1
|
Tang S, Weiner B, Taraballi F, Haase C, Stetco E, Mehta SM, Shajudeen P, Hogan M, De Rosa E, Horner PJ, Grande-Allen KJ, Shi Z, Karmonik C, Tasciotti E, Righetti R. Assessment of spinal cord injury using ultrasound elastography in a rabbit model in vivo. Sci Rep 2023; 13:15323. [PMID: 37714920 PMCID: PMC10504274 DOI: 10.1038/s41598-023-41172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
The effect of the mechanical micro-environment on spinal cord injury (SCI) and treatment effectiveness remains unclear. Currently, there are limited imaging methods that can directly assess the localized mechanical behavior of spinal cords in vivo. In this study, we apply new ultrasound elastography (USE) techniques to assess SCI in vivo at the site of the injury and at the time of one week post injury, in a rabbit animal model. Eleven rabbits underwent laminectomy procedures. Among them, spinal cords of five rabbits were injured during the procedure. The other six rabbits were used as control. Two neurological statuses were achieved: non-paralysis and paralysis. Ultrasound data were collected one week post-surgery and processed to compute strain ratios. Histologic analysis, mechanical testing, magnetic resonance imaging (MRI), computerized tomography and MRI diffusion tensor imaging (DTI) were performed to validate USE results. Strain ratios computed via USE were found to be significantly different in paralyzed versus non-paralyzed rabbits. The myelomalacia histologic score and spinal cord Young's modulus evaluated in selected animals were in good qualitative agreement with USE assessment. It is feasible to use USE to assess changes in the spinal cord of the presented animal model. In the future, with more experimental data available, USE may provide new quantitative tools for improving SCI diagnosis and prognosis.
Collapse
Affiliation(s)
- Songyuan Tang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Bradley Weiner
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Francesca Taraballi
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Orthopedics and Sports Medicine, Center for Musculoskeletal Regeneration, Houston Methodist Hospital, Houston, TX, USA
| | - Candice Haase
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Orthopedics and Sports Medicine, Center for Musculoskeletal Regeneration, Houston Methodist Hospital, Houston, TX, USA
| | - Eliana Stetco
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Orthopedics and Sports Medicine, Center for Musculoskeletal Regeneration, Houston Methodist Hospital, Houston, TX, USA
| | | | - Peer Shajudeen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Matthew Hogan
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Enrica De Rosa
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Orthopedics and Sports Medicine, Center for Musculoskeletal Regeneration, Houston Methodist Hospital, Houston, TX, USA
| | - Philip J Horner
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Zhaoyue Shi
- Translational Imaging Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Christof Karmonik
- Translational Imaging Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Human Sciences and Promotion of Quality of Life, San Raffaele Roma Open University and IRCCS San Raffaele Pisana, 00166, Rome, Italy
| | - Raffaella Righetti
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Bretherton R, Bugg D, Olszewski E, Davis J. Regulators of cardiac fibroblast cell state. Matrix Biol 2020; 91-92:117-135. [PMID: 32416242 PMCID: PMC7789291 DOI: 10.1016/j.matbio.2020.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Fibroblasts are the primary regulator of cardiac extracellular matrix (ECM). In response to disease stimuli cardiac fibroblasts undergo cell state transitions to a myofibroblast phenotype, which underlies the fibrotic response in the heart and other organs. Identifying regulators of fibroblast state transitions would inform which pathways could be therapeutically modulated to tactically control maladaptive extracellular matrix remodeling. Indeed, a deeper understanding of fibroblast cell state and plasticity is necessary for controlling its fate for therapeutic benefit. p38 mitogen activated protein kinase (MAPK), which is part of the noncanonical transforming growth factor β (TGFβ) pathway, is a central regulator of fibroblast to myofibroblast cell state transitions that is activated by chemical and mechanical stress signals. Fibroblast intrinsic signaling, local and global cardiac mechanics, and multicellular interactions individually and synergistically impact these state transitions and hence the ECM, which will be reviewed here in the context of cardiac fibrosis.
Collapse
Affiliation(s)
- Ross Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Darrian Bugg
- Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
3
|
Jett SV, Hudson LT, Baumwart R, Bohnstedt BN, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee CH. Integration of polarized spatial frequency domain imaging (pSFDI) with a biaxial mechanical testing system for quantification of load-dependent collagen architecture in soft collagenous tissues. Acta Biomater 2020; 102:149-168. [PMID: 31734412 PMCID: PMC8101699 DOI: 10.1016/j.actbio.2019.11.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
Collagen fiber networks provide the structural strength of tissues, such as tendons, skin and arteries. Quantifying the fiber architecture in response to mechanical loads is essential towards a better understanding of the tissue-level mechanical behaviors, especially in assessing disease-driven functional changes. To enable novel investigations into these load-dependent fiber structures, a polarized spatial frequency domain imaging (pSFDI) device was developed and, for the first time, integrated with a biaxial mechanical testing system. The integrated instrument is capable of a wide-field quantification of the fiber orientation and the degree of optical anisotropy (DOA), representing the local degree of fiber alignment. The opto-mechanical instrument''s performance was assessed through uniaxial loading on tendon tissues with known collagen fiber microstructures. Our results revealed that the bulk fiber orientation angle of the tendon tissue changed minimally with loading (median ± 0.5*IQR of 52.7° ± 3.3° and 51.9° ± 3.3° under 0 and 3% longitudinal strains, respectively), whereas on a micro-scale, the fibers became better aligned with the direction of loading: the DOA (mean ± SD) increased from 0.149 ± 0.032 to 0.198 ± 0.056 under 0 and 3% longitudinal strains, respectively, p < 0.001. The integrated instrument was further applied to study two representative mitral valve anterior leaflet (MVAL) tissues subjected to various biaxial loads. The fiber orientations within these representative MVAL tissue specimens demonstrated noticeable heterogeneity, with the local fiber orientations dependent upon the sample, the spatial and transmural locations, and the applied loading. Our results also showed that fibers were generally better aligned under equibiaxial (DOA = 0.089 ± 0.036) and circumferentially-dominant loading (DOA = 0.086 ± 0.037) than under the radially-dominant loading (DOA = 0.077 ± 0.034), indicating circumferential predisposition. These novel findings exemplify a deeper understanding of the load-dependent collagen fiber microstructures obtained through the use of the integrated opto-mechanical instrument. STATEMENT OF SIGNIFICANCE: In this study, a novel quantitative opto-mechanical system was developed by combining a polarized Spatial Frequency Domain Imaging (pSFDI) device with a biaxial mechanical tester. The integrated system was used to quantify the load-dependent collagen fiber microstructures in representative tendon and mitral valve anterior leaflet (MVAL) tissues. Our results revealed that MVAL's fiber architectures exhibited load-dependent spatial and transmural heterogeneities, suggesting further microstructural complexity than previously reported in heart valve tissues. These novel findings were possible through the system's ability to, for the first time, capture the load-dependent collagen architecture in the mitral valve anterior leaflet tissue over a wide field of view (e.g., 10 × 10 mm for the MVAL tissue specimens). Such capabilities afford unique future opportunities to improve patient outcomes through concurrent mechanical and microstructural assessments of healthy and diseased tissues in conditions such as heart valve regurgitation and calcification.
Collapse
Affiliation(s)
- Samuel V Jett
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States
| | - Luke T Hudson
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States
| | - Ryan Baumwart
- Center for Veterinary Health Sciences, Oklahoma State University, 2065 W. Farm Rd., Stillwater, OK 74078, United States
| | - Bradley N Bohnstedt
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, 1000 N Lincoln Blvd #400, Oklahoma City, OK 73104, United States
| | - Arshid Mir
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Oklahoma Health Sciences Center, 1200 Children's Ave., Suite 2F, Oklahoma City, OK 73104, United States
| | - Harold M Burkhart
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Oklahoma Health Sciences Center, 800 Stanton L. Young Blvd. Suite 9000, Oklahoma City, OK 73104, United States
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2 8010 Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, 202 West Boyd St., Norman, OK 73019, United States.
| |
Collapse
|
4
|
Desai A, Vafaee T, Rooney P, Kearney JN, Berry HE, Ingham E, Fisher J, Jennings LM. In vitro biomechanical and hydrodynamic characterisation of decellularised human pulmonary and aortic roots. J Mech Behav Biomed Mater 2018; 79:53-63. [DOI: 10.1016/j.jmbbm.2017.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
|
5
|
Growth and remodeling play opposing roles during postnatal human heart valve development. Sci Rep 2018; 8:1235. [PMID: 29352179 PMCID: PMC5775310 DOI: 10.1038/s41598-018-19777-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/03/2018] [Indexed: 01/13/2023] Open
Abstract
Tissue growth and remodeling are known to govern mechanical homeostasis in biological tissue, but their relative contributions to homeostasis remain unclear. Here, we use mechanical models, fueled by experimental findings, to demonstrate that growth and remodeling have different effects on heart valve stretch homeostasis during physiological postnatal development. Two developmental stages were considered: early-stage (from infant to adolescent) and late-stage (from adolescent to adult) development. Our models indicated that growth and remodeling play opposing roles in preserving tissue stretch and with time. During early-stage development, excessive tissue stretch was decreased by tissue growth and increased by remodeling. In contrast, during late-stage development tissue stretch was decreased by remodeling and increased by growth. Our findings contribute to an improved understanding of native heart valve adaptation throughout life, and are highly relevant for the development of tissue-engineered heart valves.
Collapse
|
6
|
A DIC Based Technique to Measure the Contraction of a Skeletal Muscle Engineered Tissue. Appl Bionics Biomech 2016; 2016:7465095. [PMID: 27034612 PMCID: PMC4806676 DOI: 10.1155/2016/7465095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/17/2022] Open
Abstract
Tissue engineering is a multidisciplinary science based on the application of engineering approaches to biologic tissue formation. Engineered tissue internal organization represents a key aspect to increase biofunctionality before transplant and, as regarding skeletal muscles, the potential of generating contractile forces is dependent on the internal fiber organization and is reflected by some macroscopic parameters, such as the spontaneous contraction. Here we propose the application of digital image correlation (DIC) as an independent tool for an accurate and noninvasive measurement of engineered muscle tissue spontaneous contraction. To validate the proposed technique we referred to the X-MET, a promising 3-dimensional model of skeletal muscle. The images acquired through a high speed camera were correlated with a custom-made algorithm and the longitudinal strain predictions were employed for measuring the spontaneous contraction. The spontaneous contraction reference values were obtained by studying the force response. The relative error between the spontaneous contraction frequencies computed in both ways was always lower than 0.15%. In conclusion, the use of a DIC based system allows for an accurate and noninvasive measurement of biological tissues' spontaneous contraction, in addition to the measurement of tissue strain field on any desired region of interest during electrical stimulation.
Collapse
|
7
|
Oomen P, Loerakker S, van Geemen D, Neggers J, Goumans MJ, van den Bogaerdt A, Bogers A, Bouten C, Baaijens F. Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomater 2016; 29:161-169. [PMID: 26537200 DOI: 10.1016/j.actbio.2015.10.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/18/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
In order to create tissue-engineered heart valves with long-term functionality, it is essential to fully understand collagen remodeling during neo-tissue formation. Collagen remodeling is thought to maintain mechanical tissue homeostasis. Yet, the driving factor of collagen remodeling remains unidentified. In this study, we determined the collagen architecture and the geometric and mechanical properties of human native semilunar heart valves of fetal to adult age using confocal microscopy, micro-indentation and inverse finite element analysis. The outcomes were used to predict age-dependent changes in stress and stretch in the heart valves via finite element modeling. The results indicated that the circumferential stresses are different between the aortic and pulmonary valve, and, moreover, that the stress increases considerably over time in the aortic valve. Strikingly, relatively small differences were found in stretch with time and between the aortic and pulmonary valve, particularly in the circumferential direction, which is the main determinant of the collagen fiber stretch. Therefore, we suggest that collagen remodeling in the human heart valve maintains a stretch-driven homeostasis. Next to these novel insights, the unique human data set created in this study provides valuable input for the development of numerical models of collagen remodeling and optimization of tissue engineering. STATEMENT OF SIGNIFICANCE Annually, over 280,000 heart valve replacements are performed worldwide. Tissue engineering has the potential to provide valvular disease patients with living valve substitutes that can last a lifetime. Valve functionality is mainly determined by the collagen architecture. Hence, understanding collagen remodeling is crucial for creating tissue-engineered valves with long-term functionality. In this study, we determined the structural and material properties of human native heart valves of fetal to adult age to gain insight into the mechanical stimuli responsible for collagen remodeling. The age-dependent evolutionary changes in mechanical state of the native valve suggest that collagen remodeling in heart valves is a stretch-driven process.
Collapse
|
8
|
Transversely isotropic material characterization of the human anterior longitudinal ligament. J Mech Behav Biomed Mater 2015; 45:75-82. [PMID: 25688029 DOI: 10.1016/j.jmbbm.2015.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/14/2015] [Accepted: 01/28/2015] [Indexed: 11/21/2022]
Abstract
The present work represents the first study to report transversely isotropic material parameters for the human anterior longitudinal ligament (ALL) in the thoraco-lumbar spine. Force-deformation data from multi-axial testing was collected from 30 cadaveric spine test specimens using an anisotropic quarter punch test technique. The experimental data was fit to a commonly used anisotropic soft tissue material model using an FEA system identification technique. The material model correlated well with the experimental response (R(2)≥0.98). The constitutive parameter values, as well as the nonlinear anisotropic stress-strain response of the ALL specimens are reported to facilitate application to biomechanical models (including finite element models) of the spine.
Collapse
|
9
|
Compressive mechanical properties of atherosclerotic plaques—Indentation test to characterise the local anisotropic behaviour. J Biomech 2014; 47:784-92. [DOI: 10.1016/j.jbiomech.2014.01.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 11/20/2022]
|
10
|
Chai CK, Akyildiz AC, Speelman L, Gijsen FJ, Oomens CW, van Sambeek MR, van der Lugt A, Baaijens FP. Local axial compressive mechanical properties of human carotid atherosclerotic plaques—characterisation by indentation test and inverse finite element analysis. J Biomech 2013; 46:1759-66. [PMID: 23664315 DOI: 10.1016/j.jbiomech.2013.03.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 10/26/2022]
|
11
|
Feng Y, Okamoto RJ, Namani R, Genin GM, Bayly PV. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J Mech Behav Biomed Mater 2013; 23:117-32. [PMID: 23680651 DOI: 10.1016/j.jmbbm.2013.04.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/14/2013] [Accepted: 04/02/2013] [Indexed: 01/08/2023]
Abstract
White matter in the brain is structurally anisotropic, consisting largely of bundles of aligned, myelin-sheathed axonal fibers. White matter is believed to be mechanically anisotropic as well. Specifically, transverse isotropy is expected locally, with the plane of isotropy normal to the local mean fiber direction. Suitable material models involve strain energy density functions that depend on the I4 and I5 pseudo-invariants of the Cauchy-Green strain tensor to account for the effects of relatively stiff fibers. The pseudo-invariant I4 is the square of the stretch ratio in the fiber direction; I5 contains contributions of shear strain in planes parallel to the fiber axis. Most, if not all, published models of white matter depend on I4 but not on I5. Here, we explore the small strain limits of these models in the context of experimental measurements that probe these dependencies. Models in which strain energy depends on I4 but not I5 can capture differences in Young's (tensile) moduli, but will not exhibit differences in shear moduli for loading parallel and normal to the mean direction of axons. We show experimentally, using a combination of shear and asymmetric indentation tests, that white matter does exhibit such differences in both tensile and shear moduli. Indentation tests were interpreted through inverse fitting of finite element models in the limit of small strains. Results highlight that: (1) hyperelastic models of transversely isotropic tissues such as white matter should include contributions of both the I4 and I5 strain pseudo-invariants; and (2) behavior in the small strain regime can usefully guide the choice and initial parameterization of more general material models of white matter.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
12
|
Tamiello C, Kamps MAF, van den Wijngaard A, Verstraeten VLRM, Baaijens FPT, Broers JLV, Bouten CCV. Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations. Nucleus 2013; 4:61-73. [PMID: 23324461 PMCID: PMC3585029 DOI: 10.4161/nucl.23388] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Laminopathies, mainly caused by mutations in the LMNA gene, are a group of inherited diseases with a highly variable penetrance; i.e., the disease spectrum in persons with identical LMNA mutations range from symptom-free conditions to severe cardiomyopathy and progeria, leading to early death. LMNA mutations cause nuclear abnormalities and cellular fragility in response to cellular mechanical stress, but the genotype/phenotype correlations in these diseases remain unclear. Consequently, tools such as mutation analysis are not adequate for predicting the course of the disease.
Here, we employ growth substrate stiffness to probe nuclear fragility in cultured dermal fibroblasts from a laminopathy patient with compound progeroid syndrome. We show that culturing of these cells on substrates with stiffness higher than 10 kPa results in malformations and even rupture of the nuclei, while culture on a soft substrate (3 kPa) protects the nuclei from morphological alterations and ruptures. No malformations were seen in healthy control cells at any substrate stiffness. In addition, analysis of the actin cytoskeleton organization in this laminopathy cells demonstrates that the onset of nuclear abnormalities correlates to an increase in cytoskeletal tension.
Together, these data indicate that culturing of these LMNA mutated cells on substrates with a range of different stiffnesses can be used to probe the degree of nuclear fragility. This assay may be useful in predicting patient-specific phenotypic development and in investigations on the underlying mechanisms of nuclear and cellular fragility in laminopathies.
Collapse
Affiliation(s)
- Chiara Tamiello
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Mechanics and kinematics of soft tissue under indentation are determined by the degree of initial collagen fiber alignment. J Mech Behav Biomed Mater 2012; 13:25-35. [PMID: 22842273 DOI: 10.1016/j.jmbbm.2012.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/15/2012] [Accepted: 03/28/2012] [Indexed: 11/20/2022]
Abstract
While several studies have evaluated how the degree of collagen alignment affects the response of soft tissues to tensile loading, the role of fibrillar organization in indentation is less understood. Collagen-based tissue-equivalents (TEs) provide a convenient model system to explore structure-function relationships since their microstructural properties can be easily controlled during fabrication. The purpose of this study was to evaluate the role of initial collagen alignment on the mechanical and structural behavior of soft tissues subjected to indentation using TEs as a model system. Cell-compacted TEs with either isotropic or highly anisotropic fiber alignment were subjected to four-step incremental stress-relaxation indentation tests. The mechanical properties, collagen reorganization and 2D strain patterns were quantified at each indentation step and compared between groups. While no differences were seen in the peak force response, significant differences were seen in relaxation behavior, fiber kinematics and tissue strain. Specifically, highly aligned samples exhibited a slower relaxation rate, smaller changes in collagen fiber orientation, larger changes in strength of alignment, and larger strain magnitudes compared to isotropic samples. Results demonstrate the significant role that microstructural organization plays in mediating the response of soft tissues to a non-tensile (i.e., indentation) mechanical stimulus.
Collapse
|
14
|
Zhao R, Sider KL, Simmons CA. Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration. Acta Biomater 2011; 7:1220-7. [PMID: 21056128 DOI: 10.1016/j.actbio.2010.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/12/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Many biomaterials and tissues are complex multilayered structures in which the individual layers have distinct mechanical properties that influence the mechanical behavior and define the local cellular microenvironment. Characterization of the mechanical properties of individual layers in intact tissues is technically challenging. Micropipette aspiration (MA) is a proven method for the analysis of local mechanical properties of soft single-layer biomaterials, but its applicability for multilayer structures has not been demonstrated. We sought to determine and validate MA experimental parameters that would permit measurement of the mechanical properties of only the top layer of an intact multilayer biomaterial or tissue. To do so, we performed parametric nonlinear finite-element (FE) analyses and validation experiments using a multilayer gelatin system. The parametric FE analyses demonstrated that measurement of the properties of only the top layer of a multilayer structure is sensitive to the ratio of the pipette inner diameter (D) to top layer thickness (ttop), and that accurate measurement of the top layer modulus requires D/ttop<1. These predictions were confirmed experimentally by MA of the gelatin system. Using this approach and an inverse FE method, the mean effective modulus of the fibrosa layer of intact porcine aortic valve leaflets was determined to be greater than that of the ventricularis layer (P<0.01), consistent with data obtained by tensile testing of dissected layers. This study provides practical guidelines for the use of MA to measure the mechanical properties of single layers in intact multilayer biomaterials and tissues.
Collapse
|
15
|
Cox MA, Kortsmit J, Driessen N, Bouten CV, Baaijens FP. Tissue-Engineered Heart Valves Develop Native-like Collagen Fiber Architecture. Tissue Eng Part A 2010; 16:1527-37. [DOI: 10.1089/ten.tea.2009.0263] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martijn A.J. Cox
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jeroen Kortsmit
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Niels Driessen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V.C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P.T. Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
16
|
|
17
|
Namani R, Wood MD, Sakiyama-Elbert SE, Bayly PV. Anisotropic mechanical properties of magnetically aligned fibrin gels measured by magnetic resonance elastography. J Biomech 2009; 42:2047-53. [PMID: 19656516 DOI: 10.1016/j.jbiomech.2009.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 06/03/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and non-destructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7 and 4.7 T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7 T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels.
Collapse
Affiliation(s)
- Ravi Namani
- Department of Mechanical, Aerospace & Structural Engineering, Washington University in St. Louis, MO 63130, USA.
| | | | | | | |
Collapse
|
18
|
Rubbens MP, Mol A, Boerboom RA, Bank RA, Baaijens FPT, Bouten CVC. Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue. Tissue Eng Part A 2009; 15:999-1008. [PMID: 18795866 DOI: 10.1089/ten.tea.2007.0396] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue-engineered heart valves lack sufficient amounts of functionally organized structures and consequently do not meet in vivo mechanical demands. To optimize tissue architecture and hence improve mechanical properties, various in vitro mechanical conditioning protocols have been proposed, of which intermittent straining is most promising in terms of tissue properties. We hypothesize that this is due to an improved collagen matrix synthesis, maturation, and organization, triggered by periodic straining of cells. To test this hypothesis, we studied the effect of intermittent versus constrained conditioning with time (2-4 weeks), using a novel model system of human heart valve tissue. Temporal variations in collagen production, cross-link density, and mechanical properties were quantified in engineered heart valve tissue, cyclically strained for 3-h periods, alternated with 3-h periods rest. In addition, an innovative method for vital collagen imaging was used to monitor collagen organization. Intermittent straining resulted in increased collagen production, cross-link densities, collagen organization, and mechanical properties at faster rates, as compared to constrained controls, leading to stronger tissues in shorter culture periods. This is of utmost importance for heart valve tissue engineering, where insufficient mechanical properties are currently the main limiting factor.
Collapse
Affiliation(s)
- Mirjam P Rubbens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
19
|
Bischoff JE, Drexler ES, Slifka AJ, McCowan CN. Quantifying nonlinear anisotropic elastic material properties of biological tissue by use of membrane inflation. Comput Methods Biomech Biomed Engin 2009; 12:353-69. [DOI: 10.1080/10255840802609420] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann Biomed Eng 2009; 37:1263-72. [PMID: 19415496 PMCID: PMC2690830 DOI: 10.1007/s10439-009-9698-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 04/11/2009] [Indexed: 11/25/2022]
Abstract
Load-bearing soft tissues predominantly consist of collagen and exhibit anisotropic, non-linear visco-elastic behavior, coupled to the organization of the collagen fibers. Mimicking native mechanical behavior forms a major goal in cardiovascular tissue engineering. Engineered tissues often lack properly organized collagen and consequently do not meet in vivo mechanical demands. To improve collagen architecture and mechanical properties, mechanical stimulation of the tissue during in vitro tissue growth is crucial. This study describes the evolution of collagen fiber orientation with culture time in engineered tissue constructs in response to mechanical loading. To achieve this, a novel technique for the quantification of collagen fiber orientation is used, based on 3D vital imaging using multiphoton microscopy combined with image analysis. The engineered tissue constructs consisted of cell-seeded biodegradable rectangular scaffolds, which were either constrained or intermittently strained in longitudinal direction. Collagen fiber orientation analyses revealed that mechanical loading induced collagen alignment. The alignment shifted from oblique at the surface of the construct towards parallel to the straining direction in deeper tissue layers. Most importantly, intermittent straining improved and accelerated the alignment of the collagen fibers, as compared to constraining the constructs. Both the method and the results are relevant to create and monitor load-bearing tissues with an organized anisotropic collagen network.
Collapse
|
21
|
Kortsmit J, Driessen NJ, Rutten MC, Baaijens FP. Nondestructive and Noninvasive Assessment of Mechanical Properties in Heart Valve Tissue Engineering. Tissue Eng Part A 2009; 15:797-806. [DOI: 10.1089/ten.tea.2008.0197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jeroen Kortsmit
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Niels J.B. Driessen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel C.M. Rutten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P.T. Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
22
|
Reilly MA, Perry G, Ravi N. A dynamic microindentation device with electrical contact detection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:015105. [PMID: 19191461 PMCID: PMC2678788 DOI: 10.1063/1.3043428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/17/2008] [Indexed: 05/27/2023]
Abstract
We developed a microindentation instrument that allows direct measurement of the point of contact for reasonably conductive samples. This is achieved in the absence of a contact load using a simple electrical circuit. Force is measured using an optical interrupter to measure the deflection of a cantilever beam. Displacement is achieved using a piezoelectric motor and is measured using an independent optical interrupter. Force and displacement measurements are accomplished in real time, allowing the specification of arbitrary waveforms. The instrument was rigorously validated by comparing mechanical property measurements from the indenter with results from traditional dynamic mechanical analysis. Details of the construction and feedback control schemes are given explicitly.
Collapse
Affiliation(s)
- Matthew A Reilly
- Research, Department of Veterans Affairs, St. Louis, Missouri 63106, USA.
| | | | | |
Collapse
|
23
|
Cox MA, Gawlitta D, Driessen NJ, Oomens CW, Baaijens FP. The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation. Comput Methods Biomech Biomed Engin 2008; 11:585-92. [DOI: 10.1080/10255840701771768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Stress related collagen ultrastructure in human aortic valves—implications for tissue engineering. J Biomech 2008; 41:2612-7. [DOI: 10.1016/j.jbiomech.2008.06.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 06/17/2008] [Accepted: 06/19/2008] [Indexed: 11/27/2022]
|
25
|
Cox MAJ, Driessen NJB, Boerboom RA, Bouten CVC, Baaijens FPT. Mechanical characterization of anisotropic planar biological soft tissues using finite indentation: experimental feasibility. J Biomech 2007; 41:422-9. [PMID: 17897653 DOI: 10.1016/j.jbiomech.2007.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/13/2007] [Accepted: 08/15/2007] [Indexed: 11/29/2022]
Abstract
Heart valve tissue engineering offers a promising alternative for current treatment and replacement strategies, e.g., synthetic or bioprosthetic heart valves. In vitro mechanical conditioning is an important tool for engineering strong, implantable heart valves. Detailed knowledge of the mechanical properties of the native tissue as well as the developing tissue construct is vital for a better understanding and control of the remodeling processes induced by mechanical conditioning. The nonlinear, anisotropic and inhomogeneous mechanical behavior of heart valve tissue necessitates a mechanical characterization method that is capable of dealing with these complexities. In a recent computational study we showed that one single indentation test, combining force and deformation gradient data, provides sufficient information for local characterization of nonlinear soft anisotropic tissue properties. In the current study this approach is validated in two steps. First, indentation tests with varying indenter sizes are performed on linear elastic PDMS rubbers and compared to tensile tests on the same specimen. For the second step, tissue constructs are engineered using uniaxial or equibiaxial static constrained culture conditions. Digital image correlation (DIC) is used to quantify the anisotropy in the tissue constructs. For both validation steps, material parameters are estimated by inverse fitting of a computational model to the experimental results.
Collapse
Affiliation(s)
- Martijn A J Cox
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Driessen NJB, Mol A, Bouten CVC, Baaijens FPT. Modeling the mechanics of tissue-engineered human heart valve leaflets. J Biomech 2007; 40:325-34. [PMID: 16529755 DOI: 10.1016/j.jbiomech.2006.01.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 01/09/2006] [Indexed: 11/30/2022]
Abstract
Mathematical models can provide valuable information to assess and evaluate the mechanical behavior of tissue-engineered constructs. In this study, a structurally based model is applied to describe and analyze the mechanics of tissue-engineered human heart valve leaflets. The results from two orthogonal uniaxial tensile tests are used to determine the model parameters of the constructs after two, three and four weeks of culturing. Subsequently, finite element analyses are performed to simulate the mechanical response of the engineered leaflets to a pressure load. The stresses in the leaflets induced by the pressure load increase monotonically with culture time due to a decrease in the construct's thickness. The strains, on the other hand, eventually decrease as a result of an increase in the elastic modulus. Compared to native porcine leaflets, the mechanical response of the engineered tissues after four weeks of culturing is more linear, stiffer and less anisotropic.
Collapse
Affiliation(s)
- Niels J B Driessen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|