1
|
Dempsey JP, Balshi A, Bouley A, Egnor E, Samaan S, Baber U, Sloane JA. Multiple sclerosis treatment underutilization predicts high risk for obstructive sleep apnea in patients with multiple sclerosis. Mult Scler Relat Disord 2024; 91:105889. [PMID: 39288564 DOI: 10.1016/j.msard.2024.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is more common in patients with multiple sclerosis (MS) than in the general population, which suggests MS may predispose patients to OSA. However, the relationships between MS treatment, disease activity, disease severity, fatigue, and OSA are unknown. OBJECTIVES To evaluate the connections between OSA risk, MS fatigue, and MS severity, controlling for well-established risk factors for OSA in the general population. METHODS We administered OSA and fatigue-related questionnaires to patients with MS and collected relevant demographic and clinical data. Then, we utilized multivariate logistic regression to examine relationships between OSA risk and MS disease severity. RESULTS We identified an inverse correlation between medication possession ratio (MPR) and high OSA risk. Statistical models also demonstrated a positive correlation between fatigue and nonwhite race with high OSA risk, controlling for male sex, younger age, and body mass index (BMI). CONCLUSION We identified disease-modifying therapy (DMT) underutilization, fatigue, and nonwhite race as predictors of high OSA risk in patients with MS. These findings support aggressive treatment of MS to avoid risk of comorbid OSA and MS-induced fatigue.
Collapse
Affiliation(s)
- John Patrick Dempsey
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexandra Balshi
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew Bouley
- The Elliot Lewis Center for Multiple Sclerosis Care, Wellesley, MA, USA
| | - Emily Egnor
- Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Soleil Samaan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ursela Baber
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
van der Meer F, Jorgensen J, Hiligsmann M. Burden of non-motor symptoms of Parkinson's disease: cost-of-illness and quality-of-life estimates through a scoping review. Expert Rev Pharmacoecon Outcomes Res 2024:1-11. [PMID: 39138993 DOI: 10.1080/14737167.2024.2390042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Parkinson's Disease (PD) is a progressive, chronic neurodegenerative disease, representing significant economic and social burdens. It is typically defined by motor symptoms (MSs), however, this does not reflect the full patient burden. Non-motor symptoms (NMSs) are increasingly recognized as central characteristics of PD. However, they still lack recognition in research. Therefore, this study aims to identify relevant NMSs, their prevalence, and the effect they have on Quality-of-Life (QoL) and Cost-of-Illness (COI). Secondly, it aims to identify gaps in the current body of knowledge and propose possible ways future research could bridge those gaps. METHODS The study employed a scoping review, identifying 60 records for inclusion, using PubMed and Web of Science. It included studies from Spain or Italy, including data on People with Parkinson's Disease. A comparative analysis was performed using Microsoft Excel. RESULTS It showed that the body of evidence relevant to NMSs, their prevalence, QoL, and COI is limited, or that estimates vary to an extent where interpretation is difficult. CONCLUSION Most studies suffer from generalization, representation, and standardization issues, stemming from their designs and methodological decisions. Although the findings of this study should be interpreted with caution, several recommendations are made for future research.
Collapse
Affiliation(s)
- Frank van der Meer
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | | | - Mickael Hiligsmann
- Department of Health Services Research, CAPHRI, Care & Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Tang H, Zhang K, Zhang C, Zheng K, Gui L, Yan B. Bioinformatics-based identification of key candidate genes and signaling pathways in patients with Parkinson's disease and obstructive sleep apnea. Sleep Breath 2024; 28:1477-1489. [PMID: 38316731 DOI: 10.1007/s11325-024-03003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVES Existing evidence exhibits that obstructive sleep apnea (OSA) is a potential consequence of Parkinson's disease (PD) or a contributor to PD progression. This investigation aimed to detect potential critical genes and molecular mechanisms underlying interactions between PD and OSA through bioinformatics analyses. METHODS The Gene Expression Omnibus (GEO) database was employed to obtain the expression profiles GSE20163 and GSE135917. The identification of common genes connected to PD and OSA was performed utilizing weighted gene co-expression network analysis and the R 4.0.4 program. The Cytoscape program was utilized to generate a network of protein-protein interactions (PPI), and the CytoHubba plugin was utilized to detect hub genes. Subsequently, functional enrichment analyses of the hub genes were conducted. Markers with increased diagnostic values for PD and OSA were confirmed using the GEO datasets GSE8397 and GSE38792. RESULTS Typically, 57 genes that are common were identified in PD and OSA. Among these common genes, the top 10 hub genes in the PPI network were chosen. The verified datasets confirmed the presence of three important genes: CADPS, CHGA, and SCG3. Functional enrichment analysis revealed that these hub genes mostly participate in GABAergic synapses. CONCLUSION Our findings suggest that CADPS, CHGA, and SCG3 are key genes involved in molecular mechanisms underlying interactions between OSA and PD. Functional enrichment of hub genes indicated a link between GABAergic synapses and the shared pathogenesis of PD and OSA. These candidate genes and corresponding pathways offer novel insights regarding biological targets that underlie the transcriptional connection between OSA and PD.
Collapse
Affiliation(s)
- Huan Tang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Kejia Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chi Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Kai Zheng
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Luying Gui
- Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
4
|
Tall P, Qamar MA, Rosenzweig I, Raeder V, Sauerbier A, Heidemarie Z, Falup-Pecurariu C, Chaudhuri KR. The Park Sleep subtype in Parkinson's disease: from concept to clinic. Expert Opin Pharmacother 2023; 24:1725-1736. [PMID: 37561080 DOI: 10.1080/14656566.2023.2242786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION The heterogeneity of Parkinson's disease (PD) is evident from descriptions of non-motor (NMS) subtypes and Park Sleep, originally identified by Sauerbier et al. 2016, is one such clinical subtype associated with the predominant clinical presentation of sleep dysfunctions including excessive daytime sleepiness (EDS), along with insomnia. AREAS COVERED A literature search was conducted using the PubMed, Medline, Embase, and Web of Science databases, accessed between 1 February 2023 and 28 March 2023. In this review, we describe the clinical subtype of Park Sleep and related 'tests' ranging from polysomnography to investigational neuromelanin MRI brain scans and some tissue-based biological markers. EXPERT OPINION Cholinergic, noradrenergic, and serotonergic systems are dominantly affected in PD. Park Sleep subtype is hypothesized to be associated primarily with serotonergic deficit, clinically manifesting as somnolence and narcoleptic events (sleep attacks), with or without rapid eye movement behavior disorder (RBD). In clinic, Park Sleep recognition may drive lifestyle changes (e.g. driving) along with therapy adjustments as Park Sleep patients may be sensitive to dopamine D3 active agonists, such as ropinirole and pramipexole. Specific dashboard scores based personalized management options need to be implemented and include pharmacological, non-pharmacological, and lifestyle linked advice.
Collapse
Affiliation(s)
- Phoebe Tall
- Department of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience (IoPpn), King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Mubasher A Qamar
- Department of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience (IoPpn), King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPpn), King's College London, London, UK
- Sleep Disorder Centre, Nuffield House, Guy's Hospital, London, UK
| | - Vanessa Raeder
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin, Germany
| | - Anna Sauerbier
- Department of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience (IoPpn), King's College London, London, UK
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Zach Heidemarie
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Braşov, Romania
| | - Kallol Ray Chaudhuri
- Department of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience (IoPpn), King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Thangaleela S, Sivamaruthi BS, Kesika P, Mariappan S, Rashmi S, Choeisoongnern T, Sittiprapaporn P, Chaiyasut C. Neurological Insights into Sleep Disorders in Parkinson's Disease. Brain Sci 2023; 13:1202. [PMID: 37626558 PMCID: PMC10452387 DOI: 10.3390/brainsci13081202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a common multidimensional neurological disorder characterized by motor and non-motor features and is more prevalent in the elderly. Sleep disorders and cognitive disturbances are also significant characteristics of PD. Sleep is an important physiological process for normal human cognition and physical functioning. Sleep deprivation negatively impacts human physical, mental, and behavioral functions. Sleep disturbances include problems falling asleep, disturbances occurring during sleep, abnormal movements during sleep, insufficient sleep, and excessive sleep. The most recognizable and known sleep disorders, such as rapid-eye-movement behavior disorder (RBD), insomnia, excessive daytime sleepiness (EDS), restless legs syndrome (RLS), sleep-related breathing disorders (SRBDs), and circadian-rhythm-related sleep-wake disorders (CRSWDs), have been associated with PD. RBD and associated emotional disorders are common non-motor symptoms of PD. In individuals, sleep disorders and cognitive impairment are important prognostic factors for predicting progressing neurodegeneration and developing dementia conditions in PD. Studies have focused on RBD and its associated neurological changes and functional deficits in PD patients. Other risks, such as cognitive decline, anxiety, and depression, are related to RBD. Sleep-disorder diagnosis is challenging, especially in identifying the essential factors that disturb the sleep-wake cycle and the co-existence of other concomitant sleep issues, motor symptoms, and breathing disorders. Focusing on sleep patterns and their disturbances, including genetic and other neurochemical changes, helps us to better understand the central causes of sleep alterations and cognitive functions in PD patients. Relations between α-synuclein aggregation in the brain and gender differences in sleep disorders have been reported. The existing correlation between sleep disorders and levels of α-synuclein in the cerebrospinal fluid indicates the risk of progression of synucleinopathies. Multidirectional approaches are required to correlate sleep disorders and neuropsychiatric symptoms and diagnose sensitive biomarkers for neurodegeneration. The evaluation of sleep pattern disturbances and cognitive impairment may aid in the development of novel and effective treatments for PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Subramanian Rashmi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| |
Collapse
|
6
|
Chiew A, Mathew D, Kumar CM, Seet E, Imani F, Khademi SH. Anesthetic Considerations for Cataract Surgery in Patients with Parkinson's Disease: A Narrative Review. Anesth Pain Med 2023; 13:e136093. [PMID: 38021330 PMCID: PMC10664173 DOI: 10.5812/aapm-136093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 12/01/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurological degenerative disease affecting the central nervous system, which is responsible for progressive disorders such as slow movements, tremors, rigidity, and cognitive disorders. There are no specific recommendations and guidelines for anesthetic management of patients with PD undergoing ophthalmic procedures. This narrative review aims to summarise the anesthetic considerations in patients with PD presenting for cataract surgery.
Collapse
Affiliation(s)
- Alyssa Chiew
- Department of Anaesthesia, Khoo Teck Puat Hospital, Yishun, Singapore
| | - David Mathew
- Department of Anaesthesia, Khoo Teck Puat Hospital, Yishun, Singapore
| | - Chandra M. Kumar
- Department of Anaesthesia, Khoo Teck Puat Hospital, Yishun, Singapore
| | - Edwin Seet
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Hossein Khademi
- Department of Anesthesiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Qamar MA, Rota S, Batzu L, Subramanian I, Falup-Pecurariu C, Titova N, Metta V, Murasan L, Odin P, Padmakumar C, Kukkle PL, Borgohain R, Kandadai RM, Goyal V, Chaudhuri KR. Chaudhuri's Dashboard of Vitals in Parkinson's syndrome: an unmet need underpinned by real life clinical tests. Front Neurol 2023; 14:1174698. [PMID: 37305739 PMCID: PMC10248458 DOI: 10.3389/fneur.2023.1174698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
We have recently published the notion of the "vitals" of Parkinson's, a conglomeration of signs and symptoms, largely nonmotor, that must not be missed and yet often not considered in neurological consultations, with considerable societal and personal detrimental consequences. This "dashboard," termed the Chaudhuri's vitals of Parkinson's, are summarized as 5 key vital symptoms or signs and comprise of (a) motor, (b) nonmotor, (c) visual, gut, and oral health, (d) bone health and falls, and finally (e) comorbidities, comedication, and dopamine agonist side effects, such as impulse control disorders. Additionally, not addressing the vitals also may reflect inadequate management strategies, leading to worsening quality of life and diminished wellness, a new concept for people with Parkinson's. In this paper, we discuss possible, simple to use, and clinically relevant tests that can be used to monitor the status of these vitals, so that these can be incorporated into clinical practice. We also use the term Parkinson's syndrome to describe Parkinson's disease, as the term "disease" is now abandoned in many countries, such as the U.K., reflecting the heterogeneity of Parkinson's, which is now considered by many as a syndrome.
Collapse
Affiliation(s)
- Mubasher A. Qamar
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Silvia Rota
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lucia Batzu
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Indu Subramanian
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parkinson’s Disease Research, Education and Clinical Centers, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, United States
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Nataliya Titova
- Department of Neurology, Neurosurgery and Medical Genetics, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Neurodegenerative Diseases, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency, Moscow, Russia
| | - Vinod Metta
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lulia Murasan
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Per Odin
- Department of Neurology, University Hospital, Lund, Sweden
| | | | - Prashanth L. Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Karnataka, India, Bangalore
- Parkinson’s Disease and Movement Disorders Clinic, Bangalore, Karnataka, India
| | - Rupam Borgohain
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rukmini Mridula Kandadai
- Department of Neurology, Nizam’s Institute of Medical Sciences, Autonomous University, Hyderabad, India
| | - Vinay Goyal
- Neurology Department, Medanta, Gurugram, India
| | - Kallo Ray Chaudhuri
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Barnes A, Andrews JM, Mukherjee S, Bryant RV, Bampton P, Spizzo P, Fraser RJ, Mountifield R. Simple Novel Screening Tool for Obstructive Sleep Apnea in Inflammatory Bowel Disease. CROHN'S & COLITIS 360 2023; 5:otad016. [PMID: 36998248 PMCID: PMC10045889 DOI: 10.1093/crocol/otad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 03/18/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) has been associated with an increased risk of obstructive sleep apnea (OSA). We aimed to examine the associations of obstructive sleep apnea, sleepiness, and IBD-related data and comorbidities, with the aim of developing a screening tool for sleep apnea in this population. Methods An online survey of adults with IBD was administered which included measures of assessment of the risk of OSA, and measures of IBD activity, IBD-related disability, anxiety, and depression. Logistic regression was performed to investigate the associations between the risk of OSA and IBD data, medications, demographics, and mental health conditions. Further models were built for an outcome of severe daytime sleepiness and a combined outcome of risk of OSA and at least mild daytime sleepiness. A simple score was constructed for the purpose of screening for OSA. Results There were 670 responses to the online questionnaire. The median age was 41 years, the majority had Crohn's disease (57%), the median disease duration was 11.9 years, and approximately half were on biologics (50.5%). Moderate-high risk of OSA was demonstrated in 22.6% of the cohort. A multivariate regression model for moderate-high risk of OSA included increasing age, obesity, smoking, and abdominal pain subscore. For a combined outcome of moderate-high risk of OSA and at least mild daytime sleepiness, a multivariate model included abdominal pain, age, smoking, obesity, and clinically significant depression. A simple score was constructed for screening for OSA utilizing age, obesity, IBD activity, and smoking status with an area under the receiver-operating curve of 0.77. A score >2 had a sensitivity of 89% and a specificity of 56% for moderate-high risk of OSA and could be utilized for screening for OSA in the IBD clinic. Conclusions Over one-fifth of an IBD cohort met significantly high-risk criteria for OSA to warrant referral for a diagnostic sleep study. The risk of OSA was associated with abdominal pain, along with more traditional risk factors such as smoking, increasing age, and obesity. Consideration should be given for screening for OSA in IBD patients utilizing a novel screening tool that utilizes parameters typically available in IBD clinic.
Collapse
Affiliation(s)
- Alex Barnes
- Department of Gastroenterology, Southern Adelaide Local Health Network (SALHN) Flinders Medical Centre, Bedford Park, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Jane M Andrews
- Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, (CAHLN) Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Faculty of Health & Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sutapa Mukherjee
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Department of Respiratory and Sleep Medicine, Southern Adelaide Local Health Network (SALHN) Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robert V Bryant
- Faculty of Health & Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology, Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Peter Bampton
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Paul Spizzo
- Department of Gastroenterology, Southern Adelaide Local Health Network (SALHN) Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robert J Fraser
- Department of Gastroenterology, Southern Adelaide Local Health Network (SALHN) Flinders Medical Centre, Bedford Park, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Réme Mountifield
- Department of Gastroenterology, Southern Adelaide Local Health Network (SALHN) Flinders Medical Centre, Bedford Park, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
9
|
Aini N, Chu H, Banda KJ, Chen R, Lee TY, Pien LC, Liu D, Lai YJ, Kang XL, Chou KR. Prevalence of sleep-related breathing disorders and associated risk factors among people with dementia: A meta-analysis. Sleep Med 2023; 103:51-61. [PMID: 36758347 DOI: 10.1016/j.sleep.2023.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Sleep-related breathing disorders (SRBD) have shown to cause worsened cognitive impairment among people with dementia. Therefore, we conducted the first meta-analysis to estimate the prevalence of SRBD among people with dementia. METHODS Comprehensive searches were conducted in Embase, Ovid-MEDLINE, PubMed, PsycINFO, Scopus, Web of Science, and CINAHL. The generalized linear mixed model (GLMM) was used for the pooled prevalence analysis and heterogeneity using I2 test and Cochran's Q-statistic in R-software. Study quality was assessed by Hoy's risk of bias assessment tool. Overall, 20 studies from 1282 studies were included with 1461 participants. RESULTS The pooled prevalence of SRBD among dementia was 59% (95%CI: 44%-73%) with 55% (95%CI: 34%-74%) for obstructive sleep apnea (OSA), 49% (95%CI: 25%-73%) for unspecified SRBD, and 11% (95%CI: 5%-21%) for central sleep apnea (CSA). Regarding dementia subtypes, the prevalence of SRBD was 89% (95%CI: 61%-97%) for Alzheimer's dementia, 56% (95%CI: 48%-63%) for Parkinson's and Idiopathic Parkinson's dementia, and 16% (95%CI: 8%-30%) for Huntington's dementia. Significant moderator variables were male, body mass index, larger waist and hip circumference, waist-hip ratio, and comorbidities including hypertension, dyslipidemia, renal disease, diabetes, heart disease, and stroke. CONCLUSIONS There is considerable high prevalence of SRBD among dementia people, with OSA and unspecified SRBD being fivefold higher than CSA. Regarding dementia subtypes, Parkinson's and Idiopathic Parkinson's, and Alzheimer's dementia had four to sixfold increased risk of presenting with SRBD than Huntington's dementia. Therefore, assessment and management of SRBD in Alzheimer's, and Parkinson's and Idiopathic Parkinson's dementia deserves more attention in future research.
Collapse
Affiliation(s)
- Nur Aini
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Nursing Department, Faculty of Health Science, University of Muhammadiyah Malang, Indonesia
| | - Hsin Chu
- Institute of Aerospace and Undersea Medicine, School of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kondwani Joseph Banda
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Endoscopy Unit, Surgery Department, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Ruey Chen
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Department of Nursing, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan; Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Tso-Ying Lee
- Nursing Research Center, Department of Nursing, Taipei Medical University Hospital, Taipei, Taiwan
| | - Li-Chung Pien
- Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Doresses Liu
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Department of Nursing, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Jung Lai
- Department of Nursing, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Xiao Linda Kang
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; School of Nursing, University of Pennsylvania, Philadelphia, USA
| | - Kuei-Ru Chou
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Department of Nursing, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan; Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Koçak AT, Arslan S. Validity and Reliability of the Turkish Version of the Parkinson Disease Sleep Scale-2. JOURNAL OF TURKISH SLEEP MEDICINE 2023. [DOI: 10.4274/jtsm.galenos.2022.29200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
11
|
Schrag A, Bohlken J, Dammertz L, Teipel S, Hermann W, Akmatov MK, Bätzing J, Holstiege J. Widening the Spectrum of Risk Factors, Comorbidities, and Prodromal Features of Parkinson Disease. JAMA Neurol 2023; 80:161-171. [PMID: 36342675 PMCID: PMC9641600 DOI: 10.1001/jamaneurol.2022.3902] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Importance The prodromal phase of Parkinson disease (PD) may last for more than 10 years. Recognition of the spectrum and occurrence of risk factors, comorbidities, and prodromal features of PD can increase understanding of the causes and development of the disease and help identify individuals at risk. Objective To identify the association of a subsequent diagnosis of PD with a range of risk factors and prodromal features, including lifestyle factors, comorbidities, and potential extracerebral manifestations of PD. Design, Setting, and Participants This was a case-control study using insurance claims of outpatient consultations of patients with German statutory health insurance between January 1, 2011, and December 31, 2020. Included were patients with incident diagnosis of PD without a previous diagnosis of parkinsonism or dementia and controls matched 1:2 for age, sex, region, and earliest year of outpatient encounter. Exposures Exposures were selected based on previous systematic reviews, case-control and cohort studies reporting on risk factors, comorbidities, and prodromal features of PD. Main Outcomes and Measures Previously postulated risk factors and prodromal features of PD, using the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) coding. Results A total of 138 345 patients with incident PD (mean [SD] age, 75.1 [9.8] years; 73 720 male [53.3%]) and 276 690 matched controls (mean [SD] age, 75.1 (9.8) years; 147 440 male [53.3%]) were identified. Study participants were followed up for a mean (SD) of 6.0 (2.0) years. Consistent with previous reports, risk factors and prodromal features associated with PD included traumatic brain injury, odds ratio (OR), 1.62; 95% CI, 1.36-1.92; alcohol misuse, OR, 1.32; 95% CI, 1.21-1.44; hypertension, OR, 1.29; 95% CI, 1.26-1.31; anosmia, OR, 2.16; 95% CI, 1.59-2.93; and parasomnias (including RBD), OR, 1.62; 95% CI, 1.42-1.84. In addition, there were associations with restless legs syndrome (OR, 4.19; 95% CI, 3.91-4.50), sleep apnea (OR, 1.45; 95% CI, 1.37-1.54), epilepsy (OR, 2.26; 95% CI, 2.07-2.46), migraine (OR, 1.21; 95% CI, 1.12-1.29), bipolar disorder (OR, 3.81; 95% CI, 3.11-4.67), and schizophrenia (OR, 4.48; 95% CI, 3.82-5.25). The following diagnoses were also found to be associated with PD: sensory impairments beyond anosmia, such as hearing loss (OR, 1.14; 95% CI, 1.09-1.20) and changes of skin sensation (OR, 1.31; 95% CI, 1.21-1.43). There were also positive associations with skin disorders (eg, seborrheic dermatitis, OR, 1.30; 95% CI, 1.15-1.46; psoriasis, OR, 1.13; 95% CI, 1.05-1.21), gastrointestinal disorders (eg, gastroesophageal reflux, OR, 1.29; 95% CI, 1.25-1.33; gastritis, OR, 1.28; 95% CI, 1.24-1.33), conditions with a potential inflammatory component (eg, seronegative osteoarthritis, OR, 1.21; 95% CI, 1.03-1.43), and diabetes types 1 (OR, 1.32; 95% CI, 1.21-1.43) and 2 (OR, 1.24; 95% CI, 1.20-1.27). Associations even 5 to 10 years before diagnosis included tremor (odds ratio [OR], 4.49; 95% CI, 3.98-5.06), restless legs syndrome (OR, 3.73; 95% CI, 3.39-4.09), bipolar disorder (OR, 3.80; 95% CI, 2.82-5.14), and schizophrenia (OR, 4.00; 95% CI, 3.31-4.85). Conclusions and Relevance Results of this case-control study suggest that the associations found between PD and certain risk factors, comorbidities, and prodromal symptoms in a representative population may reflect possible early extrastriatal and extracerebral pathology of PD. This may be due to shared genetic risk with PD, medication exposure, or direct causation, or represent pathophysiologically relevant factors contributing to the pathogenesis of PD.
Collapse
Affiliation(s)
- Anette Schrag
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
| | - Jens Bohlken
- Institut für Sozialmedizin, Arbeitsmedizin und Public Health der Medizinischen Fakultät der Universität Leipzig, Leipzig, Germany
| | - Lotte Dammertz
- Central Research Institute of Ambulatory Health Care in Germany, Department of Epidemiology and Healthcare Atlas, Berlin, Germany
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen Rostock/Greifswald, Rostock, Germany,Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Wiebke Hermann
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Manas K. Akmatov
- Central Research Institute of Ambulatory Health Care in Germany, Department of Epidemiology and Healthcare Atlas, Berlin, Germany
| | - Jörg Bätzing
- Central Research Institute of Ambulatory Health Care in Germany, Department of Epidemiology and Healthcare Atlas, Berlin, Germany
| | - Jakob Holstiege
- Central Research Institute of Ambulatory Health Care in Germany, Department of Epidemiology and Healthcare Atlas, Berlin, Germany
| |
Collapse
|
12
|
Davin A, Chabardès S, Devergnas A, Benstaali C, Gutekunst CAN, David O, Torres-Martinez N, Piallat B. Excessive daytime sleepiness in a model of Parkinson's disease improved by low-frequency stimulation of the pedunculopontine nucleus. NPJ Parkinsons Dis 2023; 9:9. [PMID: 36697421 PMCID: PMC9876933 DOI: 10.1038/s41531-023-00455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Patients with Parkinson's disease often complain of excessive daytime sleepiness which negatively impacts their quality of life. The pedunculopontine nucleus, proposed as a target for deep brain stimulation to improve freezing of gait in Parkinson's disease, is also known to play a key role in the arousal system. Thus, the putative control of excessive daytime sleepiness by pedunculopontine nucleus area stimulation merits exploration for treating Parkinson's disease patients. To this end, two adult nonhuman primates (macaca fascicularis) received a deep brain stimulation electrode implanted into the pedunculopontine nucleus area along with a polysomnographic equipment. Stimulation at low frequencies and high frequencies was studied, in healthy and then MPTP-treated nonhuman primates. Here, we observed that MPTP-treated nonhuman primates suffered from excessive daytime sleepiness and that low-frequency stimulation of the pedunculopontine nucleus area was effective in reducing daytime sleepiness. Indeed, low-frequency stimulation of the pedunculopontine nucleus area induced a significant increase in sleep onset latency, longer continuous periods of wakefulness and thus, a partially restored daytime wake architecture. These findings may contribute to the development of new therapeutic strategies in patients suffering from excessive daytime sleepiness.
Collapse
Affiliation(s)
- Aurélie Davin
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Stéphan Chabardès
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, Department of Neurosurgery, 38000, Grenoble, France
| | - Annaelle Devergnas
- Yerkes National Primate Research Center, 30307, Atlanta, USA
- Emory University School of Medicine, 30307, Atlanta, GA, USA
| | - Caroline Benstaali
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | | | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Univ. Aix Marseille, Inserm, INS, Institut de Neurosciences des Systèmes, 13000, Marseille, France
| | | | - Brigitte Piallat
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
13
|
Wal P, Dwivedi J, Wal A, Vig H, Singh Y. Detailed insight into the pathophysiology and the behavioral complications associated with the Parkinson's disease and its medications. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The loss of dopamine neurons in the substantia nigra, as well as other mostly catecholaminergic neurons, causes many of the motor symptoms that define Parkinson's disease. Parkinson's disease is commonly thought of as a movement disorder, the significant prevalence of psychiatric complications such as cognitive impairment, and psychosis suggests it should be considered a neuropsychiatric illness, and all behavioral complications are linked to growing disability and the medication.
Main body
Apart from the disease-induced abnormalities, there are several other side effects of the disease and also from the medication used to prevent the disease. This article focuses on the pathogenesis of Parkinson’s disease and also the behavioral abnormalities caused by the disease and its medication. The study's data were gathered by searching several review articles and research papers from a variety of sources, including Elsevier, PubMed, Research Gate, Journal of Pharmaceutical Science, etc., from the year 1985 to 2021. Parkinson's disease is a neurodegenerative disease caused by a variety of complex processes. It is responsible not just for motor symptoms, but also for a variety of behavioral symptoms that can arise as a result of the disease and/or medication.
Conclusion
Only symptomatic drugs are available; thus, finding treatments that directly address the disease mechanisms causing Parkinson’s disease is essential. To alleviate the disease's burden on patients and their families, better treatments for the neuropsychiatric repercussions of Parkinson's disease are required.
Graphical Abstract
Collapse
|
14
|
Kaczyńska K, Orłowska ME, Andrzejewski K. Respiratory Abnormalities in Parkinson's Disease: What Do We Know from Studies in Humans and Animal Models? Int J Mol Sci 2022; 23:ijms23073499. [PMID: 35408858 PMCID: PMC8998219 DOI: 10.3390/ijms23073499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease characterized by movement disorders due to the progressive loss of dopaminergic neurons in the ventrolateral region of the substantia nigra pars compacta (SNpc). Apart from the cardinal motor symptoms such as rigidity and bradykinesia, non-motor symptoms including those associated with respiratory dysfunction are of increasing interest. Not only can they impair the patients’ quality of life but they also can cause aspiration pneumonia, which is the leading cause of death among PD patients. This narrative review attempts to summarize the existing literature on respiratory impairments reported in human studies, as well as what is newly known from studies in animal models of the disease. Discussed are not only respiratory muscle dysfunction, apnea, and dyspnea, but also altered central respiratory control, responses to hypercapnia and hypoxia, and how they are affected by the pharmacological treatment of PD.
Collapse
|
15
|
Liu H, Li J, Wang X, Huang J, Wang T, Lin Z, Xiong N. Excessive Daytime Sleepiness in Parkinson's Disease. Nat Sci Sleep 2022; 14:1589-1609. [PMID: 36105924 PMCID: PMC9464627 DOI: 10.2147/nss.s375098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Excessive daytime sleepiness (EDS) is one of the most common sleep disorders in Parkinson's disease (PD). It has attracted much attention due to high morbidity, poor quality of life, increased risk for accidents, obscure mechanisms, comorbidity with PD and limited therapeutic approaches. In this review, we summarize the current literature on epidemiology of EDS in PD to address the discrepancy between subjective and objective measures and clarify the reason for the inconsistent prevalence in previous studies. Besides, we focus on the effects of commonly used antiparkinsonian drugs on EDS and related pharmacological mechanisms to provide evidence for rational clinical medication in sleepy PD patients. More importantly, degeneration of wake-promoting nuclei owing to primary neurodegenerative process of PD is the underlying pathogenesis of EDS. Accordingly, altered wake-promoting nerve nuclei and neurotransmitter systems in PD patients are highlighted to providing clues for identifying EDS-causing targets in the sleep and wake cycles. Future mechanistic studies toward this direction will hopefully advance the development of novel and specific interventions for EDS in PD patients.
Collapse
Affiliation(s)
- Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital; Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
16
|
Papp A, Horváth A, Virág M, Tóth Z, Borbély C, Gombos F, Szűcs A, Kamondi A. Sleep alterations are related to cognitive symptoms in Parkinson's disease: A 24-hour ambulatory polygraphic EEG study. Int J Psychophysiol 2022; 173:93-103. [DOI: 10.1016/j.ijpsycho.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
|
17
|
Abstract
There is a strong association between obstructive sleep apnea (OSA) and cognitive dysfunction. Executive function, attention, verbal/visual long-term memory, visuospatial/constructional ability, and information processing are more likely to be affected, whereas language, psychomotor function, and short-term memory are less likely to be affected. Increased accumulation of Aß2-amyloid in the brain, episodic hypoxemia, oxidative stress, vascular inflammation, and systemic comorbidities may contribute to the pathogenesis. Patients with OSA should have cognitive screening or formal testing, and patients with cognitive decline should have testing for OSA. Treatment with continuous positive airway pressure may improve cognitive symptoms in the patient with OSA.
Collapse
Affiliation(s)
- Arpan Patel
- Department of Neurology, Donald and Barbara Zucker School of Medicine, Northwell Health, 300 Community Drive, Manhasset, NY 11030, USA
| | - Derek J Chong
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, 8 Black Hall, New York, NY 10075, USA.
| |
Collapse
|
18
|
Bailey GA, Hubbard EK, Fasano A, Tijssen MA, Lynch T, Anderson KN, Peall KJ. Sleep disturbance in movement disorders: insights, treatments and challenges. J Neurol Neurosurg Psychiatry 2021; 92:723-736. [PMID: 33741740 DOI: 10.1136/jnnp-2020-325546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022]
Abstract
Sleep and circadian rhythm disturbances are central features of many movement disorders, exacerbating motor and non-motor symptoms and impairing quality of life. Understanding these disturbances to sleep is clinically important and may further our understanding of the underlying movement disorder. This review evaluates the current anatomical and neurochemical understanding of normal sleep and the recognised primary sleep disorders. In addition, we undertook a systematic review of the evidence for disruption to sleep across multiple movement disorders. Rapid eye movement sleep behaviour disorder has emerged as the most reliable prodromal biomarker for the alpha synucleinopathies, including Parkinson's disease and multiple system atrophy, often preceding motor symptom onset by several years. Abnormal sleep has also been described for many other movement disorders, but further evidence is needed to determine whether this is a primary or secondary phenotypic component of the underlying condition. Medication used in the treatment of motor symptoms also affects sleep and can aggravate or cause certain sleep disorders. Within the context of movement disorders, there is also some suggestion of a shared underlying mechanism for motor and sleep pathophysiology, with evidence implicating thalamic and brainstem structures and monoaminergic neurotransmission. This review highlights the need for an understanding of normal and abnormal sleep within the movement disorder clinic, an ability to screen for specific causes of poor sleep and to treat sleep disturbance to improve quality of life. Key sleep disorders also act as important biomarkers and have implications in diagnosis, prognosis and the development of future therapies.
Collapse
Affiliation(s)
- Grace A Bailey
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Emily K Hubbard
- School of Medicine, Cardiff University, Cardiff, South Glamorgan, UK
| | - Alfonso Fasano
- Edmond J Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Marina Aj Tijssen
- Department of Neurology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Timothy Lynch
- Dublin Neurological Institute, The Mater Misericordiae University Hospital, Dublin, Dublin, Ireland
| | - Kirstie N Anderson
- Department of Neurology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, Newcastle upon Tyne, UK
| | - Kathryn J Peall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Deficiency of Biogenic Amines Modulates the Activity of Hypoglossal Nerve in the Reserpine Model of Parkinson's Disease. Cells 2021; 10:cells10030531. [PMID: 33801475 PMCID: PMC8001069 DOI: 10.3390/cells10030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
The underlying cause of respiratory impairments appearing in Parkinson's disease (PD) is still far from being elucidated. To better understand the pathogenesis of respiratory disorders appearing in PD, we studied hypoglossal (HG) and phrenic (PHR) motoneuron dysfunction in a rat model evoked with reserpine administration. After reserpine, a decrease in the baseline amplitude and minute HG activity was noted, and no depressive phase of the hypoxic ventilatory response was observed. The pre-inspiratory time of HG activity along with the ratio of pre-inspiratory time to total respiratory cycle time and the ratio of pre-inspiratory to inspiratory amplitude were significantly reduced during normoxia, hypoxia, and recovery compared to sham rats. We suggest that the massive depletion of not only dopamine, but above all noradrenaline and serotonin in the brainstem observed in our study, has an impact on the pre-inspiratory activity of the HG. The shortening of the pre-inspiratory activity of the HG in the reserpine model may indicate a serious problem with maintaining the correct diameter of the upper airways in the preparation phase for inspiratory effort and explain the development of obstructive sleep apnea in some PD patients. Therapies involving the supplementation of amine depletion other than dopamine should be considered.
Collapse
|
20
|
Abstract
Parkinson's disease is predominantly classified as a movement disorder. Beyond the textbook definition of rigidity, tremors, and bradykinesia, Parkinson's disease encompasses an entire entity of non-motor symptom complexes that can precede the motor features by many years. Despite their significant clinical importance, the awareness of non-motor symptoms is quite negligible. Sleep disorders, gastrointestinal dysfunction, olfactory disturbances, anxiety, and depressive episodes are some of the most common non-motor presentations. The wide-spread occurrence of olfactory symptoms and the low cost of the assessment, is favoring olfactory dysfunction as a potential biomarker in Parkinson's. Sleep disorders may manifest before the motor and autonomic symptoms and might be linked to concomitant sleeping disorders like insomnia, REM sleep disorders, restless leg syndrome, narcolepsy, or obstructive sleep apnea. Non-motor symptoms can deteriorate the quality of life in Parkinson's patients. Early detection of non-motor symptoms can help in the diagnosis of Parkinson's disease and can fairly improve the survival and prognosis of these patients.
Collapse
Affiliation(s)
- Maithrayie Kumaresan
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
21
|
Elfil M, Bahbah EI, Attia MM, Eldokmak M, Koo BB. Impact of Obstructive Sleep Apnea on Cognitive and Motor Functions in Parkinson's Disease. Mov Disord 2020; 36:570-580. [PMID: 33296545 DOI: 10.1002/mds.28412] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is a chronic neurodegenerative disorder that presents with motor and non-motor manifestations. Amongst the non-motor features, various forms of sleep disturbances can occur, and obstructive sleep apnea (OSA) is considered to be a common comorbidity. We conducted this systematic review and meta-analysis to assess the impact of OSA on cognitive and motor functions in PD. METHODS The information sources of for this systematic review and meta-analysis were PubMed, SCOPUS, Web of Science, and ScienceDirect. Studies meeting the following criteria were included: (1) studies including idiopathic PD patients, (2) studies using polysomnography to categorize PD patients into PD with OSA and PD without OSA, and (3) studies with observational designs (case-control, cohort, or cross-sectional). Data analysis was performed using RevMan. RESULTS Our meta-analysis showed that OSA was associated with significantly lower scores of Montreal Cognitive Assessments (MoCA) (mean difference (MD) = -0.70, 95% confidence interval (CI) [-1.28, -0.13], P = 0.01) and Mini-Mental State Examination (MMSE) (MD = -0.69, 95% CI [-1.17, -0.21], P = 0.005). Moreover, the score of the motor part of the Unified Parkinson's Disease Rating Scale (UPDRS III) was significantly higher in PD patients with OSA as compared with those without OSA (MD = 1.63, 95% CI [0.03, 3.23], P = 0.049). CONCLUSIONS OSA is associated with increased severity of PD-associated cognitive dysfunction and motor symptoms. However, further studies are needed to corroborate these findings, assess the underlying mechanisms by which OSA influences the motor and cognitive functions in PD, and investigate whether OSA can accelerate the neurodegenerative process of PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | | | - Mohamed Eldokmak
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Brian B Koo
- Department of Neurology, Yale University, New Haven, Connecticut, USA.,Center for Neuroepidemiology and Clinical Neurologic Research, New Haven, Connecticut, USA.,Department of Neurology, Connecticut Veterans Affairs Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
22
|
Zuzuárregui JRP, During EH. Sleep Issues in Parkinson's Disease and Their Management. Neurotherapeutics 2020; 17:1480-1494. [PMID: 33029723 PMCID: PMC7851262 DOI: 10.1007/s13311-020-00938-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is an alpha-synucleinopathy that leads to prominent motor symptoms including tremor, bradykinesia, and postural instability. Nonmotor symptoms including autonomic, neurocognitive, psychiatric symptoms, and sleep disturbances are also seen frequently in PD. The impact of PD on sleep is related to motor and nonmotor symptoms, in addition to the disruption of the pathways regulating sleep by central nervous system pathology. Rapid eye movement sleep behavior disorder is a parasomnia that can lead to self-injury and/or injury to partners at night. Restless legs syndrome is a subjective sensation of discomfort and urge to move the legs prior to falling asleep and can lead to insomnia and reduced sleep quality. Excessive daytime sleepiness is common in PD and exerts a negative impact on quality of life in addition to increasing the risk of falls. Obstructive sleep apnea is a breathing disorder during sleep that can cause frequent awakenings and excessive daytime sleepiness. Circadian rhythm dysfunction can lead to an advanced or delayed onset of sleep in patients and create disruption of normal sleep and wake times. All of these disorders are common in PD and can significantly reduce sleep quantity, sleep quality, or quality of life for patients and caretakers. Treatment approaches for each of these disorders are distinct and should be individualized to the patient. We review the literature regarding these common sleep issues encountered in PD and their treatment options.
Collapse
Affiliation(s)
| | - Emmanuel H During
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, CA, USA
| |
Collapse
|
23
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
Gothi D, Patro M, Agarwal M, Vaidya S. A mysterious case of an elevated dome of the right diaphragm. Breathe (Sheff) 2020; 16:190334. [PMID: 33304396 PMCID: PMC7714547 DOI: 10.1183/20734735.0334-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
25
|
Vorderwülbecke BJ, Lehmann R, Breuer E. Sleep-Disordered Breathing in REM Sleep Behavior Disorder with or without Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 10:1255-1259. [PMID: 32390642 DOI: 10.3233/jpd-201996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
REM sleep behavior disorder (RBD) might render patients with Parkinson's disease prone to sleep-disordered breathing. This retrospective polysomonographic study assessed the prevalence of sleep-disordered breathing in 108 consecutive patients with either both Parkinson's disease and RBD (n = 37), Parkinson's disease without RBD (n = 21), or isolated RBD (n = 50). Across all patients, 25% had at least moderate sleep-related breathing disorder, without significant differences between groups. Following multivariable analysis, RBD influenced sleep-related breathing parameters modestly but not significantly, whereas body mass index had a prominent impact. Further studies with larger patient cohorts are needed, and confounders like body mass index must adequately be controlled for.
Collapse
Affiliation(s)
- Bernd J Vorderwülbecke
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany.,Evangelisches Krankenhaus Königin Elisabeth Herzberge, Department of Epileptology, Berlin, Germany
| | | | - Eva Breuer
- Evangelisches Krankenhaus Königin Elisabeth Herzberge, Department of Epileptology, Berlin, Germany
| |
Collapse
|
26
|
The relationship between obstructive sleep apnea and Parkinson's disease: a systematic review and meta-analysis. Neurol Sci 2020; 41:1153-1162. [PMID: 31897944 DOI: 10.1007/s10072-019-04211-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a common sleep disorder in Parkinson's disease (PD). However, the relationship between OSA and PD is still inconsistent. Our study was aimed to evaluate the relationship between PD and OSA. METHODS Studies on OSA and PD were searched using PubMed, Embase, Web of Science, Cochrane library, and Chinese National Knowledge Infrastructure databases. Review Manager 5.3 software was used to calculate the pooled estimate effect. The inverse variance model was used to pool the mean difference (MD) or hazard ratios (HRs); the Mantel-Haenszel method was used to pool the odds ratio (OR). Heterogeneity among the studies was assessed using I2 statistic and Q test. RESULTS A total of 12 studies with 93,332 cases were deemed eligible and included in our meta-analysis. Overall, the occurrence of PD was more frequent in patients with OSA (HR 1.59, 95% CI, 1.36-1.85). The subgroup analysis demonstrated the risk similarly by sex. Male and female had HR of incident PD with OSA of 1.56 (95% CI, 1.30-1.87) and 1.60 (95% CI, 1.21-2.11), respectively. The incidence of OSA did not increase in PD patients (OR 0.89, 95% CI, 0.53-1.49). The MD of apnea-hypopnea index (AHI) in PD patients was also not statistically significant (P = 0.5). CONCLUSIONS The results indicate that OSA is one of independent risk factors of PD. However, OSA does not seem to be abnormally frequent in PD.
Collapse
|
27
|
Wang B, Li W, Jin H, Nie X, Shen H, Li E, Wang W. Curcumin attenuates chronic intermittent hypoxia-induced brain injuries by inhibiting AQP4 and p38 MAPK pathway. Respir Physiol Neurobiol 2018; 255:50-57. [DOI: 10.1016/j.resp.2018.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 11/28/2022]
|