.S.)
| | - Yongmei Pan
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.D., T.H., J.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (Y.P., P.W.S.)
| | - Peter W Swaan
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.D., T.H., J.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (Y.P., P.W.S.)
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.D., T.H., J.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (Y.P., P.W.S.)
| |
Collapse
|