1
|
Petzold J, Schmitter S, Silemek B, Winter L, Speck O, Ittermann B, Seifert F. Towards an integrated radiofrequency safety concept for implant carriers in MRI based on sensor-equipped implants and parallel transmission. NMR IN BIOMEDICINE 2023; 36:e4900. [PMID: 36624556 DOI: 10.1002/nbm.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 06/15/2023]
Abstract
To protect implant carriers in MRI from excessive radiofrequency (RF) heating it has previously been suggested to assess that hazard via sensors on the implant. Other work recommended parallel transmission (pTx) to actively mitigate implant-related heating. Here, both ideas are integrated into one comprehensive safety concept where native pTx safety (without implant) is ensured by state-of-the-art field simulations and the implant-specific hazard is quantified in situ using physical sensors. The concept is demonstrated by electromagnetic simulations performed on a human voxel model with a simplified spinal-cord implant in an eight-channel pTx body coil at 3 T . To integrate implant and native safety, the sensor signal must be calibrated in terms of an established safety metric (e.g., specific absorption rate [SAR]). Virtual experiments show that E -field and implant-current sensors are well suited for this purpose, while temperature sensors require some caution, and B 1 probes are inadequate. Based on an implant sensor matrix Q s , constructed in situ from sensor readings, and precomputed native SAR limits, a vector space of safe RF excitations is determined where both global (native) and local (implant-related) safety requirements are satisfied. Within this safe-excitation subspace, the solution with the best image quality in terms of B 1 + magnitude and homogeneity is then found by a straightforward optimization algorithm. In the investigated example, the optimized pTx shim provides a 3-fold higher mean B 1 + magnitude compared with circularly polarized excitation for a maximum implant-related temperature increase ∆ T imp ≤ 1 K . To date, sensor-equipped implants interfaced to a pTx scanner exist as demonstrator items in research labs, but commercial devices are not yet within sight. This paper aims to demonstrate the significant benefits of such an approach and how this could impact implant-related RF safety in MRI. Today, the responsibility for safe implant scanning lies with the implant manufacturer and the MRI operator; within the sensor concept, the MRI manufacturer would assume much of the operator's current responsibility.
Collapse
Affiliation(s)
- Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
2
|
Sung D, Rejimon A, Allen JW, Fedorov AG, Fleischer CC. Predicting brain temperature in humans using bioheat models: Progress and outlook. J Cereb Blood Flow Metab 2023; 43:833-842. [PMID: 36883416 PMCID: PMC10196749 DOI: 10.1177/0271678x231162173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
Brain temperature, regulated by the balance between blood circulation and metabolic heat generation, is an important parameter related to neural activity, cerebral hemodynamics, and neuroinflammation. A key challenge for integrating brain temperature into clinical practice is the lack of reliable and non-invasive brain thermometry. The recognized importance of brain temperature and thermoregulation in both health and disease, combined with limited availability of experimental methods, has motivated the development of computational thermal models using bioheat equations to predict brain temperature. In this mini-review, we describe progress and the current state-of-the-art in brain thermal modeling in humans and discuss potential avenues for clinical applications.
Collapse
Affiliation(s)
- Dongsuk Sung
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Abinand Rejimon
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason W Allen
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory
University School of Medicine, Atlanta, GA, USA
| | - Andrei G Fedorov
- Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Candace C Fleischer
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Sebek J, Park WKC, Geimer S, Van Citters DW, Farah A, Dupuy DE, Meaney PM, Prakash P. Computational modeling of microwave ablation with thermal accelerants. Int J Hyperthermia 2023; 40:2255755. [PMID: 37710404 DOI: 10.1080/02656736.2023.2255755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
PURPOSE To develop a computational model of microwave ablation (MWA) with a thermal accelerant gel and apply the model toward interpreting experimental observations in ex vivo bovine and in vivo porcine liver. METHODS A 3D coupled electromagnetic-heat transfer model was implemented to characterize thermal profiles within ex vivo bovine and in vivo porcine liver tissue during MWA with the HeatSYNC thermal accelerant. Measured temperature dependent dielectric and thermal properties of the HeatSYNC gel were applied within the model. Simulated extents of MWA zones and transient temperature profiles were compared against experimental measurements in ex vivo bovine liver. Model predictions of thermal profiles under in vivo conditions in porcine liver were used to analyze thermal ablations observed in prior experiments in porcine liver in vivo. RESULTS Measured electrical conductivity of the HeatSYNC gel was ∼83% higher compared to liver at room temperature, with positive linear temperature dependency, indicating increased microwave absorption within HeatSYNC gel compared to tissue. In ex vivo bovine liver, model predicted ablation zone extents of (31.5 × 36) mm with the HeatSYNC, compared to (32.9 ± 2.6 × 40.2 ± 2.3) mm in experiments (volume differences 4 ± 4.1 cm3). Computational models under in vivo conditions in porcine liver suggest approximating the HeatSYNC gel spreading within liver tissue during ablations as a plausible explanation for larger ablation zones observed in prior in vivo studies. CONCLUSION Computational models of MWA with thermal accelerants provide insight into the impact of accelerant on MWA, and with further development, could predict ablations with a variety of gel injection sites.
Collapse
Affiliation(s)
- Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
| | | | - Shireen Geimer
- Expeditionary School at Black River, Ludlow, Vermont, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | - Paul M Meaney
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
4
|
Sung D, Risk BB, Kottke PA, Allen JW, Nahab F, Fedorov AG, Fleischer CC. Comparisons of healthy human brain temperature predicted from biophysical modeling and measured with whole brain MR thermometry. Sci Rep 2022; 12:19285. [PMID: 36369468 PMCID: PMC9652378 DOI: 10.1038/s41598-022-22599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Brain temperature is an understudied parameter relevant to brain injury and ischemia. To advance our understanding of thermal dynamics in the human brain, combined with the challenges of routine experimental measurements, a biophysical modeling framework was developed to facilitate individualized brain temperature predictions. Model-predicted brain temperatures using our fully conserved model were compared with whole brain chemical shift thermometry acquired in 30 healthy human subjects (15 male and 15 female, age range 18-36 years old). Magnetic resonance (MR) thermometry, as well as structural imaging, angiography, and venography, were acquired prospectively on a Siemens Prisma whole body 3 T MR scanner. Bland-Altman plots demonstrate agreement between model-predicted and MR-measured brain temperatures at the voxel-level. Regional variations were similar between predicted and measured temperatures (< 0.55 °C for all 10 cortical and 12 subcortical regions of interest), and subcortical white matter temperatures were higher than cortical regions. We anticipate the advancement of brain temperature as a marker of health and injury will be facilitated by a well-validated computational model which can enable predictions when experiments are not feasible.
Collapse
Affiliation(s)
- Dongsuk Sung
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| | - Benjamin B. Risk
- grid.189967.80000 0001 0941 6502Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA USA
| | - Peter A. Kottke
- grid.213917.f0000 0001 2097 4943Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Jason W. Allen
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Fadi Nahab
- grid.189967.80000 0001 0941 6502Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Andrei G. Fedorov
- grid.213917.f0000 0001 2097 4943Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Candace C. Fleischer
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Wesley Woods Health Center, Emory University School of Medicine, 1841 Clifton Road, Atlanta, GA 30329 USA
| |
Collapse
|
5
|
Vaidya N, Baragona M, Lavezzo V, Maessen R, Veroy K. Tuning the Pennes Perfusion Rate to Model Large Vessel Cooling Effects in Hepatic Radiofrequency Ablation. J Biomech Eng 2022; 144:1136903. [PMID: 35181786 DOI: 10.1115/1.4053909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/08/2022]
Abstract
Radio-frequency ablation (RFA) has become a popular method for the minimally invasive treatment of liver cancer. However, the success rate of these treatments depends heavily on the amount of experience the clinician possesses. Mathematical modelling can help mitigate this problem by providing an indication of the treatment outcome. Thermal lesions in RFA are affected by the cooling effect of both fine-scale and large-scale blood vessels. The exact model for large-scale blood vessels is advection-diffusion, i.e. a model capable of producing directional effects, which are known to occur in certain cases. In previous research, in situations where directional effects do not occur, the advection term in the blood vessel model has been typically replaced with the Pennes perfusion term, albeit with a higher-than usual perfusion rate. Whether these values of the perfusion rate appearing in literature are optimal for the particular vessel radii in question, has not been investigated so far. The present work aims to address this issue. An attempt has been made to determine, for values of vessel radius between 0.55 mm and 5 mm, best estimates for the perfusion rate which minimize the error in thermal lesion volumes between the perfusion-based model and the advection-based model. The results for the best estimate of the perfusion rate presented may be used in existing methods for fast estimation of RFA outcomes. Furthermore, the possible improvements to the presented methodology have been highlighted.
Collapse
Affiliation(s)
- Nikhil Vaidya
- Faculty of Civil Engineering, RWTH Aachen University, Germany
| | | | | | | | - Karen Veroy
- Center for Analysis, Scientific Computing, and Applications, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
6
|
Le Ster C, Mauconduit F, Mirkes C, Vignaud A, Boulant N. Measuring radiofrequency field-induced temperature variations in brain MRI exams with motion compensated MR thermometry and field monitoring. Magn Reson Med 2021; 87:1390-1400. [PMID: 34687068 DOI: 10.1002/mrm.29058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE An MR thermometry (MRT) method with motion and field fluctuation compensation is proposed to measure non-invasively sub-degree brain temperature variations occurring through radiofrequency (RF) power deposition during MR exams. METHODS MRT at 7T with a multi-slice echo planar imaging (EPI) sequence and concurrent field monitoring was first tested in vitro to assess accuracy in the presence of external field perturbations, an optical probe being used for ground truth. In vivo, this strategy was complemented by a motion compensation scheme based on a dictionary pre-scan, as reported in some previous work, and was adapted to the human brain. Precision reached with this scheme was assessed on eight volunteers with a 5 minute-long low specific absorption rate (SAR) scan. Finally, temperature rise in the brain was measured twice on the same volunteers and with the same strategy, this time by employing a 20-minutes scan at the maximum SAR delivered with a commercial volume head coil. RESULTS In vitro, the root mean square (RMS) error between optical probe and MRT measurements was 0.02°C with field sensor correction. In vivo, the low SAR scan returned a precision in temperature change measurement with field monitoring and motion compensation of 0.05°C. The 20-minutes maximum SAR scan returned a temperature rise throughout the inner-brain in the range of 0-0.2°C. Brain periphery remained too sensitive with respect to motion to lead to equally conclusive results. CONCLUSION Sub-degree temperature rise in the inner human brain was characterized experimentally throughout RF exposure. Potential applications include improvement of human thermal models and revision of safety margins.
Collapse
Affiliation(s)
- Caroline Le Ster
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Franck Mauconduit
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | | | - Alexandre Vignaud
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Nicolas Boulant
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Paulides MM, Rodrigues DB, Bellizzi GG, Sumser K, Curto S, Neufeld E, Montanaro H, Kok HP, Dobsicek Trefna H. ESHO benchmarks for computational modeling and optimization in hyperthermia therapy. Int J Hyperthermia 2021; 38:1425-1442. [PMID: 34581246 DOI: 10.1080/02656736.2021.1979254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The success of cancer hyperthermia (HT) treatments is strongly dependent on the temperatures achieved in the tumor and healthy tissues as it correlates with treatment efficacy and safety, respectively. Hyperthermia treatment planning (HTP) simulations have become pivotal for treatment optimization due to the possibility for pretreatment planning, optimization and decision making, as well as real-time treatment guidance. MATERIALS AND METHODS The same computational methods deployed in HTP are also used for in silico studies. These are of great relevance for the development of new HT devices and treatment approaches. To aid this work, 3 D patient models have been recently developed and made available for the HT community. Unfortunately, there is no consensus regarding tissue properties, simulation settings, and benchmark applicators, which significantly influence the clinical relevance of computational outcomes. RESULTS AND DISCUSSION Herein, we propose a comprehensive set of applicator benchmarks, efficacy and safety optimization algorithms, simulation settings and clinical parameters, to establish benchmarks for method comparison and code verification, to provide guidance, and in view of the 2021 ESHO Grand Challenge (Details on the ESHO grand challenge on HTP will be provided at https://www.esho.info/). CONCLUSION We aim to establish guidelines to promote standardization within the hyperthermia community such that novel approaches can quickly prove their benefit as quickly as possible in clinically relevant simulation scenarios. This paper is primarily focused on radiofrequency and microwave hyperthermia but, since 3 D simulation studies on heating with ultrasound are now a reality, guidance as well as a benchmark for ultrasound-based hyperthermia are also included.
Collapse
Affiliation(s)
- Margarethus M Paulides
- Electromagnetics for Care & Cure Laboratory (EM4C&C), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Dario B Rodrigues
- Hyperthermia Therapy Program, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Gennaro G Bellizzi
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Kemal Sumser
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Sergio Curto
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Hazael Montanaro
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland.,Laboratory for Acoustics/Noise control, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dubendorf, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hana Dobsicek Trefna
- Biomedical Electromagnetics Group, Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
8
|
Abstract
Especially after the launch of 7 T, the ultrahigh magnetic field (UHF) imaging community achieved critically important strides in our understanding of the physics of radiofrequency interactions in the human body, which in turn has led to solutions for the challenges posed by such UHFs. As a result, the originally obtained poor image quality has progressed to the high-quality and high-resolution images obtained at 7 T and now at 10.5 T in the human torso. Despite these tremendous advances, work still remains to further improve the image quality and fully capitalize on the potential advantages UHF has to offer.
Collapse
|
9
|
Vaidya N, Baragona M, Lavezzo V, Maessen R, Veroy K. Simulation study of the cooling effect of blood vessels and blood coagulation in hepatic radio-frequency ablation. Int J Hyperthermia 2021; 38:95-104. [PMID: 33530763 DOI: 10.1080/02656736.2020.1866217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Computer simulations of hepatic radio-frequency ablation (RFA) were performed to: (i) determine the dependence of the vessel wall heat transfer coefficient on geometrical parameters; (ii) study the conditions required for the occurrence of the directional effect of blood; and (iii) classify blood vessels according to their effect on the thermal lesion while considering blood coagulation. The information thus obtained supports the development of a multi-scale bio-heat model tailored for more accurate prediction of hepatic RFA outcomes in the vicinity of blood vessels. MATERIALS AND METHODS The simulation geometry consisted of healthy tissue, tumor tissue, a mono-polar RF-needle, and a single cylindrical blood vessel. The geometrical parameters of interest were the RF-needle active length and those describing blood vessel configuration. A simple, novel method to incorporate the effects of blood coagulation into the simulation was developed and tested. RESULTS A closed form expression giving the dependence of the vessel wall heat transfer coefficient on geometrical parameters was obtained. Directional effects on the thermal lesion were found to occur for blood vessel radii between 0.4 mm and 0.5 mm. Below 0.4 mm blood coagulation blocked the flow. CONCLUSIONS The closed form expression for the heat transfer coefficient can be used in models of RFA to speed up computation. The conditions on vessel radii required for the occurrence of directional effects on the thermal lesion were determined. These conditions allow the classification of blood vessels. Different approximations to the thermal equation can thus be used for these vessel classes.
Collapse
Affiliation(s)
- Nikhil Vaidya
- Faculty of Civil Engineering, RWTH Aachen University, Aachen, Germany.,Philips Research, Eindhoven, The Netherlands
| | | | | | | | - Karen Veroy
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Dutta A, Chattopadhyay H. A Brief on Biological Thermodynamics for Human Physiology. J Biomech Eng 2021; 143:070802. [PMID: 33704420 DOI: 10.1115/1.4050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/08/2022]
Abstract
Thermodynamics, the science of energy interactions, governs the direction of processes found in nature. While the subject finds wide applications in science and technology, its connection to biological sciences and in particular to bio-engineering is becoming increasingly important. In this work, after a brief introduction to the fundamental concepts in thermodynamics, we focus on its application in human physiology. A review of application of thermodynamics to the interaction between human body and environment is presented. Research works on biological systems such as the nervous system and the cardiovascular systems are summarized. The thermodynamics of metabolism is reviewed, and finally, the role of the subject in understanding and combating diseases is highlighted.
Collapse
Affiliation(s)
- Abhijit Dutta
- Department of Mechanical Engineering, MCKV Institute of Engineering, Howrah 711204, India; Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
11
|
Carluccio G, Akgun C, Vaughan JT, Collins C. Temperature-based MRI safety simulations with a limited number of tissues. Magn Reson Med 2021; 86:543-550. [PMID: 33547673 DOI: 10.1002/mrm.28693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Demonstrate ability to produce reasonable simulations of temperature using numerical models of the human body with a limited number of tissues. METHODS For both a male and female human body model, numerical simulations were used to calculate temperature distributions in three different models of the same human body: the original model with 35 tissues for the male model and 76 tissues for the female model, a simplified model having only three tissues (muscle, fat, and lung), and a simplified model having six tissues (muscle, fat, lung, bone, brain, and skin). RESULTS Although a three-tissue model gave reasonable specific absorption rate estimates in comparison to an original with many more tissues, because of tissue-specific thermal and physiological properties that do not affect specific absorption rate, such as rate of perfusion by blood, the three-tissue model did not provide temperature distributions similar to those of the original model. Inclusion of a few additional tissues, as in the six-tissue model, produced results in much better agreement with those from the original model. CONCLUSION Reasonable estimates of temperature can be simulated with a limited number of tissues, although this number is higher than the number of tissues required to produce reasonable simulations of specific absorption rate. For exposures primarily in the head and thorax, six tissues may be adequate for reasonable estimates of temperature.
Collapse
Affiliation(s)
- Giuseppe Carluccio
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Can Akgun
- Flywheel Exchange, Minneapolis, Minnesota, USA
| | - John Thomas Vaughan
- Department of Biomedical Engineering, Department of Radiology, Columbia University, New York, New York, USA
| | - Christopher Collins
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
Fagan AJ, Bitz AK, Björkman-Burtscher IM, Collins CM, Kimbrell V, Raaijmakers AJ. 7T MR Safety. J Magn Reson Imaging 2021; 53:333-346. [PMID: 32830900 PMCID: PMC8170917 DOI: 10.1002/jmri.27319] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging and spectroscopy (MRI/MRS) at 7T represents an exciting advance in MR technology, with intriguing possibilities to enhance image spatial, spectral, and contrast resolution. To ensure the safe use of this technology while still harnessing its potential, clinical staff and researchers need to be cognizant of some safety concerns arising from the increased magnetic field strength and higher Larmor frequency. The higher static magnetic fields give rise to enhanced transient bioeffects and an increased risk of adverse incidents related to electrically conductive implants. Many technical challenges remain and the continuing rapid pace of development of 7T MRI/MRS is likely to present further challenges to ensuring safety of this technology in the years ahead. The recent regulatory clearance for clinical diagnostic imaging at 7T will likely increase the installed base of 7T systems, particularly in hospital environments with little prior ultrahigh-field MR experience. Informed risk/benefit analyses will be required, particularly where implant manufacturer-published 7T safety guidelines for implants are unavailable. On behalf of the International Society for Magnetic Resonance in Medicine, the aim of this article is to provide a reference document to assist institutions developing local institutional policies and procedures that are specific to the safe operation of 7T MRI/MRS. Details of current 7T technology and the physics underpinning its functionality are reviewed, with the aim of supporting efforts to expand the use of 7T MRI/MRS in both research and clinical environments. Current gaps in knowledge are also identified, where additional research and development are required. Level of Evidence 5 Technical Efficacy 2 J. MAGN. RESON. IMAGING 2021;53:333-346.
Collapse
Affiliation(s)
- Andrew J. Fagan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andreas K. Bitz
- Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| | - Isabella M. Björkman-Burtscher
- Department of Radiology, University of Gothenburg, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher M. Collins
- Center for Advanced Imaging Innovation and Research, NYU Langone Medical Center, New York, New York, USA
| | - Vera Kimbrell
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
13
|
Kandala SK, Sharma A, Mirpour S, Liapi E, Ivkov R, Attaluri A. Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. Int J Hyperthermia 2021; 38:611-622. [PMID: 33853493 PMCID: PMC8363028 DOI: 10.1080/02656736.2021.1913244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Alternating magnetic field (AMF) tissue interaction models are generally not validated. Our aim was to develop and validate a coupled electromagnetic and thermal model for estimating temperatures in large organs during magnetic nanoparticle hyperthermia (MNH). MATERIALS AND METHODS Coupled finite element electromagnetic and thermal model validation was performed by comparing the results to experimental data obtained from temperatures measured in homogeneous agar gel phantoms exposed to an AMF at fixed frequency (155 ± 10 kHz). The validated model was applied to a three-dimensional (3D) rabbit liver built from computed tomography (CT) images to investigate the contribution of nanoparticle heating and nonspecific eddy current heating as a function of AMF amplitude. RESULTS Computed temperatures from the model were in excellent agreement with temperatures calculated using the analytical method (error < 1%) and temperatures measured in phantoms (maximum absolute error <2% at each probe location). The 3D rabbit liver model for a fixed concentration of 5 mg Fe/cm3 of tumor revealed a maximum temperature ∼44 °C in tumor and ∼40 °C in liver at AMF amplitude of ∼12 kA/m (peak). CONCLUSION A validated coupled electromagnetic and thermal model was developed to estimate temperatures due to eddy current heating in homogeneous tissue phantoms. The validated model was successfully used to analyze temperature distribution in complex rabbit liver tumor geometry during MNH. In future, model validation should be extended to heterogeneous tissue phantoms, and include heat sink effects from major blood vessels.
Collapse
Affiliation(s)
- Sri Kamal Kandala
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anirudh Sharma
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sahar Mirpour
- Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Eleni Liapi
- Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Ivkov
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, The Pennsylvania State University - Harrisburg, Middletown, PA, USA
| |
Collapse
|
14
|
Saniour I, Verret JM, Rabrait-Lerman C, Pilleul F, Beuf O. Feasibility and characterization of a safe susceptibility-matched endorectal coil for MR spectroscopy. NMR IN BIOMEDICINE 2020; 33:e4384. [PMID: 32794236 DOI: 10.1002/nbm.4384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
When using endorectal coils, local radiofrequency (RF) heating may occur in the surrounding tissue. Furthermore, most endorectal coils create a susceptibility artifact detrimental to both anatomical magnetic resonance imaging (MRI) and spectroscopy (MRS) acquisitions. We aimed at assessing the safety and MRS performance of a susceptibility-matched endorectal coil for further rectal wall analysis. Experiments were performed on a General Electric MR750 3 T scanner. A variable number of miniaturized passive RF traps were incorporated in the reception cable. The assessment of RF heating and coil sensitivity was conducted on a 1.5% agar-agar phantom doped with NaCl. Several susceptibility-matched materials such as Ultem, perfluorocarbon and barium sulfate were then compared with an external coil. Finally, Ultem was used as a solid support for an endorectal coil and compared with a reference coil. Phantom experiments exhibited a complete suppression of both the RF heating phenomenon and the coil sensitivity artifact. Ultem was the material that produced the smallest image distortion. The full width at half maximum of MR spectra acquired using the susceptibility-matched endorectal coil showed at least 30% narrowing compared with a reference endorectal coil. A susceptibility-matched endorectal coil with RF traps incorporated was validated on phantoms. This coil appears to be a promising device for future in vivo experiments.
Collapse
Affiliation(s)
- Isabelle Saniour
- Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Jean-Marie Verret
- Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- General Electric Healthcare, Clinical Science Development Group, Buc, France
| | | | - Frank Pilleul
- Centre Léon Bérard, Department of Radiology, Lyon, France
| | - Olivier Beuf
- Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| |
Collapse
|
15
|
Le Ster C, Mauconduit F, Mirkes C, Bottlaender M, Boumezbeur F, Djemai B, Vignaud A, Boulant N. RF heating measurement using MR thermometry and field monitoring: Methodological considerations and first in vivo results. Magn Reson Med 2020; 85:1282-1293. [PMID: 32936510 DOI: 10.1002/mrm.28501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE A MR thermometry (MRT) method with field monitoring is proposed to improve the measurement of small temperature variations induced in brain MRI exams. METHODS MR thermometry experiments were performed at 7 Tesla with concurrent field monitoring and RF heating. Images were reconstructed with nominal k-space trajectories and with first-order spherical harmonics correction. Experiments were performed in vitro with deliberate field disturbances and on an anesthetized macaque in 2 different specific absorption rate regimes, that is, at 50% and 100% of the maximal specific absorption rate level allowed in the International Electrotechnical Commission normal mode of operation. Repeatability was assessed by running a second separate session on the same animal. RESULTS Inclusion of magnetic field fluctuations in the reconstruction improved temperature measurement accuracy in vitro down to 0.02°C. Measurement precision in vivo was on the order of 0.15°C in areas little affected by motion. In the same region, temperature increase reached 0.5 to 0.8°C after 20 min of heating at 100% specific absorption rates and followed a rough factor of 2 with the 50% specific absorption rate scans. A horizontal temperature plateau, as predicted by Pennes bioheat model with thermal constants from the literature and constant blood temperature assumption, was not observed. CONCLUSION Inclusion of field fluctuations in image reconstruction was beneficial for the measurement of small temperature rises encountered in standard brain exams. More work is needed to correct for motion-induced field disturbances to extract reliable temperature maps.
Collapse
Affiliation(s)
- Caroline Le Ster
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Franck Mauconduit
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | | | - Michel Bottlaender
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frederic Joliot, Orsay, France.,UNIACT, Neurospin, CEA, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Boucif Djemai
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Nicolas Boulant
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Shit GC, Bera A. Mathematical model to verify the role of magnetic field on blood flow and its impact on thermal behavior of biological tissue for tumor treatment. Biomed Phys Eng Express 2020; 6:015032. [DOI: 10.1088/2057-1976/ab6e22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Zheng J, Xia M, Kainz W, Chen J. Wire-based sternal closure: MRI-related heating at 1.5 T/64 MHz and 3 T/128 MHz based on simulation and experimental phantom study. Magn Reson Med 2019; 83:1055-1065. [PMID: 31468593 DOI: 10.1002/mrm.27963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 11/09/2022]
Abstract
PURPOSE The paper investigates factors that affect the RF-induced heating for commonly used wire-based sternal closure under 1.5 T and 3 T MRI systems and clarifies the heating mechanisms. METHODS Numerical simulations based on the finite-difference time-domain method and experimental measurements in ASTM (American Society for Testing and Materials) phantom were used in the study. Various configurations of the wire-based sternal closure in the phantom were studied based on parameter sweeps to understand key factors related to the RF-induced heating. In vivo simulations were further performed to explore the RF-induced heating in computational human phantoms for clinically relevant scenarios. RESULTS The wire-based sternal closure can lead to peak 1-g averaged spatial absorption ratio of 106.3 W/kg and 75.2 W/kg in phantom and peak 1-g averaged specific absorption rate of 32.1 W/kg and 62.1 W/kg in computational human models near the device at 1.5 T and 3 T, respectively. In phantom, the simulated maximum temperature rises for 15-minute RF exposure are 9.4°C at 1.5 T and 5.8°C at 3 T. Generally, the RF-induced heating will be higher when the electrical length of the device is close to the resonant length or when multiple components are spaced closely along the longitudinal direction. CONCLUSION The RF-induced heating related to wire-based sternal closure can be significant due to the antenna effect and capacitive mutual coupling effect related to the specific geometries of devices.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas
| | - Meiqi Xia
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas
| | - Wolfgang Kainz
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Ji Chen
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas
| |
Collapse
|
18
|
Erturk MA, Li X, Van de Moortele PF, Ugurbil K, Metzger GJ. Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions. Top Magn Reson Imaging 2019; 28:101-124. [PMID: 31188271 PMCID: PMC6587233 DOI: 10.1097/rmr.0000000000000202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The potential value of ultrahigh field (UHF) magnetic resonance imaging (MRI) and spectroscopy to biomedical research and in clinical applications drives the development of technologies to overcome its many challenges. The increased difficulties of imaging the human torso compared with the head include its overall size, the dimensions and location of its anatomic targets, the increased prevalence and magnitude of physiologic effects, the limited availability of tailored RF coils, and the necessary transmit chain hardware. Tackling these issues involves addressing notoriously inhomogeneous transmit B1 (B1) fields, limitations in peak B1, larger spatial variations of the static magnetic field B0, and patient safety issues related to implants and local RF power deposition. However, as research institutions and vendors continue to innovate, the potential gains are beginning to be realized. Solutions overcoming the unique challenges associated with imaging the human torso are reviewed as are current studies capitalizing on the benefits of UHF in several anatomies and applications. As the field progresses, strategies associated with the RF system architecture, calibration methods, RF pulse optimization, and power monitoring need to be further integrated into the MRI systems making what are currently complex processes more streamlined. Meanwhile, the UHF MRI community must seize the opportunity to build upon what have been so far proof of principle and feasibility studies and begin to further explore the true impact in both research and the clinic.
Collapse
Affiliation(s)
- M Arcan Erturk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | | | | | | |
Collapse
|
19
|
Zhu L, Bischof DJ. Journal of Biomechanical Engineering Legacy Paper 2018. J Biomech Eng 2019; 141:2725828. [PMID: 30778565 DOI: 10.1115/1.4042897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 02/28/2024]
Abstract
The Journal of Biomechanical Engineering has contributed to biomechanical engineering field since 1977. To honor papers published at least 30 years that have had a long-lasting impact on the field, the Editors now recognize "Legacy Papers." The journal is pleased to present the following paper as this year's Legacy Paper: "A New Simplified Bioheat Equation for the Effect of Blood Flow on Local Average Tissue Temperature" by S. Weinbaum and L. Jiji, ASME Journal of Biomechanical Engineering 107: 131-139, 1985.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Dr John Bischof
- Department of Mechanical Engineering, University of Minnesota at Minneapolis, Minneapolis, MN 55455
| |
Collapse
|
20
|
Khanday MA, Nazir K. Mathematical and numerical analysis of thermal distribution in cancerous tissues under the local heat therapy. INT J BIOMATH 2017. [DOI: 10.1142/s1793524517500991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The main purpose of this study is to investigate the thermal behavior of living tissues in the presence of spatial external heat source. An effort has been made to formulate the mathematical model to study the temperature distribution in in vivo tissues of the human body. The mathematical formulation is governed by bio-heat equation together with appropriate initial, boundary and interface conditions. The solution of the model was carried out using variational finite element method and computational simulations. The model describes the exchange of heat between the internal biological tissues and other surrounding media. The effect of external heat source under different conditions of atmospheric temperature and as a local hyperthermic method provides an important information to the temperature regulation in biological tissues under normal and malignant conditions. Thermal fluctuations at the targeted regions were obtained with respect to various time-dependent heating sources and scattering coefficients. The results obtained may be helpful for clinical purposes especially in the treatment of cancerous tumors through radiotherapy and other local hyperthermic approaches.
Collapse
Affiliation(s)
- M. A. Khanday
- Department of Mathematics, University of Kashmir, Srinagar 190006, India
| | - Khalid Nazir
- Department of Mathematics, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
21
|
Cardone D, Merla A. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences. SENSORS 2017; 17:s17051042. [PMID: 28475155 PMCID: PMC5469647 DOI: 10.3390/s17051042] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 12/28/2022]
Abstract
Thermal infrared imaging has been proposed, and is now used, as a tool for the non-contact and non-invasive computational assessment of human autonomic nervous activity and psychophysiological states. Thanks to a new generation of high sensitivity infrared thermal detectors and the development of computational models of the autonomic control of the facial cutaneous temperature, several autonomic variables can be computed through thermal infrared imaging, including localized blood perfusion rate, cardiac pulse rate, breath rate, sudomotor and stress responses. In fact, all of these parameters impact on the control of the cutaneous temperature. The physiological information obtained through this approach, could then be used to infer about a variety of psychophysiological or emotional states, as proved by the increasing number of psychophysiology or neurosciences studies that use thermal infrared imaging. This paper presents a review of the principal achievements of thermal infrared imaging in computational psychophysiology, focusing on the capability of the technique for providing ubiquitous and unwired monitoring of psychophysiological activity and affective states. It also presents a summary on the modern, up-to-date infrared sensors technology.
Collapse
Affiliation(s)
- Daniela Cardone
- Infrared Imaging Lab, ITAB Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti 66100, Italy.
| | - Arcangelo Merla
- Infrared Imaging Lab, ITAB Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti 66100, Italy.
| |
Collapse
|
22
|
Deniz CM, Carluccio G, Collins C. Parallel transmission RF pulse design with strict temperature constraints. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3694. [PMID: 28187249 PMCID: PMC5456413 DOI: 10.1002/nbm.3694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different.
Collapse
Affiliation(s)
- Cem M. Deniz
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
- NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, NY, USA
- RF Test Labs, Inc., New York, NY, USA
| | - Giuseppe Carluccio
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Christopher Collins
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
- NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, NY, USA
| |
Collapse
|
23
|
Fiedler TM, Ladd ME, Bitz AK. SAR Simulations & Safety. Neuroimage 2017; 168:33-58. [PMID: 28336426 DOI: 10.1016/j.neuroimage.2017.03.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 01/19/2023] Open
Abstract
At ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, 52066 Aachen, Germany
| |
Collapse
|
24
|
Simonis FFJ, Raaijmakers AJE, Lagendijk JJW, van den Berg CAT. Validating subject-specific RF and thermal simulations in the calf muscle using MR-based temperature measurements. Magn Reson Med 2016; 77:1691-1700. [PMID: 27120403 DOI: 10.1002/mrm.26244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/01/2016] [Accepted: 03/25/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE Ongoing discussions occur to translate the safety restrictions on MR scanners from specific absorption rate (SAR) to thermal dose. Therefore, this research focuses on the accuracy of thermal simulations in human subjects during an MR exam, which is fundamental information in that debate. METHODS Radiofrequency (RF) heating experiments were performed on the calves of 13 healthy subjects using a dedicated transmit-receive coil while monitoring the temperature with proton resonance frequency shift (PRFS) thermometry. Subject-specific models and one generic model were used for electromagnetic and thermal simulations using Pennes' bioheat equation, with the blood equilibration constant equaling zero. The simulations were subsequently compared with the experimental results. RESULTS The mean B1+ equaled 15 µT in the center slice of all volunteers, and 95% of the voxels had errors smaller than 2.8 µT between the simulation and measurement. The intersubject variation in RF power to achieve the required B1+ was 11%. The resulting intersubject variation in median temperature rise was 14%. Thermal simulations underestimated the median temperature increase on average, with 34% in subject-specific models and 28% in the generic model. CONCLUSIONS Although thermal measures are directly coupled to tissue damage and therefore suitable for RF safety assessment, insecurities in the applied thermal modeling limit their estimation accuracy. Magn Reson Med 77:1691-1700, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- F F J Simonis
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
| | - A J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
| | - J J W Lagendijk
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
| | - C A T van den Berg
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
| |
Collapse
|
25
|
Acikel V, Uslubas A, Atalar E. Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging. Med Phys 2015; 42:3922-31. [PMID: 26133593 DOI: 10.1118/1.4921019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors' purpose is to model the case of an implantable pulse generator (IPG) and the electrode of an active implantable medical device using lumped circuit elements in order to analyze their effect on radio frequency induced tissue heating problem during a magnetic resonance imaging (MRI) examination. METHODS In this study, IPG case and electrode are modeled with a voltage source and impedance. Values of these parameters are found using the modified transmission line method (MoTLiM) and the method of moments (MoM) simulations. Once the parameter values of an electrode/IPG case model are determined, they can be connected to any lead, and tip heating can be analyzed. To validate these models, both MoM simulations and MR experiments were used. The induced currents on the leads with the IPG case or electrode connections were solved using the proposed models and the MoTLiM. These results were compared with the MoM simulations. In addition, an electrode was connected to a lead via an inductor. The dissipated power on the electrode was calculated using the MoTLiM by changing the inductance and the results were compared with the specific absorption rate results that were obtained using MoM. Then, MRI experiments were conducted to test the IPG case and the electrode models. To test the IPG case, a bare lead was connected to the case and placed inside a uniform phantom. During a MRI scan, the temperature rise at the lead was measured by changing the lead length. The power at the lead tip for the same scenario was also calculated using the IPG case model and MoTLiM. Then, an electrode was connected to a lead via an inductor and placed inside a uniform phantom. During a MRI scan, the temperature rise at the electrode was measured by changing the inductance and compared with the dissipated power on the electrode resistance. RESULTS The induced currents on leads with the IPG case or electrode connection were solved for using the combination of the MoTLiM and the proposed lumped circuit models. These results were compared with those from the MoM simulations. The mean square error was less than 9%. During the MRI experiments, when the IPG case was introduced, the resonance lengths were calculated to have an error less than 13%. Also the change in tip temperature rise at resonance lengths was predicted with less than 4% error. For the electrode experiments, the value of the matching impedance was predicted with an error less than 1%. CONCLUSIONS Electrical models for the IPG case and electrode are suggested, and the method is proposed to determine the parameter values. The concept of matching of the electrode to the lead is clarified using the defined electrode impedance and the lead Thevenin impedance. The effect of the IPG case and electrode on tip heating can be predicted using the proposed theory. With these models, understanding the tissue heating due to the implants becomes easier. Also, these models are beneficial for implant safety testers and designers. Using these models, worst case conditions can be determined and the corresponding implant test experiments can be planned.
Collapse
Affiliation(s)
- Volkan Acikel
- Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey and National Magnetic Resonance Research Center (UMRAM), Bilkent, Ankara 06800, Turkey
| | - Ali Uslubas
- MR:comp GmbH, MR Safety Testing Laboratory, Buschgrundstraße 33, 45984 Gelsenkirchen, Germany
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey and National Magnetic Resonance Research Center (UMRAM), Bilkent, Ankara 06800, Turkey
| |
Collapse
|
26
|
Audigier C, Mansi T, Delingette H, Rapaka S, Mihalef V, Carnegie D, Boctor E, Choti M, Kamen A, Ayache N, Comaniciu D. Efficient Lattice Boltzmann Solver for Patient-Specific Radiofrequency Ablation of Hepatic Tumors. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1576-1589. [PMID: 30132760 DOI: 10.1109/tmi.2015.2406575] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Radiofrequency ablation (RFA) is an established treatment for liver cancer when resection is not possible. Yet, its optimal delivery is challenged by the presence of large blood vessels and the time-varying thermal conductivity of biological tissue. Incomplete treatment and an increased risk of recurrence are therefore common. A tool that would enable the accurate planning of RFA is hence necessary. This manuscript describes a new method to compute the extent of ablation required based on the Lattice Boltzmann Method (LBM) and patient-specific, pre-operative images. A detailed anatomical model of the liver is obtained from volumetric images. Then a computational model of heat diffusion, cellular necrosis, and blood flow through the vessels and liver is employed to compute the extent of ablated tissue given the probe location, ablation duration and biological parameters. The model was verified against an analytical solution, showing good fidelity. We also evaluated the predictive power of the proposed framework on ten patients who underwent RFA, for whom pre- and post-operative images were available. Comparisons between the computed ablation extent and ground truth, as observed in postoperative images, were promising (DICE index: 42%, sensitivity: 67%, positive predictive value: 38%). The importance of considering liver perfusion while simulating electrical-heating ablation was also highlighted. Implemented on graphics processing units (GPU), our method simulates 1 minute of ablation in 1.14 minutes, allowing near real-time computation.
Collapse
|
27
|
Carluccio G, Bruno M, Collins CM. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response. Magn Reson Med 2015; 75:2195-203. [PMID: 26096947 DOI: 10.1002/mrm.25805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/10/2022]
Abstract
PURPOSE Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). THEORY AND METHODS After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. RESULTS The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. CONCLUSION With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations.
Collapse
Affiliation(s)
| | - Mary Bruno
- New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
28
|
Simonis FFJ, Petersen ET, Lagendijk JJW, van den Berg CAT. Feasibility of measuring thermoregulation during RF heating of the human calf muscle using MR based methods. Magn Reson Med 2015; 75:1743-51. [PMID: 25977138 DOI: 10.1002/mrm.25710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE One of the main safety concerns in MR is heating of the subject due to radiofrequency (RF) exposure. Recently was shown that local peak temperatures can reach dangerous values and the most prominent parameter for accurate temperature estimations is thermoregulation. Therefore, the goal of this research is testing the feasibility of measuring thermoregulation in vivo using MR methods. THEORY AND METHODS The calves of 13 volunteers were scanned at 3 tesla. A Proton Resonance Frequency Shift method was used for temperature measurement. Arterial Spin Labeling and phase contrast scans were used for perfusion and flow measurements respectively. The calves were monitored during extreme RF exposure (20 W/kg, 16 min) and after physical exercise. RESULTS Temperature increases due to RF absorption (range of the 90th percentile of all volunteers: 1.1-2.5°C) matched with the reference skin temperature changes. Increases in perfusion and flow were defined on the whole leg and normalized to baseline. Perfusion showed a significant increase due to RF heating (ratio compared with baseline: 1.28 ± 0.37; P < 0.05), the influence of exercise was much greater, however (2.97 ± 2.45, P < 0.01). CONCLUSION This study represents a first exploration of measuring thermoregulation, which will become essential when new safety guidelines are based on thermal dose.
Collapse
Affiliation(s)
- Frank F J Simonis
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Esben T Petersen
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
29
|
Moore SM, McIntosh RL, Iskra S, Wood AW. Modeling the effect of adverse environmental conditions and clothing on temperature rise in a human body exposed to radio frequency electromagnetic fields. IEEE Trans Biomed Eng 2014; 62:627-37. [PMID: 25314694 DOI: 10.1109/tbme.2014.2362517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study considers the computationally determined thermal profile of a fully clothed, finely discretized, heterogeneous human body model, subject to the maximum allowable reference level for a 1-GHz radio frequency electromagnetic field for a worker, and also subject to adverse environmental conditions, including high humidity and high ambient temperature. An initial observation is that while electromagnetic fields at the occupational safety limit will contribute an additional thermal load to the tissues, and subsequently, cause an elevated temperature, the magnitude of this effect is far outweighed by that due to the conditions including the ambient temperature, relative humidity, and the type of clothing worn. It is envisaged that the computational modeling approach outlined in this paper will be suitably modified in future studies to evaluate the thermal response of a body at elevated metabolic rates, and for different body shapes and sizes including children and pregnant women.
Collapse
|
30
|
Shrivastava D, Utecht L, Tian J, Hughes J, Vaughan JT. In vivo radiofrequency heating in swine in a 3T (123.2-MHz) birdcage whole body coil. Magn Reson Med 2014; 72:1141-50. [PMID: 24259413 PMCID: PMC4041852 DOI: 10.1002/mrm.24999] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/05/2013] [Accepted: 09/23/2013] [Indexed: 02/01/2023]
Abstract
PURPOSE To study in vivo radiofrequency (RF) heating produced due to power deposition from a 3T (Larmour frequency = 123.2 MHz), birdcage, whole body coil. METHODS The RF heating was simulated in a digital swine by solving the mechanistic generic bioheat transfer model (GBHTM) and the conventional, empirical Pennes bioheat transfer equation for two cases: 1) when the swine head was in the isocenter and 2) when the swine trunk was in the isocenter. The simulation results were validated by making direct fluoroptic temperature measurements in the skin, brain, simulated hot regions, and rectum of 10 swine (case 1: n = 5, mean animal weight = 84.03 ± 6.85 kg, whole body average SAR = 2.65 ± 0.22 W/kg; case 2: n = 5, mean animal weight = 81.59 ± 6.23 kg, whole body average SAR = 2.77 ± 0.26 W/kg) during 1 h of exposure to a turbo spin echo sequence. RESULTS The GBHTM simulated the RF heating more accurately compared with the Pennes equation. In vivo temperatures exceeded safe temperature thresholds with allowable SAR exposures. Hot regions may be produced deep inside the body, away from the skin. CONCLUSION SAR exposures that produce safe temperature thresholds need reinvestigation.
Collapse
Affiliation(s)
- Devashish Shrivastava
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
31
|
Oh S, Ryu YC, Carluccio G, Sica CT, Collins CM. Measurement of SAR-induced temperature increase in a phantom and in vivo with comparison to numerical simulation. Magn Reson Med 2014; 71:1923-31. [PMID: 23804188 PMCID: PMC3842374 DOI: 10.1002/mrm.24820] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare numerically simulated and experimentally measured temperature increase due to specific energy absorption rate from radiofrequency fields. METHODS Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of magnetic resonance thermography. The phantom and forearm were also modeled from magnetic resonance image data, and both specific energy absorption rate and temperature change as induced by the same coil were simulated numerically. RESULTS The simulated and measured temperature increase distributions were generally in good agreement for the phantom. The relative distributions for the human forearm were very similar, with the simulations giving maximum temperature increase about 25% higher than measured. CONCLUSION Although a number of parameters and uncertainties are involved, it should be possible to use numerical simulations to produce reasonably accurate and conservative estimates of temperature distribution to ensure safety in magnetic resonance imaging. R01 EB006563
Collapse
Affiliation(s)
- Sukhoon Oh
- Department of Radiology, New York University School of Medicine, New York, USA
| | | | | | | | | |
Collapse
|
32
|
ELSAYED ASSMAF, BÉG OANWAR. NEW COMPUTATIONAL APPROACHES FOR BIOPHYSICAL HEAT TRANSFER IN TISSUE UNDER ULTRASONIC WAVES: THE VARIATIONAL ITERATION AND CHEBYSCHEV SPECTRAL SIMULATIONS. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A mathematical and numerical study is presented for simulating temperature distribution in a two-dimensional tissue medium using Pennes bioheat transfer equation, when the tissue is subjected to ultrasonic waves. Following nondimensionalization of the governing partial differential equation, a novel variational iteration method (VIM) solution is developed. This excellent technique introduced by He [Variational iteration method — a kind of non-linear analytical technique: Some examples, Int J Non-Linear Mech.34:699–708, 1999] employs Lagrange multipliers which can be identified optimally via variational theory. The space and time distributions of temperature are studied and solutions visualized via Mathematica. The influence of thermal conductivity and relaxation time are also examined. Excellent stability and convergence characteristics of VIM are demonstrated. Validation is achieved with a Chebyschev spectral collocation method (CSCM). The present work demonstrates the excellent potential of this powerful semi-numerical method in nonlinear biological heat transfer and furthermore provides an alternative strategy to conventional finite element and finite difference computational simulations. The model finds applications in minimally-invasive spinal laser treatments, glaucoma therapy in ophthalmology and thermoradiotherapy for malignant tumors.
Collapse
Affiliation(s)
- ASSMA F. ELSAYED
- Mathematics Dept., Faculty of Applied Science, Tibah University Almadinah Al Monwara, Saudi Arabia
- Mathematics Dept., Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt
| | - O. ANWAR BÉG
- Gort Engovation (Biomechanics, Nanofluids and Thermosciences) Research, 15 Southmere Avenue, Grt. Horton, Bradford, BD73NU, UK
| |
Collapse
|
33
|
Kraff O, Fischer A, Nagel AM, Mönninghoff C, Ladd ME. MRI at 7 Tesla and above: demonstrated and potential capabilities. J Magn Reson Imaging 2014; 41:13-33. [PMID: 24478137 DOI: 10.1002/jmri.24573] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/03/2014] [Indexed: 12/29/2022] Open
Abstract
With more than 40 installed MR systems worldwide operating at 7 Tesla or higher, ultra-high-field (UHF) imaging has been established as a platform for clinically oriented research in recent years. Along with technical developments that, in part, have also been successfully transferred to lower field strengths, MR imaging and spectroscopy at UHF have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. In terms of applications, this overview article focuses on already achieved advantages for in vivo imaging, i.e., in imaging the brain and joints of the musculoskeletal system, but also considers developments in body imaging, which is particularly challenging. Furthermore, new applications for clinical diagnostics such as X-nuclei imaging and spectroscopy, which only really become feasible at ultra-high magnetic fields, will be presented.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
34
|
Kraff O, Wrede KH, Schoemberg T, Dammann P, Noureddine Y, Orzada S, Ladd ME, Bitz AK. MR safety assessment of potential RF heating from cranial fixation plates at 7 T. Med Phys 2013; 40:042302. [PMID: 23556915 DOI: 10.1118/1.4795347] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The increasing number of clinically oriented MRI studies at 7 T motivates the safety assessment of implants, since many 7 T research sites conservatively exclude all subjects with metallic implants, regardless of type or location. The purpose of this study was to investigate potential RF-induced heating during a 7 T MRI scan using a self-built transmit/receive RF coil in patients with implants used for refixation of the bone flap after craniotomy. Going beyond standard ASTM safety tests, a comprehensive test procedure for safety assessments at 7 T is presented which takes into account the more complex coupling of the electromagnetic field with the human body and the implant as well as polarization effects. METHODS The safety assessment consisted of three main investigations using (1) numerical simulations in simplified models, (2) electric and magnetic field measurements and validation procedures in homogeneous phantoms, and (3) analysis of exposure scenarios in a heterogeneous human body model including thermal simulations. Finally, 7 T in vivo images show the degree of image artifact around the implants. RESULTS The simulations showed that the field distortions remain localized within the direct vicinity of the implants. A parallel E-field polarization was found to be the most relevant component in creating local SAR deviations, resulting in a 10% increase in 10-g-averaged SAR and 53% in 1-g-averaged SAR. Using a heterogeneous human head model, the implants caused field distortions and SAR elevations in the numerical simulations which were distinctly lower than the maximum local SAR value caused by the RF coil alone. Also, the position of the maximum 10-g-averaged SAR remained unchanged by the presence of the implants. Similarly, the maximum absolute local temperature remained below 39 °C in the thermal simulations. Only minor artifacts from the implants were observed in the in vivo images that would not likely affect the diagnostic image quality in patients. CONCLUSIONS The findings suggested no evidence for noteworthy RF-related heating in humans after craniotomy using the described implants and for the particular RF coil that was used in this study. Here, identical transmit power restrictions apply with or without the implants. For other RF coils, the maximum permissible input power should be reduced by 10% until further simulations may indicate otherwise.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shafirstein G, Feng Y. The role of mathematical modelling in thermal medicine. Int J Hyperthermia 2013; 29:259-61. [DOI: 10.3109/02656736.2013.800999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
|
37
|
Jiménez-Lozano J, Vacas-Jacques P, Anderson RR, Franco W. Selective and localized radiofrequency heating of skin and fat by controlling surface distributions of the applied voltage: analytical study. Phys Med Biol 2012; 57:7555-78. [DOI: 10.1088/0031-9155/57/22/7555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Shrivastava D, Abosch A, Hughes J, Goerke U, DelaBarre L, Visaria R, Harel N, Vaughan JT. Heating induced near deep brain stimulation lead electrodes during magnetic resonance imaging with a 3 T transceive volume head coil. Phys Med Biol 2012; 57:5651-65. [PMID: 22892760 DOI: 10.1088/0031-9155/57/17/5651] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heating induced near deep brain stimulation (DBS) lead electrodes during magnetic resonance imaging with a 3 T transceive head coil was measured, modeled, and imaged in three cadaveric porcine heads (mean body weight = 85.47 ± 3.19 kg, mean head weight = 5.78 ± 0.32 kg). The effect of the placement of the extra-cranial portion of the DBS lead on the heating was investigated by looping the extra-cranial lead on the top, side, and back of the head, and placing it parallel to the coil's longitudinal axial direction. The heating was induced using a 641 s long turbo spin echo sequence with the mean whole head average specific absorption rate of 3.16 W kg(-1). Temperatures were measured using fluoroptic probes at the scalp, first and second electrodes from the distal lead tip, and 6 mm distal from electrode 1 (T(6 mm)). The heating was modeled using the maximum T(6 mm) and imaged using a proton resonance frequency shift-based MR thermometry method. Results showed that the heating was significantly reduced when the extra-cranial lead was placed in the longitudinal direction compared to the other placements (peak temperature change = 1.5-3.2 °C versus 5.1-24.7 °C). Thermal modeling and MR thermometry may be used together to determine the heating and improve patient safety online.
Collapse
Affiliation(s)
- Devashish Shrivastava
- Center for Magnetic Resonance Research, University of Minnesota, 2021, 6th St SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shrivastava D, Hanson T, Kulesa J, Tian J, Adriany G, Vaughan JT. Radiofrequency heating in porcine models with a "large" 32 cm internal diameter, 7 T (296 MHz) head coil. Magn Reson Med 2011; 66:255-63. [PMID: 21337423 PMCID: PMC3339408 DOI: 10.1002/mrm.22790] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 01/22/2023]
Abstract
Temperatures were measured in vivo in four pigs (mean animal weight = 110.75 kg and standard deviation = 6.13 kg) due to a continuous wave radiofrequency (RF) power irradiation with a 31.75 cm internal diameter and a 15.24 cm long, 7 T (296 MHz), eight channel, transverse electromagnetic head coil. The temperatures were measured in the subcutaneous layer of the scalp, 5, 10, 15, and 20 mm deep in the brain, and rectum using fluoroptic temperature probes. The RF power was delivered to the pig's head for ∼3 h (mean deposition time = 3.14 h and standard deviation = 0.06 h) at the whole head average specific absorption rate of ∼3 W kg(-1) (mean average specific absorption rate = 3.08 W kg(-1) and standard deviation = 0.09 W kg(-1)). Next, simple bioheat transfer models were used to simulate the RF power induced temperature changes. Results show that the RF power produced uniform temperature changes in the pigs' heads (mean temperature change = 1.68°C and standard deviation = 0.13°C) with no plateau achieved during the heating. No thermoregulatory alterations were detected due to the heating because the temperature responses of the pre-RF and post-RF epochs were not statistically significantly different. Simple, validated bioheat models may provide accurate temperature changes.
Collapse
Affiliation(s)
- Devashish Shrivastava
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Comments on Point:Counterpoint: Humans do/do not demonstrate selective brain cooling during hyperthermia. J Appl Physiol (1985) 2011; 110:575-80. [DOI: 10.1152/japplphysiol.01375.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Shrivastava D, Abosch A, Hanson T, Tian J, Gupte A, Iaizzo PA, Vaughan JT. Effect of the extracranial deep brain stimulation lead on radiofrequency heating at 9.4 Tesla (400.2 MHz). J Magn Reson Imaging 2011; 32:600-7. [PMID: 20815057 DOI: 10.1002/jmri.22292] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To study the effect of the extracranial portion of a deep brain stimulation (DBS) lead on radiofrequency (RF) heating with a transmit and receive 9.4 Tesla head coil. MATERIALS AND METHODS The RF heating was studied in four excised porcine heads (mean animal head weight = 5.46 +/- 0.14 kg) for each of the following two extracranial DBS lead orientations: one, parallel to the coil axial direction; two, perpendicular to the coil axial direction (i.e., azimuthal). Temperatures were measured using fluoroptic probes at four locations: one, scalp; two, near the second DBS lead electrode-brain contact; three, near the distal tip of the DBS lead; and four, air surrounding the head. A continuous wave RF power was delivered to each head for 15 min using the coil. Net, delivered RF power was measured at the coil (mean whole head average specific absorption rate = 2.94 +/- 0.08 W/kg). RESULTS RF heating was significantly reduced when the extracranial DBS lead was placed in the axial direction (temperature change = 0-5 degrees C) compared with the azimuthal direction (temperature change = 1-27 degrees C). CONCLUSION Development of protocols seems feasible to keep RF heating near DBS electrodes clinically safe during ultra-high field head imaging.
Collapse
Affiliation(s)
- Devashish Shrivastava
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Feng Y, Fuentes D. Model-based planning and real-time predictive control for laser-induced thermal therapy. Int J Hyperthermia 2011; 27:751-61. [PMID: 22098360 PMCID: PMC3930104 DOI: 10.3109/02656736.2011.611962] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this article, the major idea and mathematical aspects of model-based planning and real-time predictive control for laser-induced thermal therapy (LITT) are presented. In particular, a computational framework and its major components developed by authors in recent years are reviewed. The framework provides the backbone for not only treatment planning but also real-time surgical monitoring and control with a focus on MR thermometry enabled predictive control and applications to image-guided LITT, or MRgLITT. Although this computational framework is designed for LITT in treating prostate cancer, it is further applicable to other thermal therapies in focal lesions induced by radio-frequency (RF), microwave and high-intensity-focused ultrasound (HIFU). Moreover, the model-based dynamic closed-loop predictive control algorithms in the framework, facilitated by the coupling of mathematical modelling and computer simulation with real-time imaging feedback, has great potential to enable a novel methodology in thermal medicine. Such technology could dramatically increase treatment efficacy and reduce morbidity.
Collapse
Affiliation(s)
- Yusheng Feng
- Computational Bioengineering and Control Lab, The University of Texas at San Antonio, USA.
| | | |
Collapse
|