1
|
Atmaramani RR, Black BJ, de la Peña JB, Campbell ZT, Pancrazio JJ. Conserved Expression of Nav1.7 and Nav1.8 Contribute to the Spontaneous and Thermally Evoked Excitability in IL-6 and NGF-Sensitized Adult Dorsal Root Ganglion Neurons In Vitro. Bioengineering (Basel) 2020; 7:bioengineering7020044. [PMID: 32429423 PMCID: PMC7356605 DOI: 10.3390/bioengineering7020044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Sensory neurons respond to noxious stimuli by relaying information from the periphery to the central nervous system via action potentials driven by voltage-gated sodium channels, specifically Nav1.7 and Nav1.8. These channels play a key role in the manifestation of inflammatory pain. The ability to screen compounds that modulate voltage-gated sodium channels using cell-based assays assumes that key channels present in vivo is maintained in vitro. Prior electrophysiological work in vitro utilized acutely dissociated tissues, however, maintaining this preparation for long periods is difficult. A potential alternative involves multi-electrode arrays which permit long-term measurements of neural spike activity and are well suited for assessing persistent sensitization consistent with chronic pain. Here, we demonstrate that the addition of two inflammatory mediators associated with chronic inflammatory pain, nerve growth factor (NGF) and interleukin-6 (IL-6), to adult DRG neurons increases their firing rates on multi-electrode arrays in vitro. Nav1.7 and Nav1.8 proteins are readily detected in cultured neurons and contribute to evoked activity. The blockade of both Nav1.7 and Nav1.8, has a profound impact on thermally evoked firing after treatment with IL-6 and NGF. This work underscores the utility of multi-electrode arrays for pharmacological studies of sensory neurons and may facilitate the discovery and mechanistic analyses of anti-nociceptive compounds.
Collapse
Affiliation(s)
- Rahul R. Atmaramani
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (R.R.A.); (B.J.B.)
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
| | - Bryan J. Black
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (R.R.A.); (B.J.B.)
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
| | - June Bryan de la Peña
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zachary T. Campbell
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Joseph J. Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (R.R.A.); (B.J.B.)
- Correspondence: ; Tel.: +1-972-883-2138
| |
Collapse
|
2
|
郑 燕, 蒋 猛, 李 长, 余 壁, 潘 春, 周 望, 史 鹏, 黄 鹏, 何 耀, 廖 生. [Comparison of different methods for drug delivery via the lumbar spinal subarachnoid space in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1246-1252. [PMID: 31801716 PMCID: PMC6867941 DOI: 10.12122/j.issn.1673-4254.2019.10.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To compare 3 commonly used methods for drug delivery via the lumbar spinal subarachnoid space in rats. METHODS We compared the effects of 3 methods for drug delivery via the lumbar spinal subarachnoid space in Sprague Dawley rats, namely acute needle puncture, chronic catheterization via laminectomy, and non-laminectomized catheterization. Body weight changes of the rats were measured, and their general and neurological conditions were assessed after the surgeries. The motor function of the rats was examined using rota rod test both before and after the surgeries. Nociceptive tests were performed to assess nociception of the rats. HE staining was used to examine local inflammation caused by the surgeries in the lumbar spinal cord tissue, and lidocaine paralysis detection and toluidine blue dye assay were used to confirm the precision of drug delivery using the 3 methods. RESULTS Both needle puncture and catheterization via laminectomy resulted in a relatively low success rate of surgery and caused neurological abnormalities, severe motor dysfunction, hyperalgesia, allodynia and local inflammation. Catheterization without laminectomy had the highest success rate of surgery, and induced only mild agitation, slight cerebral spinal fluid leakage, mild sensory and motor abnormalities, and minimum pathology in the lumbar spinal cord. Catheterization without laminectomy produced less detectable effects on the behaviors in the rats and was well tolerated compared to the other two methods with also higher precision of drug delivery. CONCLUSIONS Catheterization without laminectomy is a safe, accurate and effective approach to lumbar drug delivery in rats.
Collapse
Affiliation(s)
- 燕平 郑
- 湖北省中西医结合医院老年病科,湖北 武汉 430015Department of Geratology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, China
| | - 猛 蒋
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 长丽 李
- 湖北省中西医结合医院老年病科,湖北 武汉 430015Department of Geratology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, China
| | - 壁湘 余
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 春球 潘
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 望梅 周
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 鹏伟 史
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 鹏 黄
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 耀全 何
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 生武 廖
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Fang X, Zhou H, Huang S, Liu J. MiR-1906 Attenuates Neuropathic Pain in Rats by Regulating the TLR4/mTOR/ Akt Signaling Pathway. Transl Neurosci 2019; 10:175-179. [PMID: 31410300 PMCID: PMC6689213 DOI: 10.1515/tnsci-2019-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background This study determined the role of miR-1906 in neuropathic pain and proliferation in neuronal cells using a chronic constriction injury (CCI)-induced neuropathic pain (NP) rat model. Methodology NP was induced by CCI. Animals were divided into a sham group, an NP group, and a miR-1906 mimic group, which received 500 nmol/kg of a miR-1906 mimic intrathecally for 10 consecutive days following surgery. The effect of miR-1906 agomir was determined by estimating the thermal and mechanical withdrawal latency; an enzyme-linked immunosorbent assay (ELISA) was used to determine the concentration of proinflammatory mediators. Western blotting and reverse-transcription polymerase chain reaction (RT-PCR) were used to determine protein expression in the spinal tissues of the CCI-induced neuropathic pain rat model. Results Administration of miR-1906 agomir increased the mechanical and thermal withdrawal latency period and the levels of inflammatory mediators compared with the NP group. Western blotting showed that treatment with miR-1906 agomir attenuated the levels of Akt, mTOR, TLR-4, and PI3K proteins in the spinal tissues of the CCI-induced neuropathic pain model. TLR-4 and NF-κB gene expression was lower in the miR-1906 agomir group than in the NP group. Conclusion miR-1906 gene stimulation reduced neuropathic pain by enhancing Akt/nTOR/PI3K and TLR-4/NF-κB pathway regulation.
Collapse
Affiliation(s)
- Xianhai Fang
- Department of pain clinic, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.150086
- E-mail:
| | - Huacheng Zhou
- Department of pain clinic, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China150081
| | - Shaopeng Huang
- Department of pain clinic, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.150086
| | - Jinfeng Liu
- Department of pain clinic, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.150086
- E-mail:
| |
Collapse
|
4
|
Wu X, Qu W, Bakare AA, Zhang YP, Fry CME, Shields LBE, Shields CB, Xu XM. A Laser-Guided Spinal Cord Displacement Injury in Adult Mice. J Neurotrauma 2018; 36:460-468. [PMID: 29893166 DOI: 10.1089/neu.2018.5756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse models are unique for studying molecular mechanisms of neurotrauma because of the availability of various genetic modified mouse lines. For spinal cord injury (SCI) research, producing an accurate injury is essential, but it is challenging because of the small size of the mouse cord and the inconsistency of injury production. The Louisville Injury System Apparatus (LISA) impactor has been shown to produce precise contusive SCI in adult rats. Here, we examined whether the LISA impactor could be used to create accurate and graded contusive SCIs in mice. Adult C57BL/6 mice received a T10 laminectomy followed by 0.2, 0.5, and 0.8 mm displacement injuries, guided by a laser, from the dorsal surface of the spinal cord using the LISA impactor. Basso Mouse Scale (BMS), grid-walking, TreadScan, and Hargreaves analyses were performed for up to 6 weeks post-injury. All mice were euthanized at the 7th week, and the spinal cords were collected for histological analysis. Our results showed that the LISA impactor produced accurate and consistent contusive SCIs corresponding to mild, moderate, and severe injuries to the cord. The degree of injury severities could be readily determined by the BMS locomotor, grid-walking, and TreadScan gait assessments. The cutaneous hyperalgesia threshold was also significantly increased as the injury severity increased. The terminal lesion area and the spared white matter of the injury epicenter were strongly correlated with the injury severities. We conclude that the LISA device, guided by a laser, can produce reliable graded contusive SCIs in mice, resulting in severity-dependent behavioral and histopathological deficits.
Collapse
Affiliation(s)
- Xiangbing Wu
- 1 Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,3 Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenrui Qu
- 1 Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,3 Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adewale A Bakare
- 1 Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,3 Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yi Ping Zhang
- 4 Norton Neuroscience Institute, Norton Healthcare, Louisville, Kentucky
| | - Collin M E Fry
- 1 Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,3 Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lisa B E Shields
- 4 Norton Neuroscience Institute, Norton Healthcare, Louisville, Kentucky
| | | | - Xiao-Ming Xu
- 1 Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,3 Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana.,6 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|