1
|
Fesmire CC, Petrella RA, Williamson RH, Derks K, Ruff J, McParland T, O'Neil E, Fogle C, Prange T, Sano MB. Treatment of Spontaneous Tumors With Algorithmically Controlled Electroporation. IEEE Trans Biomed Eng 2024; 71:2814-2822. [PMID: 38683704 PMCID: PMC11447859 DOI: 10.1109/tbme.2024.3394391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To study the safety and efficacy of algorithmically controlled electroporation (ACE) against spontaneous equine melanoma. METHODS A custom temperature sensing coaxial electrode was paired with a high voltage pulse generation system with integrated temperature feedback controls. Computational modeling and ex vivo studies were conducted to evaluate the system's ability to achieve and maintain target temperatures. Twenty-five equine melanoma tumors were treated with a 2000 V protocol consisting of a 2-5-2 waveform, 45 °C temperature set point, and integrated energized times of 0.005 s, 0.01 s, or 0.02 s (2500x, 5000x, and 10000x 2 μs pulses, respectively). Patients returned 20-50 days post treatment to determine the efficacy of the treatment. RESULTS ACE temperature control algorithms successfully achieved and maintained target temperatures in a diverse population of spontaneous tumors with significant variation in tissue impedance. All treatments were completed successfully without and without adverse events. Complete response rates greater than 93% were achieved in all treatment groups. CONCLUSION ACE is a safe and effective treatment for spontaneous equine melanoma. The temperature control algorithm enabled rapid delivery of electroporation treatments without prior knowledge of tissue electrical or thermal properties and could adjust to real time changes in tissue properties. SIGNIFICANCE Real time temperature control in electroporation procedures enables treatments near critical structures where thermal damage is contraindicated. Unlike standard approaches, ACE protocols do not require extensive pretreatment planning or knowledge of tissue properties to determine an optimal energy delivery rate and they can account for changes in tissue state (e.g., perfusion) in real time to simultaneously minimize treatment time and potential for thermal damage.
Collapse
|
2
|
Dai R, Uppot R, Arellano R, Kalva S. Image-guided Ablative Procedures. Clin Oncol (R Coll Radiol) 2024; 36:484-497. [PMID: 38087706 DOI: 10.1016/j.clon.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 07/09/2024]
Abstract
Various image-guided ablative procedures include chemical and thermal ablation techniques and irreversible electroporation. These have been used for curative intent for small tumours and palliative intent for debulking, immunogenicity and pain control. Understanding these techniques is critical to avoiding complications and achieving superior clinical outcomes. Additionally, combination with immunotherapy and chemotherapies is rapidly evolving. There are numerous opportunities in interventional radiology to advance ablation techniques and seamlessly integrate into current treatment regimens for both benign and malignant tumours.
Collapse
Affiliation(s)
- R Dai
- Massachusetts General Hospital, Department of Radiology, Division of Intervention Radiology, Boston, Massachusetts, USA.
| | - R Uppot
- Massachusetts General Hospital, Department of Radiology, Division of Intervention Radiology, Boston, Massachusetts, USA
| | - R Arellano
- Massachusetts General Hospital, Department of Radiology, Division of Intervention Radiology, Boston, Massachusetts, USA
| | - S Kalva
- Massachusetts General Hospital, Department of Radiology, Division of Intervention Radiology, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Rajagopalan NR, Munawar T, Sheehan MC, Fujimori M, Vista WR, Wimmer T, Gutta NB, Solomon SB, Srimathveeravalli G. Electrolysis products, reactive oxygen species and ATP loss contribute to cell death following irreversible electroporation with microsecond-long pulsed electric fields. Bioelectrochemistry 2024; 155:108579. [PMID: 37769509 PMCID: PMC10841515 DOI: 10.1016/j.bioelechem.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Membrane permeabilization and thermal injury are the major cause of cell death during irreversible electroporation (IRE) performed using high electric field strength (EFS) and small number of pulses. In this study, we explored cell death under conditions of reduced EFS and prolonged pulse application, identifying the contributions of electrolysis, reactive oxygen species (ROS) and ATP loss. We performed ablations with conventional high-voltage low pulse (HV-LP) and low-voltage high pulse (LV-HP) conditions in a 3D tumor mimic, finding equivalent ablation volumes when using 2000 V/cm 90 pulses or 1000 V/cm 900 pulses respectively. These results were confirmed by performing ablations in swine liver. In LV-HP treatment, ablation volume was found to increase proportionally with pulse numbers, without the substantial temperature increase seen with HV-LP parameters. Peri-electrode pH changes, ATP loss and ROS production were seen in both conditions, but LV-HP treatments were more sensitive to blocking of these forms of cell injury. Increases in current drawn during HV-LP was not observed during LV-HP condition where the total ablation volume correlated to the charge delivered into the tissue which was greater than HV-LP treatment. LV-HP treatment provides a new paradigm in using pulsed electric fields for tissue ablation with clinically relevant volumes.
Collapse
Affiliation(s)
| | - Tarek Munawar
- Department of Radiology, Interventional Radiology Service, Memorial Sloan-Kettering Cancer Center, NY, USA
| | - Mary Chase Sheehan
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - William-Ray Vista
- Department of Radiology, Interventional Radiology Service, Memorial Sloan-Kettering Cancer Center, NY, USA
| | - Thomas Wimmer
- Dept. of Radiology, Division of General Radiology, Medical University of Graz, Austria
| | | | - Stephen B Solomon
- Department of Radiology, Interventional Radiology Service, Memorial Sloan-Kettering Cancer Center, NY, USA
| | - Govindarajan Srimathveeravalli
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA; Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
4
|
Polajžer T, Miklavčič D. Immunogenic Cell Death in Electroporation-Based Therapies Depends on Pulse Waveform Characteristics. Vaccines (Basel) 2023; 11:1036. [PMID: 37376425 DOI: 10.3390/vaccines11061036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Traditionally, electroporation-based therapies such as electrochemotherapy (ECT), gene electrotransfer (GET) and irreversible electroporation (IRE) are performed with different but typical pulse durations-100 microseconds and 1-50 milliseconds. However, recent in vitro studies have shown that ECT, GET and IRE can be achieved with virtually any pulse duration (millisecond, microsecond, nanosecond) and pulse type (monopolar, bipolar-HFIRE), although with different efficiency. In electroporation-based therapies, immune response activation can affect treatment outcome, and the possibility of controlling and predicting immune response could improve the treatment. In this study, we investigated if different pulse durations and pulse types cause different or similar activations of the immune system by assessing DAMP release (ATP, HMGB1, calreticulin). Results show that DAMP release can be different when different pulse durations and pulse types are used. Nanosecond pulses seems to be the most immunogenic, as they can induce the release of all three main DAMP molecules-ATP, HMGB1 and calreticulin. The least immunogenic seem to be millisecond pulses, as only ATP release was detected and even that assumingly occurs due to increased permeability of the cell membrane. Overall, it seems that DAMP release and immune response in electroporation-based therapies can be controlled though pulse duration.
Collapse
Affiliation(s)
- Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Müller WA, Sarkis JR, Marczak LDF, Muniz AR. Molecular dynamics insights on temperature and pressure effects on electroporation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184049. [PMID: 36113558 DOI: 10.1016/j.bbamem.2022.184049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Electroporation is a cell-level phenomenon caused by an ionic imbalance in the membrane, being of great relevance in various fields of knowledge. A dependence of the pore formation kinetics on the environmental conditions (temperature and pressure) of the cell membrane has already been reported, but further clarification regarding how these variables affect the pore formation/resealing dynamics and the transport of molecules through the membrane is still lacking. The objective of the present study was to investigate the temperature (288-348 K) and pressure (1-5000 atm) effects on the electroporation kinetics using coarse-grained molecular dynamics simulations. Results shown that the time for pore formation and resealing increased with pressure and decreased with temperature, whereas the maximum pore radius increased with temperature and decreased with pressure. This behavior influenced the ion migration through the bilayer, and the higher ionic mobility was obtained in the 288 K/1000 atm simulations, i.e., a combination of low temperature and (not excessively) high pressure. These results were used to discuss some experimental observations regarding the extraction of intracellular compounds applying this technique. This study contributes to a better understanding of electroporation under different thermodynamic conditions and to an optimal selection of processing parameters in practical applications which exploit this phenomenon.
Collapse
Affiliation(s)
- Wagner Augusto Müller
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | - Júlia Ribeiro Sarkis
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | | | - André Rodrigues Muniz
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Sano MB, DeWitt MR. Thermochromic Tissue Phantoms for Evaluating Temperature Distribution in Simulated Clinical Applications of Pulsed Electric Field Therapies. Bioelectricity 2020; 2:362-371. [PMID: 34476365 PMCID: PMC8370349 DOI: 10.1089/bioe.2020.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Irreversible electroporation (IRE) induces cell death through nonthermal mechanisms, however, in extreme cases, the treatments can induce deleterious thermal transients. This study utilizes a thermochromic tissue phantom to enable visualization of regions exposed to temperatures above 60°C. Materials and Methods: Poly(vinyl alcohol) hydrogels supplemented with thermochromic ink were characterized and processed to match the electrical properties of liver tissue. Three thousand volt high-frequency IRE protocols were administered with delivery rates of 100 and 200 μs/s. The effect of supplemental internal applicator cooling was then characterized. Results: Baseline treatments resulted thermal areas of 0.73 cm2, which decreased to 0.05 cm2 with electrode cooling. Increased delivery rates (200 μs/s) resulted in thermal areas of 1.5 and 0.6 cm2 without and with cooling, respectively. Conclusions: Thermochromic tissue phantoms enable rapid characterization of thermal effects associated with pulsed electric field treatments. Active cooling of applicators can significantly reduce the quantity of tissue exposed to deleterious temperatures.
Collapse
Affiliation(s)
- Michael B. Sano
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, North Carolina, USA
| | | |
Collapse
|
7
|
Petrella RA, Fesmire CC, Kaufman JD, Topasna N, Sano MB. Algorithmically Controlled Electroporation: A Technique for Closed Loop Temperature Regulated Pulsed Electric Field Cancer Ablation. IEEE Trans Biomed Eng 2020; 67:2176-2186. [PMID: 32673194 DOI: 10.1109/tbme.2019.2956537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate the effect of a closed-loop temperature based feedback algorithm on ablative outcomes for pulsed electric field treatments. METHODS A 3D tumor model of glioblastoma was used to assess the impact of 2 μs duration bipolar waveforms on viability following exposure to open and closed-loop protocols. Closed-loop treatments evaluated transient temperature increases of 5, 10, 15, or 22 °C above baseline. RESULTS The temperature controlled ablation diameters were conditionally different than the open-loop treatments and closed-loop treatments generally produced smaller ablations. Closed-loop control enabled the investigation of treatments with steady state 42 °C hyperthermic conditions which were not feasible without active feedback. Baseline closed-loop treatments at 20 °C resulted in ablations measuring 9.9 ± 0.3 mm in diameter while 37 °C treatments were 20% larger (p < 0.0001) measuring 11.8 ± 0.3 mm indicating that this protocol induces a thermally mediated biological response. CONCLUSION A closed-loop control algorithm which modulated the delay between successive pulse waveforms to achieve stable target temperatures was demonstrated. Algorithmic control enabled the evaluation of specific treatment parameters at physiological temperatures not possible with open-loop systems due to excessive Joule heating. SIGNIFICANCE Irreversible electroporation is generally considered to be a non-thermal ablation modality and temperature monitoring is not part of the standard clinical practice. The results of this study indicate ablative outcomes due to exposure to pulses on the order of one microsecond may be thermally mediated and dependent on local tissue temperatures. The results of this study set the foundation for experiments in vivo utilizing temperature control algorithms.
Collapse
|
8
|
Agnass P, van Veldhuisen E, van Gemert MJC, van der Geld CWM, van Lienden KP, van Gulik TM, Meijerink MR, Besselink MG, Kok HP, Crezee J. Mathematical modeling of the thermal effects of irreversible electroporation for in vitro, in vivo, and clinical use: a systematic review. Int J Hyperthermia 2020; 37:486-505. [DOI: 10.1080/02656736.2020.1753828] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pierre Agnass
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eran van Veldhuisen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martin J. C. van Gemert
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Cees W. M. van der Geld
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Krijn P. van Lienden
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas M. van Gulik
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martijn R. Meijerink
- Department of Radiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - H. Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Electro-Thermal Therapy Algorithms and Active Internal Electrode Cooling Reduce Thermal Injury in High Frequency Pulsed Electric Field Cancer Therapies. Ann Biomed Eng 2020; 49:191-202. [PMID: 32415482 DOI: 10.1007/s10439-020-02524-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Thermal tissue injury is an unintended consequence in current irreversible electroporation treatments due to the induction of Joule heating during the delivery of high voltage pulsed electric fields. In this study active temperature control measures including internal electrode cooling and dynamic energy delivery were investigated as a process for mitigating thermal injury during treatment. Ex vivo liver was used to examine the extent of thermal injury induced by 5000 V treatments with delivery rates up to five times faster than current clinical practice. Active internal cooling of the electrode resulted in a 36% decrease in peak temperature vs. non-cooled control treatments. A temperature based feedback algorithm (electro-thermal therapy) was demonstrated as capable of maintaining steady state tissue temperatures between 30 and 80 °C with and without internal electrode cooling. Thermal injury volumes of 2.6 cm3 were observed for protocols with 60 °C temperature set points and electrode cooling. This volume reduced to 1.5 and 0.1 cm3 for equivalent treatments with 50 °C and 40 °C set points. Finally, it was demonstrated that the addition of internal electrode cooling and active temperature control algorithms reduced ETT treatment times by 84% (from 343 to 54 s) vs. non-cooled temperature control strategies with equivalent thermal injury volumes.
Collapse
|
10
|
Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model. Ann Biomed Eng 2020; 48:2233-2246. [PMID: 32409902 DOI: 10.1007/s10439-019-02423-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
Abstract
Electroporation is a bioelectric phenomenon used to deliver target molecules into cells in vitro and irreversible electroporation (IRE) is an emerging cancer therapy used to treat inoperable tumors in situ. These phenomena are generally considered to be non-thermal in nature. In this study, a 3D tumor model was used to investigate the correlation between temperature and the effectiveness of standard clinical IRE and high frequency (H-FIRE) protocols. It was found for human glioblastoma cells that in the range of 2 to 37 °C the H-FIRE lethal electric field threshold value, which describes the minimum electric field to cause cell death, is highly dependent on temperature. Increasing the initial temperature from 2 to 37 °C resulted in a significant decrease in lethal electric field threshold from 1168 to 507 V/cm and a 139% increase in ablation size for H-FIRE burst treatments. Standard clinical protocol IRE treatments resulted in a decrease in lethal threshold from 485 to 453 V/cm and a 7% increase in ablation size over the same temperature range. Similar results were found for pancreatic cancer cells which indicate that tissue temperature may be a significant factor affecting H-FIRE ablation size and treatment planning in vivo while lower temperatures may be useful in maintaining cell viability for transfection applications.
Collapse
|
11
|
Ren F, Li Q, Gao X, Zhu K, Zhang J, Chen X, Yan X, Chu D, Hu L, Gao Z, Wu Z, Wu R, Lv Y. Electrical and thermal analyses of catheter-based irreversible electroporation of digestive tract. Int J Hyperthermia 2019; 36:854-867. [PMID: 31452435 DOI: 10.1080/02656736.2019.1646928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fenggang Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qingshan Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuyao Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi’an, China
| | - Kun Zhu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaopeng Yan
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dake Chu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Gastroenterology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liangshuo Hu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhongquan Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi’an, China
| | - Zheng Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Mi Y, Rui S, Li C, Yao C, Xu J, Bian C, Tang X. Multi-parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond-pulsed electric fields based on finite element simulation. Med Biol Eng Comput 2017; 55:1109-1122. [PMID: 27853990 PMCID: PMC5486631 DOI: 10.1007/s11517-016-1589-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 10/26/2016] [Indexed: 12/18/2022]
Abstract
High-frequency nanosecond-pulsed electric fields were recently introduced for tumor or abnormal tissue ablation to solve some problems of conventional electroporation. However, it is necessary to study the thermal effects of high-field-intensity nanosecond pulses inside tissues. The multi-parametric analysis performed here is based on a finite element model of liver tissue with a tumor that has been punctured by a pair of needle electrodes. The pulse voltage used in this study ranges from 1 to 4 kV, the pulse width ranges from 50 to 500 ns, and the repetition frequency is between 100 kHz and 1 MHz. The total pulse length is 100 μs, and the pulse burst repetition frequency is 1 Hz. Blood flow and metabolic heat generation have also been considered. Results indicate that the maximum instantaneous temperature at 100 µs can reach 49 °C, with a maximum instantaneous temperature at 1 s of 40 °C, and will not cause thermal damage during single pulse bursts. By parameter fitting, we can obtain maximum instantaneous temperature at 100 µs and 1 s for any parameter values. However, higher temperatures will be achieved and may cause thermal damage when multiple pulse bursts are applied. These results provide theoretical basis of pulse parameter selection for future experimental researches.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, No.174, Shazhengjie Street, Shapingba District, Chongqing, China
| | - Shaoqin Rui
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, No.174, Shazhengjie Street, Shapingba District, Chongqing, China
- The State Grid Tianjin Power Maintenance Company, No.42, Nankou Street, Hebei District, Tianjin, China
| | - Chengxiang Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, No.174, Shazhengjie Street, Shapingba District, Chongqing, China.
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, No.174, Shazhengjie Street, Shapingba District, Chongqing, China
| | - Jin Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, No.174, Shazhengjie Street, Shapingba District, Chongqing, China
| | - Changhao Bian
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, No.174, Shazhengjie Street, Shapingba District, Chongqing, China
| | - Xuefeng Tang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, No.174, Shazhengjie Street, Shapingba District, Chongqing, China
| |
Collapse
|
13
|
Grys M, Madeja Z, Korohoda W. Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival. Cell Mol Biol Lett 2017; 22:1. [PMID: 28536632 PMCID: PMC5415820 DOI: 10.1186/s11658-016-0030-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/07/2016] [Indexed: 11/23/2022] Open
Abstract
Background The harmful side effects of electroporation to cells due to local changes in pH, the appearance of toxic electrode products, temperature increase, and the heterogeneity of the electric field acting on cells in the cuvettes used for electroporation were observed and discussed in several laboratories. If cells are subjected to weak electric fields for prolonged periods, for example in experiments on cell electrophoresis or galvanotaxis the same effects are seen. In these experiments investigators managed to reduce or eliminate the harmful side effects of electric current application. Methods For the experiments, disposable 20 μl cuvettes with two walls made of dialysis membranes were constructed and placed in a locally focused electric field at a considerable distance from the electrodes. Cuvettes were mounted into an apparatus for horizontal electrophoresis and the cells were subjected to direct current electric field (dcEF) pulses from a commercial pulse generator of exponentially declining pulses and from a custom-made generator of double and single rectangular pulses. Results More than 80% of the electroporated cells survived the dcEF pulses in both systems. Side effects related to electrodes were eliminated in both the flow through the dcEF and in the disposable cuvettes placed in the focused dcEFs. With a disposable cuvette system, we also confirmed the sensitization of cells to a dcEF using procaine by observing the loading of AT2 cells with calceine and using a square pulse generator, applying 50 ms single rectangular pulses. Conclusions We suggest that the same methods of avoiding the side effects of electric current pulse application as in cell electrophoresis and galvanotaxis should also be used for electroporation. This conclusion was confirmed in our electroporation experiments performed in conditions assuring survival of over 80% of the electroporated cells. If the amplitude, duration, and shape of the dcEF pulse are known, then electroporation does not depend on the type of pulse generator. This knowledge of the characteristics of the pulse assures reproducibility of electroporation experiments using different equipment.
Collapse
Affiliation(s)
- Maciej Grys
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Włodzimierz Korohoda
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| |
Collapse
|
14
|
Langus J, Kranjc M, Kos B, Šuštar T, Miklavčič D. Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue. Sci Rep 2016; 6:26409. [PMID: 27211822 PMCID: PMC4876422 DOI: 10.1038/srep26409] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
In silico experiments (numerical simulations) are a valuable tool for non-invasive research of the influences of tissue properties, electrode placement and electric pulse delivery scenarios in the process of electroporation. The work described in this article was aimed at introducing time dependent effects into a finite element model developed specifically for electroporation. Reference measurements were made ex vivo on beef liver samples and experimental data were used both as an initial condition for simulation (applied pulse voltage) and as a reference value for numerical model calibration (measured pulse current). The developed numerical model is able to predict the time evolution of an electric pulse current within a 5% error over a broad range of applied pulse voltages, pulse durations and pulse repetition frequencies. Given the good agreement of the current flowing between the electrodes, we are confident that the results of our numerical model can be used both for detailed in silico research of electroporation mechanisms (giving researchers insight into time domain effects) and better treatment planning algorithms, which predict the outcome of treatment based on both spatial and temporal distributions of applied electric pulses.
Collapse
Affiliation(s)
- J Langus
- C3M d.o.o., Technology park 21, SI-1000 Ljubljana, Slovenia
| | - M Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| | - B Kos
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| | - T Šuštar
- C3M d.o.o., Technology park 21, SI-1000 Ljubljana, Slovenia
| | - D Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Jiang C, Davalos RV, Bischof JC. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 2015; 62:4-20. [PMID: 25389236 DOI: 10.1109/tbme.2014.2367543] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The use of irreversible electroporation (IRE) for cancer treatment has increased sharply over the past decade. As a nonthermal therapy, IRE offers several potential benefits over other focal therapies, which include 1) short treatment delivery time, 2) reduced collateral thermal injury, and 3) the ability to treat tumors adjacent to major blood vessels. These advantages have stimulated widespread interest in basic through clinical studies of IRE. For instance, many in vitro and in vivo studies now identify treatment planning protocols (IRE threshold, pulse parameters, etc.), electrode delivery (electrode design, placement, intraoperative imaging methods, etc.), injury evaluation (methods and timing), and treatment efficacy in different cancer models. Therefore, this study reviews the in vitro, translational, and clinical studies of IRE cancer therapy based on major experimental studies particularly within the past decade. Further, this study provides organized data and facts to assist further research, optimization, and clinical applications of IRE.
Collapse
|
16
|
Davalos RV, Bhonsle S, Neal RE. Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy. Prostate 2015; 75:1114-8. [PMID: 25809014 PMCID: PMC6680146 DOI: 10.1002/pros.22986] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 12/18/2022]
Abstract
Irreversible electroporation (IRE) describes a cellular response to electric field exposure, resulting in the formation of nanoscale defects that can lead to cell death. While this behavior occurs independently of thermally-induced processes, therapeutic ablation of targeted tissues with IRE uses a series of brief electric pulses, whose parameters result in secondary Joule heating of the tissue. Where contemporary clinical pulse protocols use aggressive energy regimes, additional evidence is supplementing original studies that assert care must be taken in clinical ablation protocols to ensure the cumulative thermal effects do not induce damage that will alter outcomes for therapies using the IRE non-thermal cell death process for tissue ablation. In this letter, we seek to clarify the nomenclature regarding IRE as a non-thermal ablation technique, as well as identify existing literature that uses experimental, clinical, and numerical results to discretely address and evaluate the thermal considerations relevant when applying IRE in clinical scenarios, including several approaches for reducing these effects. Existing evidence in the literature describes cell response to electric fields, suggesting cell death from IRE is a unique process, independent from traditional thermal damage. Numerical simulations, as well as preclinical and clinical findings demonstrate the ability to deliver therapeutic IRE ablation without occurrence of morbidity associated with thermal therapies. Clinical IRE therapy generates thermal effects, which may moderate the non-thermal aspects of IRE ablation. Appropriate protocol development, utilization, and pulse delivery devices may be implemented to restrain these effects and maintain IRE as the vastly predominant tissue death modality, reducing therapy-mitigating thermal damage. Clinical applications of IRE should consider thermal effects and employ protocols to ensure safe and effective therapy delivery.
Collapse
Affiliation(s)
- Rafael V. Davalos
- School of Biomedical Engineering and SciencesVirginia TechBlacksburgVirginia
| | - Suyashree Bhonsle
- School of Biomedical Engineering and SciencesVirginia TechBlacksburgVirginia
| | | |
Collapse
|
17
|
Phillips M. The effect of small intestine heterogeneity on irreversible electroporation treatment planning. J Biomech Eng 2015; 136:091009. [PMID: 24907451 DOI: 10.1115/1.4027815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/09/2014] [Indexed: 11/08/2022]
Abstract
Nonthermal irreversible electroporation (NTIRE) is an ablation modality that utilizes microsecond electric fields to produce nanoscale defects in the cell membrane. This results in selective cell death while preserving all other molecules, including the extracellular matrix. Here, finite element analysis and experimental results are utilized to examine the effect of NTIRE on the small intestine due to concern over collateral damage to this organ during NTIRE treatment of abdominal cancers. During previous studies, the electrical treatment parameters were chosen based on a simplified homogeneous tissue model. The small intestine, however, has very distinct layers, and a more realistic model is needed to further develop this technology for precise clinical applications. This study uses a two-dimensional finite element solution of the Laplace and heat conduction equations to investigate how small intestine heterogeneities affect the electric field and temperature distribution. Experimental results obtained by applying NTIRE to the rat small intestine in vivo support the heterogeneous effect of NTIRE on the tissue. The numerical modeling indicates that the electroporation parameters chosen for this study avoid thermal damage to the tissue. This is supported by histology obtained from the in vivo study, which showed preservation of extracellular structures. The finite element model also indicates that the heterogeneous structure of the small intestine has a significant effect on the electric field and volume of cell ablation during electroporation and could have a large impact on the extent of treatment. The heterogeneous nature of the tissue should be accounted for in clinical treatment planning.
Collapse
|
18
|
Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One 2014; 9:e103083. [PMID: 25115970 PMCID: PMC4130512 DOI: 10.1371/journal.pone.0103083] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/27/2014] [Indexed: 12/18/2022] Open
Abstract
Electroporation-based therapies are powerful biotechnological tools for enhancing the delivery of exogeneous agents or killing tissue with pulsed electric fields (PEFs). Electrochemotherapy (ECT) and gene therapy based on gene electrotransfer (EGT) both use reversible electroporation to deliver chemotherapeutics or plasmid DNA into cells, respectively. In both ECT and EGT, the goal is to permeabilize the cell membrane while maintaining high cell viability in order to facilitate drug or gene transport into the cell cytoplasm and induce a therapeutic response. Irreversible electroporation (IRE) results in cell kill due to exposure to PEFs without drugs and is under clinical evaluation for treating otherwise unresectable tumors. These PEF therapies rely mainly on the electric field distributions and do not require changes in tissue temperature for their effectiveness. However, in immediate vicinity of the electrodes the treatment may results in cell kill due to thermal damage because of the inhomogeneous electric field distribution and high current density during the electroporation-based therapies. Therefore, the main objective of this numerical study is to evaluate the influence of pulse number and electrical conductivity in the predicted cell kill zone due to irreversible electroporation and thermal damage. Specifically, we simulated a typical IRE protocol that employs ninety 100-µs PEFs. Our results confirm that it is possible to achieve predominant cell kill due to electroporation if the PEF parameters are chosen carefully. However, if either the pulse number and/or the tissue conductivity are too high, there is also potential to achieve cell kill due to thermal damage in the immediate vicinity of the electrodes. Therefore, it is critical for physicians to be mindful of placement of electrodes with respect to critical tissue structures and treatment parameters in order to maintain the non-thermal benefits of electroporation and prevent unnecessary damage to surrounding healthy tissue, critical vascular structures, and/or adjacent organs.
Collapse
Affiliation(s)
- Paulo A. Garcia
- Bioelectromechanical Systems Laboratory, Virginia Tech – Wake Forest University, Blacksburg, Virginia, United States of America
| | - Rafael V. Davalos
- Bioelectromechanical Systems Laboratory, Virginia Tech – Wake Forest University, Blacksburg, Virginia, United States of America
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| |
Collapse
|
19
|
Neal RE, Millar JL, Kavnoudias H, Royce P, Rosenfeldt F, Pham A, Smith R, Davalos RV, Thomson KR. In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation. Prostate 2014; 74:458-68. [PMID: 24442790 DOI: 10.1002/pros.22760] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Irreversible electroporation (IRE) delivers brief electric pulses to attain non-thermal focal ablation that spares vasculature and other sensitive systems. It is a promising prostate cancer treatment due to sparing of the tissues associated with morbidity risk from conventional therapies. IRE effects depend on electric field strength and tissue properties. These characteristics are organ-dependent, affecting IRE treatment outcomes. This study characterizes the relevant properties to improve treatment planning and outcome predictions for IRE prostate cancer treatment. METHODS Clinically relevant IRE pulse protocols were delivered to a healthy canine and two human cancerous prostates while measuring electrical parameters to determine tissue characteristics for predictive treatment simulations. Prostates were resected 5 hr, 3 weeks, and 4 weeks post-IRE. Lesions were correlated with numerical simulations to determine an effective prostate lethal IRE electric field threshold. RESULTS Lesions were produced in all subjects. Tissue electrical conductivity increased from 0.284 to 0.927 S/m due to IRE pulses. Numerical simulations show an average effective prostate electric field threshold of 1072 ± 119 V/cm, significantly higher than previously characterized tissues. Histological findings in the human cases show instances of complete tissue necrosis centrally with variable tissue effects beyond the margin. CONCLUSIONS Preliminary experimental IRE trials safely ablated healthy canine and cancerous human prostates, as examined in the short- and medium-term. IRE-relevant prostate properties are now experimentally and numerically defined. Importantly, the electric field required to kill healthy prostate tissue is substantially higher than previously characterized tissues. These findings can be applied to optimize IRE prostate cancer treatment protocols.
Collapse
Affiliation(s)
- Robert E Neal
- Department of Radiology, The Alfred Hospital, Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Long G, Bakos G, Shires PK, Gritter L, Crissman JW, Harris JL, Clymer JW. Histological and finite element analysis of cell death due to irreversible electroporation. Technol Cancer Res Treat 2013; 13:561-9. [PMID: 24000980 PMCID: PMC4527427 DOI: 10.7785/tcrtexpress.2013.600253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Irreversible electroporation (IRE) has been shown to be an effective method of killing cells locally. In contrast to radiofrequency ablation, the mechanism by which cells are thought to die via IRE is the creation of pores in cell membranes, without substantial increase in tissue temperature. To determine the degree to which cell death is non-thermal, we evaluated IRE in porcine hepatocytes in vivo. Using pulse widths of 10μs, bursts of 3 kV square-wave pulses were applied through a custom probe to the liver of an anesthetized pig. Affected tissue was evaluated histologically via stainings of hematoxylin & eosin (H&E), nitroblue tetrazolium (NBT) to monitor cell respiration and TUNEL to gauge apoptosis. Temperature was measured during the application of electroporation, and heat transfer was modeled via finite element analysis. Cell death was calculated via Arrhenius kinetics. Four distinct zones were observed within the ring return electrode; heat-fixed tissue, coagulation, necrotic, and viable. The Arrhenius damage integral estimated complete cell death only in the first zone, where the temperature exceeded 70°C, and partial or no cell death in the other zones, where maximum temperature was approximately 45°C. Except for a limited area near the electrode tip, cell death in IRE is predominantly due to a non-thermal mechanism.
Collapse
Affiliation(s)
- G Long
- Ethicon Endo-Surgery, Inc., 4545 Creek R, Cincinnati OH 45242.
| | | | | | | | | | | | | |
Collapse
|
21
|
Jiang C, Qin Z, Bischof J. Membrane-targeting approaches for enhanced cancer cell destruction with irreversible electroporation. Ann Biomed Eng 2013; 42:193-204. [PMID: 23949655 DOI: 10.1007/s10439-013-0882-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/25/2013] [Indexed: 12/18/2022]
Abstract
Irreversible electroporation (IRE) is a promising technology to treat local malignant cancer using short, high-voltage electric pulses. Unfortunately, in vivo studies show that IRE suffers from an inability to destroy large volumes of cancer tissue without introduction of cytotoxic agents and/or increasing the applied electrical dose to dangerous levels. This research will address this limitation by leveraging membrane-targeting mechanisms that increase lethal membrane permeabilization. Methods that directly modify membrane properties or change the pulse delivery timing are proposed that do not rely on cytotoxic agents. This work shows that significant enhancement (67-75% more cell destruction in vitro and >100% treatment volume increase in vivo) can be achieved using membrane-targeting approaches for IRE cancer destruction. The methods introduced are surfactants (i.e., DMSO) and pulse timing which are low cost, non-toxic, and easy to be incorporated into existing clinical use. Moreover, when needed, these methods can also be combined with electrochemotherapy to further enhance IRE treatment efficacy.
Collapse
Affiliation(s)
- Chunlan Jiang
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
22
|
Whitney J, DeWitt M, Whited BM, Carswell W, Simon A, Rylander CG, Rylander MN. 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy. NANOTECHNOLOGY 2013; 24:275102. [PMID: 23780336 PMCID: PMC3786715 DOI: 10.1088/0957-4484/24/27/275102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A new image analysis method called the spatial phantom evaluation of cellular thermal response in layers (SPECTRL) is presented for assessing spatial viability response to nanoparticle enhanced photothermal therapy in tissue representative phantoms. Sodium alginate phantoms seeded with MDA-MB-231 breast cancer cells and single-walled nanohorns were laser irradiated with an ytterbium fiber laser at a wavelength of 1064 nm and irradiance of 3.8 W cm(-2) for 10-80 s. SPECTRL quantitatively assessed and correlated 3D viability with spatiotemporal temperature. Based on this analysis, kill and transition zones increased from 3.7 mm(3) and 13 mm(3) respectively to 44.5 mm(3) and 44.3 mm(3) as duration was increased from 10 to 80 s. SPECTRL provides a quantitative tool for measuring precise spatial treatment regions, providing information necessary to tailor therapy protocols.
Collapse
Affiliation(s)
- Jon Whitney
- Department of Mechanical Engineering, Virgina Tech., Blacksburg, VA 24061, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Imaging Assessment of Hepatocellular Carcinoma Response to Locoregional and Systemic Therapy. AJR Am J Roentgenol 2013; 201:80-96. [DOI: 10.2214/ajr.13.10706] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Rossmeisl JH, Garcia PA, Roberston JL, Ellis TL, Davalos RV. Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain. J Vet Sci 2013; 14:433-40. [PMID: 23820168 PMCID: PMC3885737 DOI: 10.4142/jvs.2013.14.4.433] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/28/2013] [Indexed: 12/18/2022] Open
Abstract
This study describes the neuropathologic features of normal canine brain ablated with non-thermal irreversible electroporation (N-TIRE). The parietal cerebral cortices of four dogs were treated with N-TIRE using a dose-escalation protocol with an additional dog receiving sham treatment. Animals were allowed to recover following N-TIRE ablation and the effects of treatment were monitored with clinical and magnetic resonance imaging examinations. Brains were subjected to histopathologic and ultrastructural assessment along with Bcl-2, caspase-3, and caspase-9 immunohistochemical staining following sacrifice 72 h post-treatment. Adverse clinical effects of N-TIRE were only observed in the dog treated at the upper energy tier. MRI and neuropathologic examinations indicated that N-TIRE ablation resulted in focal regions of severe cytoarchitectural and blood-brain-barrier disruption. Lesion size correlated to the intensity of the applied electrical field. N-TIRE-induced lesions were characterized by parenchymal necrosis and hemorrhage; however, large blood vessels were preserved. A transition zone containing parenchymal edema, perivascular inflammatory cuffs, and reactive gliosis was interspersed between the necrotic focus and normal neuropil. Apoptotic labeling indices were not different between the N-TIRE-treated and control brains. This study identified N-TIRE pulse parameters that can be used to safely create circumscribed foci of brain necrosis while selectively preserving major vascular structures.
Collapse
Affiliation(s)
- John H Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
25
|
A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation. Biophys J 2013. [PMID: 23199931 DOI: 10.1016/j.bpj.2012.09.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation (IRE) is emerging as a powerful tool for tumor ablation that utilizes pulsed electric fields to destabilize the plasma membrane of cancer cells past the point of recovery. The ablated region is dictated primarily by the electric field distribution in the tissue, which forms the basis of current treatment planning algorithms. To generate data for refinement of these algorithms, there is a need to develop a physiologically accurate and reproducible platform on which to study IRE in vitro. Here, IRE was performed on a 3D in vitro tumor model consisting of cancer cells cultured within dense collagen I hydrogels, which have been shown to acquire phenotypes and respond to therapeutic stimuli in a manner analogous to that observed in in vivo pathological systems. Electrical and thermal fluctuations were monitored during treatment, and this information was incorporated into a numerical model for predicting the electric field distribution in the tumors. When correlated with Live/Dead staining of the tumors, an electric field threshold for cell death (500 V/cm) comparable to values reported in vivo was generated. In addition, submillimeter resolution was observed at the boundary between the treated and untreated regions, which is characteristic of in vivo IRE. Overall, these results illustrate the advantages of using 3D cancer cell culture models to improve IRE-treatment planning and facilitate widespread clinical use of the technology.
Collapse
|
26
|
Korohoda W, Grys M, Madeja Z. Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field. Cell Mol Biol Lett 2013; 18:102-19. [PMID: 23271434 PMCID: PMC6275693 DOI: 10.2478/s11658-012-0042-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/17/2012] [Indexed: 11/20/2022] Open
Abstract
Experiments on reversible and irreversible cell electroporation were carried out with an experimental setup based on a standard apparatus for horizontal electrophoresis, a syringe pump with regulated cell suspension flow velocity and a dcEF power supply. Cells in suspension flowing through an orifice in a barrier inserted into the electrophoresis apparatus were exposed to defined localized dcEFs in the range of 0-1000 V/cm for a selected duration in the range 10-1000 ms. This method permitted the determination of the viability of irreversibly electroperforated cells. It also showed that the uptake by reversibly electroperforated cells of fluorescent dyes (calcein, carboxyfluorescein, Alexa Fluor 488 Phalloidin), which otherwise do not penetrate cell membranes, was dependent upon the dcEF strength and duration in any given single electrical field exposure. The method yields reproducible results, makes it easy to load large volumes of cell suspensions with membrane non-penetrating substances, and permits the elimination of irreversibly electroporated cells of diameter greater than desired. The results concur with and elaborate on those in earlier reports on cell electroporation in commercially available electroporators. They proved once more that the observed cell perforation does not depend upon the thermal effects of the electric current upon cells. In addition, the method eliminates many of the limitations of commercial electroporators and disposable electroporation chambers. It permits the optimization of conditions in which reversible and irreversible electroporation are separated. Over 90% of reversibly electroporated cells remain viable after one short (less than 400 ms) exposure to the localized dcEF. Experiments were conducted with the AT-2 cancer prostate cell line, human skin fibroblasts and human red blood cells, but they could be run with suspensions of any cell type. It is postulated that the described method could be useful for many purposes in biotechnology and biomedicine and could help optimize conditions for in vivo use of both reversible and irreversible electroporation.
Collapse
Affiliation(s)
- Włodzimierz Korohoda
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Maciej Grys
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| |
Collapse
|
27
|
Qin Z, Jiang J, Long G, Lindgren B, Bischof JC. Irreversible electroporation: an in vivo study with dorsal skin fold chamber. Ann Biomed Eng 2012. [PMID: 23180025 DOI: 10.1007/s10439-012-0686-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Irreversible electroporation (IRE) has been proposed to destroy large amounts of tumorous tissue and shows advantages over thermal therapies. Unfortunately, carefully constructed studies assessing impact in in vivo tumor systems and a direct comparison of IRE with thermal therapy are lacking. In this study, we investigate the effect of IRE in a human prostate cancer (LNCaP) grown in a thin, essentially two-dimensional, dorsal skin fold chamber system. Detailed experimental characterizations of the electrical and thermal responses of the tissue were performed yielding the first thermal response measurement in vivo of its kind that we are aware of. The interaction and coupling of electrical and thermal responses were further discussed. The threshold of the tumor injury was determined for human prostate tumor model, and the threshold value (600-1300 V cm(-1)) is dependent on the IRE parameters including pulse duration and pulse number. This dependence was explained in the context of tissue electrical conductivity change during IRE. Further, the thermal injury was found not to be a dominant factor in IRE with our system, which is in agreement with previous numerical studies. Finally, it appears that the local electrical heterogeneity of the tumor tissue reduces the effectiveness of IRE in some sections of the tumor (leading to live tumor patches).
Collapse
Affiliation(s)
- Zhenpeng Qin
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
28
|
Zupanic A, Kos B, Miklavcic D. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 2012; 57:5425-40. [PMID: 22864181 DOI: 10.1088/0031-9155/57/17/5425] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments.
Collapse
Affiliation(s)
- Anze Zupanic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
29
|
Kandušer M, Pavlin M. Gene Electrotransfer. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES VOLUME 15 2012. [DOI: 10.1016/b978-0-12-396533-2.00001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Garcia PA, Rossmeisl JH, Neal RE, Ellis TL, Davalos RV. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed Eng Online 2011; 10:34. [PMID: 21529373 PMCID: PMC3108916 DOI: 10.1186/1475-925x-10-34] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/30/2011] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Irreversible electroporation (IRE) is a new minimally invasive technique to kill undesirable tissue in a non-thermal manner. In order to maximize the benefits from an IRE procedure, the pulse parameters and electrode configuration must be optimized to achieve complete coverage of the targeted tissue while preventing thermal damage due to excessive Joule heating. METHODS We developed numerical simulations of typical protocols based on a previously published computed tomographic (CT) guided in vivo procedure. These models were adapted to assess the effects of temperature, electroporation, pulse duration, and repetition rate on the volumes of tissue undergoing IRE alone or in superposition with thermal damage. RESULTS Nine different combinations of voltage and pulse frequency were investigated, five of which resulted in IRE alone while four produced IRE in superposition with thermal damage. CONCLUSIONS The parametric study evaluated the influence of pulse frequency and applied voltage on treatment volumes, and refined a proposed method to delineate IRE from thermal damage. We confirm that determining an IRE treatment protocol requires incorporating all the physical effects of electroporation, and that these effects may have significant implications in treatment planning and outcome assessment. The goal of the manuscript is to provide the reader with the numerical methods to assess multiple-pulse electroporation treatment protocols in order to isolate IRE from thermal damage and capitalize on the benefits of a non-thermal mode of tissue ablation.
Collapse
Affiliation(s)
- Paulo A Garcia
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Blacksburg, VA, USA
| | - John H Rossmeisl
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Robert E Neal
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Blacksburg, VA, USA
| | - Thomas L Ellis
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Rafael V Davalos
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Blacksburg, VA, USA
| |
Collapse
|
31
|
Li W, Fan Q, Ji Z, Qiu X, Li Z. The effects of irreversible electroporation (IRE) on nerves. PLoS One 2011; 6:e18831. [PMID: 21533143 PMCID: PMC3077412 DOI: 10.1371/journal.pone.0018831] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/10/2011] [Indexed: 02/07/2023] Open
Abstract
Background If a critical nerve is circumferentially involved with tumor, radical surgery intended to cure the cancer must sacrifice the nerve. Loss of critical nerves may lead to serious consequences. In spite of the impressive technical advancements in nerve reconstruction, complete recovery and normalization of nerve function is difficult to achieve. Though irreversible electroporation (IRE) might be a promising choice to treat tumors near or involved critical nerve, the pathophysiology of the nerve after IRE treatment has not be clearly defined. Methods We applied IRE directly to a rat sciatic nerve to study the long term effects of IRE on the nerve. A sequence of 10 square pulses of 3800 V/cm, each 100 µs long was applied directly to rat sciatic nerves. In each animal of group I (IRE) the procedure was applied to produce a treated length of about 10 mm. In each animal of group II (Control) the electrodes were only applied directly on the sciatic nerve for the same time. Electrophysiological, histological, and functional studies were performed on immediately after and 3 days, 1 week, 3, 5, 7 and 10 weeks following surgery. Findings Electrophysiological, histological, and functional results show the nerve treated with IRE can attain full recovery after 7 weeks. Conclusion This finding is indicative of the preservation of nerve involving malignant tumors with respect to the application of IRE pulses to ablate tumors completely. In summary, IRE may be a promising treatment tool for any tumor involving nerves.
Collapse
Affiliation(s)
- Wei Li
- Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shanxi, China
| | - Qingyu Fan
- Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shanxi, China
| | - Zhenwei Ji
- Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shanxi, China
| | - Xiuchun Qiu
- Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shanxi, China
| | - Zhao Li
- Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shanxi, China
- * E-mail:
| |
Collapse
|
32
|
Long G, Shires PK, Plescia D, Beebe SJ, Kolb JF, Schoenbach KH. Targeted tissue ablation with nanosecond pulses. IEEE Trans Biomed Eng 2011; 58. [PMID: 21317072 DOI: 10.1109/tbme.2011.2113183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In-vivo porcine studies on the effect of nanosecond high voltage pulses on liver tissue have shown that cell death can be induced in well-defined tissue volumes without damaging collagen-predominant structures. Comparison of the experimental results with the results of a three-dimensional finite element model allowed us to determine the threshold electric field for cell death. For 30, 100 nanosecond long pulses this was found to be in the range from 12 to 15 kV/cm. Modelling of the temperature distribution in the tissue using Pennes' bioheat equation showed that the lethal effect of nanosecond pulses on cells is non-thermal. Muscle contractions, generally caused by high voltage pulses, were significantly reduced for the 100 nanosecond pulses compared to microsecond long pulses. The results of these studies indicate that high voltage nanosecond pulses reliably kill normal liver cells in vivo and therefore may be useful for liver tumor treatments.
Collapse
|
33
|
Zupanic A, Corovic S, Miklavcic D, Pavlin M. Numerical optimization of gene electrotransfer into muscle tissue. Biomed Eng Online 2010; 9:66. [PMID: 21050435 PMCID: PMC2990758 DOI: 10.1186/1475-925x-9-66] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/04/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Electroporation-based gene therapy and DNA vaccination are promising medical applications that depend on transfer of pDNA into target tissues with use of electric pulses. Gene electrotransfer efficiency depends on electrode configuration and electric pulse parameters, which determine the electric field distribution. Numerical modeling represents a fast and convenient method for optimization of gene electrotransfer parameters. We used numerical modeling, parameterization and numerical optimization to determine the optimum parameters for gene electrotransfer in muscle tissue. METHODS We built a 3D geometry of muscle tissue with two or six needle electrodes (two rows of three needle electrodes) inserted. We performed a parametric study and optimization based on a genetic algorithm to analyze the effects of distances between the electrodes, depth of insertion, orientation of electrodes with respect to muscle fibers and applied voltage on the electric field distribution. The quality of solutions were evaluated in terms of volumes of reversibly (desired) and irreversibly (undesired) electroporated muscle tissue and total electric current through the tissue. RESULTS Large volumes of reversibly electroporated muscle with relatively little damage can be achieved by using large distances between electrodes and large electrode insertion depths. Orienting the electrodes perpendicular to muscle fibers is significantly better than the parallel orientation for six needle electrodes, while for two electrodes the effect of orientation is not so pronounced. For each set of geometrical parameters, the window of optimal voltages is quite narrow, with lower voltages resulting in low volumes of reversibly electroporated tissue and higher voltages in high volumes of irreversibly electroporated tissue. Furthermore, we determined which applied voltages are needed to achieve the optimal field distribution for different distances between electrodes. CONCLUSION The presented numerical study of gene electrotransfer is the first that demonstrates optimization of parameters for gene electrotransfer on tissue level. Our method of modeling and optimization is generic and can be applied to different electrode configurations, pulsing protocols and different tissues. Such numerical models, together with knowledge of tissue properties can provide useful guidelines for researchers and physicians in selecting optimal parameters for in vivo gene electrotransfer, thus reducing the number of animals used in studies of gene therapy and DNA vaccination.
Collapse
Affiliation(s)
- Anze Zupanic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia
| | - Selma Corovic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia
| | - Mojca Pavlin
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia
| |
Collapse
|