1
|
Gao W, Wang C, Li Q, Zhang X, Yuan J, Li D, Sun Y, Chen Z, Gu Z. Application of medical imaging methods and artificial intelligence in tissue engineering and organ-on-a-chip. Front Bioeng Biotechnol 2022; 10:985692. [PMID: 36172022 PMCID: PMC9511994 DOI: 10.3389/fbioe.2022.985692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Organ-on-a-chip (OOC) is a new type of biochip technology. Various types of OOC systems have been developed rapidly in the past decade and found important applications in drug screening and precision medicine. However, due to the complexity in the structure of both the chip-body itself and the engineered-tissue inside, the imaging and analysis of OOC have still been a big challenge for biomedical researchers. Considering that medical imaging is moving towards higher spatial and temporal resolution and has more applications in tissue engineering, this paper aims to review medical imaging methods, including CT, micro-CT, MRI, small animal MRI, and OCT, and introduces the application of 3D printing in tissue engineering and OOC in which medical imaging plays an important role. The achievements of medical imaging assisted tissue engineering are reviewed, and the potential applications of medical imaging in organoids and OOC are discussed. Moreover, artificial intelligence - especially deep learning - has demonstrated its excellence in the analysis of medical imaging; we will also present the application of artificial intelligence in the image analysis of 3D tissues, especially for organoids developed in novel OOC systems.
Collapse
Affiliation(s)
- Wanying Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Science Researching and Training Center, Beijing, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xijing Zhang
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Dianfu Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Children’s Medical Imaging Research Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Takeuchi Y, Miyata S. Dielectrophoretic Micro-Organization of Chondrocytes to Regenerate Mechanically Anisotropic Cartilaginous Tissue. MICROMACHINES 2021; 12:mi12091098. [PMID: 34577741 PMCID: PMC8472162 DOI: 10.3390/mi12091098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Recently, many studies have focused on the repair and regeneration of damaged articular cartilage using tissue engineering. In tissue engineering therapy, cells are cultured in vitro to create a three-dimensional (3-D) tissue designed to replace the damaged cartilage. Although tissue engineering is a useful approach to regenerating cartilage, mechanical anisotropy has not been reconstructed from a cellular organization level. This study aims to create mechanically anisotropic cartilaginous tissue using dielectrophoretic cell patterning and gel-sheet lamination. Bovine chondrocytes were patterned in a hydrogel to form line-array cell clusters via negative dielectrophoresis (DEP). The results indicate that the embedded chondrocytes remained viable and reconstructed cartilaginous tissue along the patterned cell array. Moreover, the agarose gel, in which chondrocytes were patterned, demonstrated mechanical anisotropy. In summary, our DEP cell patterning and gel-sheet lamination techniques would be useful for reconstructing mechanically anisotropic cartilage tissues.
Collapse
Affiliation(s)
- Yoshitaka Takeuchi
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan;
| | - Shogo Miyata
- Faculty of Science & Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Correspondence:
| |
Collapse
|
3
|
Ojanen SP, Finnilä MAJ, Reunamo AE, Ronkainen AP, Mikkonen S, Herzog W, Saarakkala S, Korhonen RK. Site-specific glycosaminoglycan content is better maintained in the pericellular matrix than the extracellular matrix in early post-traumatic osteoarthritis. PLoS One 2018; 13:e0196203. [PMID: 29694389 PMCID: PMC5919041 DOI: 10.1371/journal.pone.0196203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 04/09/2018] [Indexed: 12/04/2022] Open
Abstract
Introduction One of the characteristics of early osteoarthritis (OA) is the loss of fixed charged density (FCD) of glycosaminoglycans in the superficial zone of articular cartilage. However, possible local changes in the FCD content of the pericellular matrix (PCM) are not fully understood. Hence, our aim was to investigate the effect of unilateral anterior cruciate ligament transection (ACLT) in rabbit knees on estimated FCD in the PCM compared to that in the ECM, and relate these results with cell morphology. Methods Articular cartilage samples were collected from ACLT, contralateral and intact control knee joints from lateral and medial femoral condyles and tibial plateaus, and from the femoral groove and patella. Histological samples were prepared and stained with Safranin-O to estimate the FCD content around the chondrocytes in the PCM and the ECM with digital densitometry. Results As a result of ACLT, the greatest decreases in the FCD content of the PCM were observed in the superficial zone of the lateral femoral condyle (p = 0.02), medial tibial plateau (p = 0.002) and patellar (p < 0.001) cartilage. The normalized FCD content of the PCM compared to the surrounding ECM was increased most in the femoral condyles (p < 0.01) and medial tibial plateau (p = 0.02) cartilage. The high normalized FCD content of the PCM in the superficial zone of lateral femoral condyle cartilage was consistent with the round cell morphology in that location. Conclusions In conclusion, we suggest that certain sites in the knee joint, particularly the lateral femoral condyle cartilage, experience less FCD loss in the PCM than in the ECM in early post-traumatic OA, which could lead to altered cell shape.
Collapse
Affiliation(s)
- Simo P. Ojanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- * E-mail:
| | - Mikko A. J. Finnilä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Aino E. Reunamo
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Ari P. Ronkainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Walter Herzog
- Mechanical & Manufacturing Engineering, Schulich School of Engineering, University of Calgary, AB, Calgary, Canada
- Human performance laboratory, Faculty of Kinesiology, University of Calgary, AB, Calgary, Canada
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Yousefi F, Kim M, Nahri SY, Mauck RL, Pleshko N. Near-Infrared Spectroscopy Predicts Compositional and Mechanical Properties of Hyaluronic Acid-Based Engineered Cartilage Constructs. Tissue Eng Part A 2018; 24:106-116. [PMID: 28398127 PMCID: PMC5770116 DOI: 10.1089/ten.tea.2017.0035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/03/2017] [Indexed: 11/12/2022] Open
Abstract
Hyaluronic acid (HA) has been widely used for cartilage tissue engineering applications. However, the optimal time point to harvest HA-based engineered constructs for cartilage repair is still under investigation. In this study, we investigated the ability of a nondestructive modality, near-infrared spectroscopic (NIR) analysis, to predict compositional and mechanical properties of HA-based engineered cartilage constructs. NIR spectral data were collected from control, unseeded constructs, and twice per week by fiber optic from constructs seeded with chondrocytes during their development over an 8-week period. Constructs were harvested at 2, 4, 6, and 8 weeks, collagen and sulfated glycosaminoglycan content measured using biochemical assays, and the mechanical properties of the constructs evaluated using unconfined compression tests. NIR absorbances associated with the scaffold material, water, and engineered cartilage matrix, were identified. The NIR-determined matrix absorbance plateaued after 4 weeks of culture, which was in agreement with the biochemical assay results. Similarly, the mechanical properties of the constructs also plateaued at 4 weeks. A multivariate partial least square model based on NIR spectral input was developed to predict the moduli of the constructs, which resulted in a prediction error of 10% and R value of 0.88 for predicted versus actual values of dynamic modulus. Furthermore, the maximum increase in moduli was calculated from the first derivative of the curve fit of NIR-predicted and actual moduli values over time, and both occurred at ∼2 weeks. Collectively, these data suggest that NIR spectral data analysis could be an alternative to destructive biochemical and mechanical methods for evaluation of HA-based engineered cartilage construct properties.
Collapse
Affiliation(s)
- Farzad Yousefi
- Tissue Imaging and Spectroscopy Lab, Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - Minwook Kim
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Syeda Yusra Nahri
- Tissue Imaging and Spectroscopy Lab, Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nancy Pleshko
- Tissue Imaging and Spectroscopy Lab, Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Hadidi P, Cissell DD, Hu JC, Athanasiou KA. Temporal development of near-native functional properties and correlations with qMRI in self-assembling fibrocartilage treated with exogenous lysyl oxidase homolog 2. Acta Biomater 2017; 64:29-40. [PMID: 28963018 PMCID: PMC5682207 DOI: 10.1016/j.actbio.2017.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/28/2023]
Abstract
Advances in cartilage tissue engineering have led to constructs with mechanical integrity and biochemical composition increasingly resembling that of native tissues. In particular, collagen cross-linking with lysyl oxidase has been used to significantly enhance the mechanical properties of engineered neotissues. In this study, development of collagen cross-links over time, and correlations with tensile properties, were examined in self-assembling neotissues. Additionally, quantitative MRI metrics were examined in relation to construct mechanical properties as well as pyridinoline cross-link content and other engineered tissue components. Scaffold-free meniscus fibrocartilage was cultured in the presence of exogenous lysyl oxidase, and assessed at multiple time points over 8weeks starting from the first week of culture. Engineered constructs demonstrated a 9.9-fold increase in pyridinoline content, reaching 77% of native tissue values, after 8weeks of culture. Additionally, engineered tissues reached 66% of the Young's modulus in the radial direction of native tissues. Further, collagen cross-links were found to correlate with tensile properties, contributing 67% of the tensile strength of engineered neocartilages. Finally, examination of quantitative MRI metrics revealed several correlations with mechanical and biochemical properties of engineered constructs. This study displays the importance of culture duration for collagen cross-link formation, and demonstrates the potential of quantitative MRI in investigating properties of engineered cartilages. STATEMENT OF SIGNIFICANCE This is the first study to demonstrate near-native cross-link content in an engineered tissue, and the first study to quantify pyridinoline cross-link development over time in a self-assembling tissue. Additionally, this work shows the relative contributions of collagen and pyridinoline to the tensile properties of collagenous tissue for the first time. Furthermore, this is the first investigation to identify a relationship between qMRI metrics and the pyridinoline cross-link content of an engineered collagenous tissue.
Collapse
Affiliation(s)
- Pasha Hadidi
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Derek D Cissell
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA 92697-2715, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
6
|
Pothirajan P, Dorcemus D, Nukavarapu S, Kotecha M. True MRI assessment of stem cell chondrogenesis in a tissue engineered matrix. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:3933-6. [PMID: 25570852 DOI: 10.1109/embc.2014.6944484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Developing a non-invasive method to monitor the growth of tissue-engineered cartilage is of utmost importance for tracking the progress and predicting the success or failure of tissue-engineering approaches. Magnetic Resonance Imaging (MRI) is a leading non-invasive technique suitable for follow-through in preclinical and clinical stages. As complex tissue-engineering approaches are being developed for cartilage tissue engineering, it is important to develop strategies for true non-invasive MRI monitoring that can take into account contributions of the scaffold, cells and extracellular matrix (ECM) using MR parameters. In the current study, we present the preliminary MRI assessment of chondrogenic differentiation of human bone marrow derived stem cells seeded onto a specially designed osteochondral matrix system. We performed water relaxation times (T1 and T2) MRI measurements at 7, 14 and 28 days after cell seeding. The MRI experiments were performed for the tissue-engineered cartilage as well as for acellular scaffolds. We identified that the contribution of the scaffold is the dominant contribution in MR parameters of engineered cartilage and that it hinders observation of the tissue growth. An attempt is made to filter out this contribution, for the first time, in order to make a true observation of tissue growth using MRI.
Collapse
|
7
|
Non-invasive and in vivo assessment of osteoarthritic articular cartilage: a review on MRI investigations. Rheumatol Int 2014; 35:1-16. [PMID: 24879325 DOI: 10.1007/s00296-014-3052-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Early detection of knee osteoarthritis (OA) is of great interest to orthopaedic surgeons, rheumatologists, radiologists, and researchers because it would allow physicians to provide patients with treatments and advice to slow the onset or progression of the disease. Early detection can be achieved by identifying early changes in selected features of degenerative articular cartilage (AC) using non-invasive imaging modalities. Magnetic resonance imaging (MRI) is becoming the standard for assessment of OA. The aim of this paper was to review the influence of MRI on the selection, detection, and measurement of AC features associated with early OA. Our review of the literature indicates that the changes associated with early OA are in cartilage thickness, cartilage volume, cartilage water content, and proteoglycan content that can be accurately, consistently, and non-invasively measured using MRI. Choosing an MR pulse sequence that provides the capability to assess cartilage physiology and morphology in a single acquisition and advanced multi-nuclei MRI is desirable. The results of the review indicate that using an ultra-high magnetic strength, MR imager does not affect early OA detection. In conclusion, MRI is currently the most suitable modality for early detection of knee OA, and future research should focus on the quantitative evaluation of early OA features using advances in MR hardware, software, and data processing with sophisticated image/pattern recognition techniques.
Collapse
|
8
|
Takahashi Y, Takeuchi S, Miyata S. High throughput cell sorting device using dielectrophoresis and fluid-induced shear force. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:4466-9. [PMID: 24110725 DOI: 10.1109/embc.2013.6610538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cell sorting is important technology in many areas such as medical diagnosis in hospitals and cell engineering. Dielectrophoresis (DEP) is one of the promising approaches for cell separation because it does not require any fluorescent dye or antibody. In our previous study, we developed DEP cells sorting device, however the amount of throughput was not sufficient. In this study, we developed high throughput cell sorting device using dielectrophoretic and fluid-induced shear force. As the pilot study, mixed solution containing bovine chondrocytes and polystyrene beads were precisely separated using our novel DEP cell sorting device.
Collapse
|
9
|
Kotecha M, Klatt D, Magin RL. Monitoring cartilage tissue engineering using magnetic resonance spectroscopy, imaging, and elastography. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:470-84. [PMID: 23574498 DOI: 10.1089/ten.teb.2012.0755] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A key technical challenge in cartilage tissue engineering is the development of a noninvasive method for monitoring the composition, structure, and function of the tissue at different growth stages. Due to its noninvasive, three-dimensional imaging capabilities and the breadth of available contrast mechanisms, magnetic resonance imaging (MRI) techniques can be expected to play a leading role in assessing engineered cartilage. In this review, we describe the new MR-based tools (spectroscopy, imaging, and elastography) that can provide quantitative biomarkers for cartilage tissue development both in vitro and in vivo. Magnetic resonance spectroscopy can identify the changing molecular structure and alternations in the conformation of major macromolecules (collagen and proteoglycans) using parameters such as chemical shift, relaxation rates, and magnetic spin couplings. MRI provides high-resolution images whose contrast reflects developing tissue microstructure and porosity through changes in local relaxation times and the apparent diffusion coefficient. Magnetic resonance elastography uses low-frequency mechanical vibrations in conjunction with MRI to measure soft tissue mechanical properties (shear modulus and viscosity). When combined, these three techniques provide a noninvasive, multiscale window for characterizing cartilage tissue growth at all stages of tissue development, from the initial cell seeding of scaffolds to the development of the extracellular matrix during construct incubation, and finally, to the postimplantation assessment of tissue integration in animals and patients.
Collapse
Affiliation(s)
- Mrignayani Kotecha
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois
| | | | | |
Collapse
|