1
|
Williams J, Ahlqvist H, Cunningham A, Kirby A, Katz I, Fleming J, Conway J, Cunningham S, Ozel A, Wolfram U. Validated respiratory drug deposition predictions from 2D and 3D medical images with statistical shape models and convolutional neural networks. PLoS One 2024; 19:e0297437. [PMID: 38277381 PMCID: PMC10817191 DOI: 10.1371/journal.pone.0297437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024] Open
Abstract
For the one billion sufferers of respiratory disease, managing their disease with inhalers crucially influences their quality of life. Generic treatment plans could be improved with the aid of computational models that account for patient-specific features such as breathing pattern, lung pathology and morphology. Therefore, we aim to develop and validate an automated computational framework for patient-specific deposition modelling. To that end, an image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images. We evaluated the airway and lung morphology produced by our image processing framework, and assessed deposition compared to in vivo data. The 2D-to-3D image processing reproduces airway diameter to 9% median error compared to ground truth segmentations, but is sensitive to outliers of up to 33% due to lung outline noise. Predicted regional deposition gave 5% median error compared to in vivo measurements. The proposed framework is capable of providing patient-specific deposition measurements for varying treatments, to determine which treatment would best satisfy the needs imposed by each patient (such as disease and lung/airway morphology). Integration of patient-specific modelling into clinical practice as an additional decision-making tool could optimise treatment plans and lower the burden of respiratory diseases.
Collapse
Affiliation(s)
- Josh Williams
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Hartree Centre, STFC Daresbury Laboratory, Daresbury, United Kingdom
| | - Haavard Ahlqvist
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Alexander Cunningham
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Andrew Kirby
- Royal Hospital for Children and Young People, NHS Lothian, Edinburgh, United Kingdom
| | | | - John Fleming
- National Institute of Health Research Biomedical Research Centre in Respiratory Disease, Southampton, United Kingdom
- Department of Medical Physics and Bioengineering, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Joy Conway
- National Institute of Health Research Biomedical Research Centre in Respiratory Disease, Southampton, United Kingdom
- Respiratory Sciences, Centre for Health and Life Sciences, Brunel University, London, United Kingdom
| | - Steve Cunningham
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ali Ozel
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Institute for Material Science and Engineering, TU Clausthal, Clausthal-Zellerfeld, Germany
| |
Collapse
|
2
|
Farhoodi S, Heidarinejad G, Roozbahani MH. Evaluation of Airflow Sensitivity to the Truncation Level of a Realistic Human Airway Model in an Accurate Numerical Simulation. J Biomed Phys Eng 2022; 12:403-416. [PMID: 36059287 PMCID: PMC9395626 DOI: 10.31661/jbpe.v0i0.2201-1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The truncation level of human airways is an influential factor in the analysis of respiratory flow in numerical simulations. Due to computational limitations and limited resolution of diagnostic medical imaging equipment, a truncated geometry of airways is always investigated. OBJECTIVE This study aimed to employ image-based geometries with zero generation and 5th-generation truncation levels and assess bronchial airways truncation's effect on tracheal airflow characteristics. MATERIAL AND METHODS In this numerical study, computational fluid dynamics was employed to solve the respiratory flow in a realistic human airway model using the large eddy simulation technique coupling with the wall-adapting local eddy-viscosity (WALE) sub-grid scale model. The accuracy of numerical simulations was ensured by examining the large eddy simulation index of quality and Kolmogorov's K-5/3 law. RESULTS The turbulent kinetic energy along the trachea has increased abnormally in the geometry with the zero-generation truncation level, and more severe fluctuations occurred in the velocity field of this geometry, which increased the tendency of each point to rotate. Compared to the extended model, the airflow's more chaotic behavior prevented larger-scale vortices from forming in the geometry with the zero-generation truncation level. Larger-scale vortices in the extended model caused the primary flow passing next to the vortices to accelerate more intensely, increasing the wall shear stress peaks in this geometry. CONCLUSION Eliminating the bronchial airways caused changes in tracheal airflow characteristics.
Collapse
Affiliation(s)
- Saeed Farhoodi
- MSc, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ghassem Heidarinejad
- PhD, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
3
|
Functional analysis of the airways after pulmonary lobectomy through computational fluid dynamics. Sci Rep 2022; 12:3321. [PMID: 35228582 PMCID: PMC8885819 DOI: 10.1038/s41598-022-06852-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
Pulmonary lobectomy, which consists of the partial or complete resection of a lung lobe, is the gold standard intervention for lung cancer removal. The removal of functional tissue during the surgery and the re-adaptation of the remaining thoracic structures decrease the patient's post-operative pulmonary function. Residual functionality is evaluated through pulmonary function tests, which account for the number of resected segments without considering local structural alterations and provide an average at-the-mouth estimation. Computational Fluid Dynamics (CFD) has been demonstrated to provide patient-specific, quantitative, and local information about airways airflow dynamics. A CFD investigation was performed on image-based airway trees reconstructed before and after the surgery for twelve patients who underwent lobectomy at different lobes. The geometrical alterations and the variations in fluid dynamics parameters and in lobar ventilation between the pre and post-operative conditions were evaluated. The post-operative function was estimated and compared with current clinical algorithms and with actual clinical data. The post-operative configuration revealed a high intersubject variability: regardless of the lobectomy site, an increment of global velocity, wall pressure, and wall shear stress was observed. Local flow disturbances also emerged at, and downstream of, the resection site. The analysis of lobar ventilation showed severe variations in the volume flow rate distribution, highlighting the compensatory effects in the contralateral lung with an increment of inflow. The estimation of post-operative function through CFD was comparable with the current clinical algorithm and the actual spirometric measurements. The results confirmed that CFD could provide additional information to support the current clinical approaches both in the operability assessment and in the prescription of personalized respiratory rehabilitation.
Collapse
|
4
|
Sul B, Oppito Z, Jayasekera S, Vanger B, Zeller A, Morris M, Ruppert K, Altes T, Rakesh V, Day S, Robinson R, Reifman J, Wallqvist A. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro. J Biomech Eng 2019; 140:2668581. [PMID: 29305603 DOI: 10.1115/1.4038896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 12/16/2022]
Abstract
Computational models are useful for understanding respiratory physiology. Crucial to such models are the boundary conditions specifying the flow conditions at truncated airway branches (terminal flow rates). However, most studies make assumptions about these values, which are difficult to obtain in vivo. We developed a computational fluid dynamics (CFD) model of airflows for steady expiration to investigate how terminal flows affect airflow patterns in respiratory airways. First, we measured in vitro airflow patterns in a physical airway model, using particle image velocimetry (PIV). The measured and computed airflow patterns agreed well, validating our CFD model. Next, we used the lobar flow fractions from a healthy or chronic obstructive pulmonary disease (COPD) subject as constraints to derive different terminal flow rates (i.e., three healthy and one COPD) and computed the corresponding airflow patterns in the same geometry. To assess airflow sensitivity to the boundary conditions, we used the correlation coefficient of the shape similarity (R) and the root-mean-square of the velocity magnitude difference (Drms) between two velocity contours. Airflow patterns in the central airways were similar across healthy conditions (minimum R, 0.80) despite variations in terminal flow rates but markedly different for COPD (minimum R, 0.26; maximum Drms, ten times that of healthy cases). In contrast, those in the upper airway were similar for all cases. Our findings quantify how variability in terminal and lobar flows contributes to airflow patterns in respiratory airways. They highlight the importance of using lobar flow fractions to examine physiologically relevant airflow characteristics.
Collapse
Affiliation(s)
- Bora Sul
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702
| | - Zachary Oppito
- Mechanical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623
| | - Shehan Jayasekera
- Mechanical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623
| | - Brian Vanger
- Mechanical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623
| | - Amy Zeller
- Mechanical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623
| | - Michael Morris
- Department of Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, San Antonio, TX 78234
| | - Kai Ruppert
- Radiology Department, University of Pennsylvania, Philadelphia, PA 19104
| | - Talissa Altes
- Department of Radiology, University of Missouri, Columbia, MO 65211
| | - Vineet Rakesh
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702
| | - Steven Day
- Mechanical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623
| | - Risa Robinson
- Mechanical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702 e-mail:
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702
| |
Collapse
|
5
|
Multiscale in silico lung modeling strategies for aerosol inhalation therapy and drug delivery. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 11:130-136. [DOI: 10.1016/j.cobme.2019.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Sul B, Altes T, Ruppert K, Qing K, Hariprasad DS, Morris M, Reifman J, Wallqvist A. In vivo dynamics of the tracheal airway and its influences on respiratory airflows. J Biomech Eng 2019; 141:2733770. [PMID: 31074759 DOI: 10.1115/1.4043723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 11/08/2022]
Abstract
Respiration is a dynamic process accompanied by morphological changes in the airways. Although deformation of large airways is expected to exacerbate pulmonary disease symptoms by obstructing airflow during increased minute ventilation, its quantitative effects on airflow characteristics remain unclear. Here, we used an exemplar case derived from in vivo dynamic imaging and examined the effects of tracheal deformation on airflow characteristics under different conditions. First, we measured tracheal deformation profiles of a healthy lung using magnetic resonance imaging during forced exhalation, which we simulated to characterize subject-specific airflow patterns. Subsequently, for both inhalation and exhalation, we compared the airflows when the maximal deformation in tracheal cross-sectional area was 0% (rigid), 33% (mild), 50% (moderate), or 75% (severe). We quantified differences in airflow patterns between deformable and rigid airways by computing the correlation coefficients (R) and the root-mean-square of differences (Drms) between their velocity contours. For both inhalation and exhalation, airflow patterns were similar in all branches between the rigid and mild conditions (R > 0.9; Drms < 32%). However, airflow characteristics in the moderate and severe conditions differed markedly from those in the rigid and mild conditions in all lung branches, particularly for inhalation (moderate: R > 0.1, Drms < 76%; severe: R > 0.2, Drms < 96%). Our exemplar case supports the use of a rigid airway assumption to compute flows for mild deformation. For moderate or severe deformation, however, dynamic contraction should be considered, especially during inhalation, to accurately predict airflow and elucidate the underlying pulmonary pathology.
Collapse
Affiliation(s)
- Bora Sul
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Talissa Altes
- Department of Radiology, University of Missouri, Columbia, Missouri
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kun Qing
- Department of Radiology, University of Virginia, Charlottesville, Virginia
| | - Daniel S Hariprasad
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Michael Morris
- Graduate Medical Education, Brooke Army Medical Center, Joint Base San Antonio Fort Sam Houston, Texas
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| |
Collapse
|
7
|
Oakes JM, Roth SC, Shadden SC. Airflow Simulations in Infant, Child, and Adult Pulmonary Conducting Airways. Ann Biomed Eng 2017; 46:498-512. [PMID: 29264667 DOI: 10.1007/s10439-017-1971-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The airway structure continuously evolves from birth to adulthood, influencing airflow dynamics and respiratory mechanics. We currently know very little about how airflow patterns change throughout early life and its impact on airway resistance, namely because of experimental limitations. To uncover differences in respiratory dynamics between age groups, we performed subject-specific airflow simulations in an infant, child, and adult conducting airways. Airflow throughout the respiration cycle was calculated by coupling image-based models of the conducting airways to the global respiratory mechanics, where flow was driven by a pressure differential. Trachea diameter was 19, 9, and 4.5 mm for the adult (36 years, female), child (6 years, male), and infant (0.25 years, female), respectively. Mean Reynolds number within the trachea was nearly the same for each subject (1100) and Womersley number was above unity for all three subjects and largest for the adult, highlighting the significance of transient effects. In general, air speeds and airway resistances within the conducting airways were inversely correlated with age; the 3D pressure drop was highest in the infant model. These simulations provide new insight into age-dependent flow dynamics throughout the respiration cycle within subject-specific airways.
Collapse
Affiliation(s)
- Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - Steven C Roth
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
8
|
Oakes JM, Shadden SC, Grandmont C, Vignon-Clementel IE. Aerosol transport throughout inspiration and expiration in the pulmonary airways. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 27860424 DOI: 10.1002/cnm.2847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Little is known about transport throughout the respiration cycle in the conducting airways. It is challenging to appropriately describe the time-dependent number of particles entering back into the model during exhalation. Modeling the entire lung is not feasible; therefore, multidomain methods must be used. Here, we present a new framework that is designed to simulate particles throughout the respiration cycle, incorporating realistic airway geometry and respiration. This framework is applied for a healthy rat lung exposed to ∼ 1μm diameter particles, chosen to facilitate parameterization and validation. The flow field is calculated in the conducting airways (3D domain) by solving the incompressible Navier-Stokes equations with experimentally derived boundary conditions. Particles are tracked throughout inspiration by solving a modified Maxey-Riley equation. Next, we pass the time-dependent particle concentrations exiting the 3D model to the 1D volume conservation and advection-diffusion models (1D domain). Once the 1D models are solved, we prescribe the time-dependent number of particles entering back into the 3D airways to again solve for 3D transport. The coupled simulations highlight that about twice as many particles deposit during inhalation compared to exhalation for the entire lung. In contrast to inhalation, where most particles deposit at the bifurcation zones, particles deposit relatively uniformly on the gravitationally dependent side of the 3D airways during exhalation. Strong agreement to previously collected regional experimental data is shown, as the 1D models account for lobe-dependent morphology. This framework may be applied to investigate dosimetry in other species and pathological lungs.
Collapse
Affiliation(s)
- Jessica M Oakes
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, 94709, CA, USA
- Inria Paris, 2 Rue Simone Iff, 75012, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75252, Paris, France
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, 94709, CA, USA
| | - Céline Grandmont
- Inria Paris, 2 Rue Simone Iff, 75012, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75252, Paris, France
| | - Irene E Vignon-Clementel
- Inria Paris, 2 Rue Simone Iff, 75012, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75252, Paris, France
| |
Collapse
|
9
|
Burrowes KS, De Backer J, Kumar H. Image-based computational fluid dynamics in the lung: virtual reality or new clinical practice? WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28608962 DOI: 10.1002/wsbm.1392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 11/05/2022]
Abstract
The development and implementation of personalized medicine is paramount to improving the efficiency and efficacy of patient care. In the respiratory system, function is largely dictated by the choreographed movement of air and blood to the gas exchange surface. The passage of air begins in the upper airways, either via the mouth or nose, and terminates at the alveolar interface, while blood flows from the heart to the alveoli and back again. Computational fluid dynamics (CFD) is a well-established tool for predicting fluid flows and pressure distributions within complex systems. Traditionally CFD has been used to aid in the effective or improved design of a system or device; however, it has become increasingly exploited in biological and medical-based applications further broadening the scope of this computational technique. In this review, we discuss the advancement in application of CFD to the respiratory system and the contributions CFD is currently making toward improving precision medicine. The key areas CFD has been applied to in the pulmonary system are in predicting fluid transport and aerosol distribution within the airways. Here we focus our discussion on fluid flows and in particular on image-based clinically focused CFD in the ventilatory system. We discuss studies spanning from the paranasal sinuses through the conducting airways down to the level of the alveolar airways. The combination of imaging and CFD is enabling improved device design in aerosol transport, improved biomarkers of lung function in clinical trials, and improved predictions and assessment of surgical interventions in the nasal sinuses. WIREs Syst Biol Med 2017, 9:e1392. doi: 10.1002/wsbm.1392 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kelly S Burrowes
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Haribalan Kumar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Yoshihara L, Roth CJ, Wall WA. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2812. [PMID: 27341786 DOI: 10.1002/cnm.2812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lena Yoshihara
- Institute for Computational Mechanics, Technische Universität München, Boltzmannstrasse 15, D-85748 Garching b. München, Germany
| | - Christian J Roth
- Institute for Computational Mechanics, Technische Universität München, Boltzmannstrasse 15, D-85748 Garching b. München, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technische Universität München, Boltzmannstrasse 15, D-85748 Garching b. München, Germany
| |
Collapse
|
11
|
Multiscale CT-Based Computational Modeling of Alveolar Gas Exchange during Artificial Lung Ventilation, Cluster (Biot) and Periodic (Cheyne-Stokes) Breathings and Bronchial Asthma Attack. COMPUTATION 2017. [DOI: 10.3390/computation5010011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Roth CJ, Ismail M, Yoshihara L, Wall WA. A comprehensive computational human lung model incorporating inter-acinar dependencies: Application to spontaneous breathing and mechanical ventilation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e02787. [PMID: 27018004 DOI: 10.1002/cnm.2787] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/04/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
In this article, we propose a comprehensive computational model of the entire respiratory system, which allows simulating patient-specific lungs under different ventilation scenarios and provides a deeper insight into local straining and stressing of pulmonary acini. We include novel 0D inter-acinar linker elements to respect the interplay between neighboring alveoli, an essential feature especially in heterogeneously distended lungs. The model is applicable to healthy and diseased patient-specific lung geometries. Presented computations in this work are based on a patient-specific lung geometry obtained from computed tomography data and composed of 60,143 conducting airways, 30,072 acini, and 140,135 inter-acinar linkers. The conducting airways start at the trachea and end before the respiratory bronchioles. The acini are connected to the conducting airways via terminal airways and to each other via inter-acinar linkers forming a fully coupled anatomically based respiratory model. Presented numerical examples include simulation of breathing during a spirometry-like test, measurement of a quasi-static pressure-volume curve using a supersyringe maneuver, and volume-controlled mechanical ventilation. The simulations show that our model incorporating inter-acinar dependencies successfully reproduces physiological results in healthy and diseased states. Moreover, within these scenarios, a deeper insight into local pressure, volume, and flow rate distribution in the human lung is investigated and discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christian J Roth
- Institute for Computational Mechanics, Technische Universität München, D-85747 Garching, Germany
| | - Mahmoud Ismail
- Institute for Computational Mechanics, Technische Universität München, D-85747 Garching, Germany
| | - Lena Yoshihara
- Institute for Computational Mechanics, Technische Universität München, D-85747 Garching, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
13
|
Donovan GM. Systems-level airway models of bronchoconstriction. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:459-67. [PMID: 27348217 DOI: 10.1002/wsbm.1349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/23/2016] [Accepted: 05/18/2016] [Indexed: 01/26/2023]
Abstract
Understanding lung and airway behavior presents a number of challenges, both experimental and theoretical, but the potential rewards are great in terms of both potential treatments for disease and interesting biophysical phenomena. This presents an opportunity for modeling to contribute to greater understanding, and here, we focus on modeling efforts that work toward understanding the behavior of airways in vivo, with an emphasis on asthma. We look particularly at those models that address not just isolated airways but many of the important ways in which airways are coupled both with each other and with other structures. This includes both interesting phenomena involving the airways and the layer of airway smooth muscle that surrounds them, and also the emergence of spatial ventilation patterns via dynamic airway interaction. WIREs Syst Biol Med 2016, 8:459-467. doi: 10.1002/wsbm.1349 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
DeGroot CT, Straatman AG. A Conjugate Fluid-Porous Approach for Simulating Airflow in Realistic Geometric Representations of the Human Respiratory System. J Biomech Eng 2015; 138:4032113. [PMID: 26630498 DOI: 10.1115/1.4032113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/08/2022]
Abstract
Simulation of flow in the human lung is of great practical interest as a means to study the detailed flow patterns within the airways for many physiological applications. While computational simulation techniques are quite mature, lung simulations are particularly complicated due to the vast separation of length scales between upper airways and alveoli. Many past studies have presented numerical results for truncated airway trees, however, there are significant difficulties in connecting such results with respiratory airway models. This article presents a new modeling paradigm for flow in the full lung, based on a conjugate fluid-porous formulation where the upper airway is considered as a fluid region with the remainder of the lung being considered as a coupled porous region. Results are presented for a realistic lung geometry obtained from computed tomography (CT) images, which show the method's potential as being more efficient and practical than attempting to directly simulate flow in the full lung.
Collapse
|
15
|
Dai Z, Peng Y, Mansy HA, Sandler RH, Royston TJ. Experimental and Computational Studies of Sound Transmission in a Branching Airway Network Embedded in a Compliant Viscoelastic Medium. JOURNAL OF SOUND AND VIBRATION 2015; 339:215-229. [PMID: 26097256 PMCID: PMC4469198 DOI: 10.1016/j.jsv.2014.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs.
Collapse
Affiliation(s)
- Zoujun Dai
- University of Illinois at Chicago, Chicago, IL 60607, USA
- Corresponding author.
| | - Ying Peng
- University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hansen A. Mansy
- University of Central Florida, Orlando, FL 32816, USA
- Rush University Medical Center, Chicago, IL 60612, USA
| | - Richard H. Sandler
- University of Central Florida, Orlando, FL 32816, USA
- Nemours Children’s Hospital, Orlando, FL 32827, USA
| | | |
Collapse
|
16
|
Ismail M, Gravemeier V, Comerford A, Wall WA. A stable approach for coupling multidimensional cardiovascular and pulmonary networks based on a novel pressure-flow rate or pressure-only Neumann boundary condition formulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:447-469. [PMID: 24243701 DOI: 10.1002/cnm.2611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 09/23/2013] [Accepted: 10/12/2013] [Indexed: 06/02/2023]
Abstract
In many biomedical flow problems, reversed flows along with standard treatment of Neumann boundary conditions can cause instabilities. We have developed a method that resolves these instabilities in a consistent way while maintaining correct pressure and flow rate values. We also are able to remove the necessary prescription of both pressure and velocities/flow rates to problems where only pressure is known. In addition, the method is extended to coupled 3D/reduced-D fluid and fluid-structure interaction models. Numerical examples mainly focus on using Neumann boundary condition in cardiovascular and pulmonary systems, particularly, coupled with 3D-1D and 3D-0D models. Inflow pressure, traction, and impedance boundary conditions are first tested on idealized tubes for various Womersley numbers. Both pressure and flow rate are shown to match the analytical solutions for these examples. Our method is then tested on a coupled 1D-3D-1D artery example, demonstrating the power and simplicity of extending this method toward fluid-structure interaction. Finally, the proposed method is investigated for a coupled 3D-0D patient-specific full lung model during spontaneous breathing. All coupled 3D/reduced-D results show a perfect matching of pressure and flow rate between 3D and corresponding reduced-D boundaries. The methods are straight-forward to implement in contrast to using Lagrange multipliers as previously proposed in other studies.
Collapse
Affiliation(s)
- M Ismail
- Institute for Computational Mechanics, Technische Universität München, D-85747 Garching, Germany
| | | | | | | |
Collapse
|
17
|
Oakes JM, Marsden AL, Grandmont C, Shadden SC, Darquenne C, Vignon-Clementel IE. Airflow and particle deposition simulations in health and emphysema: from in vivo to in silico animal experiments. Ann Biomed Eng 2014; 42:899-914. [PMID: 24318192 PMCID: PMC4092242 DOI: 10.1007/s10439-013-0954-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/23/2013] [Indexed: 10/25/2022]
Abstract
Image-based in silico modeling tools provide detailed velocity and particle deposition data. However, care must be taken when prescribing boundary conditions to model lung physiology in health or disease, such as in emphysema. In this study, the respiratory resistance and compliance were obtained by solving an inverse problem; a 0D global model based on healthy and emphysematous rat experimental data. Multi-scale CFD simulations were performed by solving the 3D Navier-Stokes equations in an MRI-derived rat geometry coupled to a 0D model. Particles with 0.95 μm diameter were tracked and their distribution in the lung was assessed. Seven 3D-0D simulations were performed: healthy, homogeneous, and five heterogeneous emphysema cases. Compliance (C) was significantly higher (p = 0.04) in the emphysematous rats (C = 0.37 ± 0.14 cm(3)/cmH2O) compared to the healthy rats (C = 0.25 ± 0.04 cm(3)/cmH2O), while the resistance remained unchanged (p = 0.83). There were increases in airflow, particle deposition in the 3D model, and particle delivery to the diseased regions for the heterogeneous cases compared to the homogeneous cases. The results highlight the importance of multi-scale numerical simulations to study airflow and particle distribution in healthy and diseased lungs. The effect of particle size and gravity were studied. Once available, these in silico predictions may be compared to experimental deposition data.
Collapse
Affiliation(s)
- Jessica M Oakes
- Mechanical and Aerospace Engineering Department, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ismail M, Comerford A, Wall WA. Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:1285-1305. [PMID: 23904272 DOI: 10.1002/cnm.2577] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
In this paper, we develop a total lung model based on a tree of 0D airway and acinar models for studying respiratory mechanics during spontaneous breathing. This model utilizes both computer tomography-based geometries and artificially generated lobe-filling airway trees to model the entire conducting region of the lung. Beyond the conducting airways, we develop an acinar model, which takes into account the alveolar tissue resistance, compliance, and the intrapleural pressure. With this methodology, we compare four different 0D models of airway mechanics and determine the best model based on a comparison with a 3D-0D coupled model of the conducting airways; this methodology is possible because the majority of airway resistance is confined to the lower generations, that is, the trachea and the first few bronchial generations. As an example application of the model, we simulate the flow and pressure dynamics under spontaneous breathing conditions, that is, at flow conditions driven purely by pleural space pressure. The results show good agreement, both qualitatively and quantitatively, with reported physiological values. One of the key advantages of this model is the ability to provide insight into lung ventilation in the peripheral regions. This is often crucial because this is where information, specifically for studying diseases and gas exchange, is needed. Thus, the model can be used as a tool for better understanding local peripheral lung mechanics without excluding the upper portions of the lung. This tool will be also useful for in vitro investigations of lung mechanics in both health and disease.
Collapse
Affiliation(s)
- M Ismail
- Institute for Computational Mechanics, Technische Universität München, D-85747 Garching, Germany
| | | | | |
Collapse
|
19
|
Yin Y, Choi J, Hoffman EA, Tawhai MH, Lin CL. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation. JOURNAL OF COMPUTATIONAL PHYSICS 2013; 244:168-192. [PMID: 23794749 PMCID: PMC3685439 DOI: 10.1016/j.jcp.2012.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.
Collapse
Affiliation(s)
- Youbing Yin
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, US
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, US
- Department of Radiology, The University of Iowa, Iowa City, IA 52242, US
| | - Jiwoong Choi
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, US
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, US
| | - Eric A. Hoffman
- Department of Radiology, The University of Iowa, Iowa City, IA 52242, US
- Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, US
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, US
| | - Merryn H. Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, NZ
| | - Ching-Long Lin
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, US
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, US
- Corresponding author. Telephone: +1-319-335-5673. Fax: +1-319-335-5669. (C.-L. Lin)
| |
Collapse
|
20
|
Malvè M, Chandra S, López-Villalobos JL, Finol EA, Ginel A, Doblaré M. CFD analysis of the human airways under impedance-based boundary conditions: application to healthy, diseased and stented trachea. Comput Methods Biomech Biomed Engin 2013; 16:198-216. [DOI: 10.1080/10255842.2011.615743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Soni B, Thompson D. Effects of temporally varying inlet conditions on flow and particle deposition in the small bronchial tubes. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:915-936. [PMID: 22941923 DOI: 10.1002/cnm.2472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 12/20/2011] [Accepted: 01/12/2012] [Indexed: 06/01/2023]
Abstract
The laminar flow in the small bronchial tubes is quite complex because of the presence of vortex-dominated, secondary flows. Factors contributing to this complexity are the unsteady nature of the inhale-exhale breathing cycle and the geometrical characteristics of the bronchial tubes. To investigate unsteady effects on flows and particle transport, unsteady inhalation flows at a 30-respiration-per-minute frequency, corresponding to a moderate activity level, were simulated for a three-generation, asymmetric, planar bronchial tube model. Ten-micron diameter water droplets were introduced at the inlet at different times during inhalation to develop particle destination maps. The differences in the flow fields and destination maps obtained at the unsteady peak flow and the comparable steady-state inflow condition were minimal. However, particles released at equivalent instantaneous off-peak inflow conditions produced different destination maps. The differences were attributed to the temporal variations of the fluid velocities and history effects.
Collapse
Affiliation(s)
- Bela Soni
- Northrop Grumman Center for High Performance Computing, Jackson State University, Jackson, MS, 39204, U.S.A.
| | | |
Collapse
|
22
|
Miki T, Wang X, Aoki T, Imai Y, Ishikawa T, Takase K, Yamaguchi T. Patient-specific modelling of pulmonary airflow using GPU cluster for the application in medical practice. Comput Methods Biomech Biomed Engin 2012; 15:771-8. [DOI: 10.1080/10255842.2011.560842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Gravemeier V, Comerford A, Yoshihara L, Ismail M, Wall WA. A novel formulation for Neumann inflow boundary conditions in biomechanics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:560-573. [PMID: 25099458 DOI: 10.1002/cnm.1490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/07/2011] [Accepted: 11/09/2011] [Indexed: 06/03/2023]
Abstract
Neumann boundary conditions prescribing the total momentum flux at inflow boundaries of biomechanical problems are proposed in this study. This approach enables the simultaneous application of velocity/flow rate and pressure curves at inflow boundaries. As the basic numerical method, a residual-based variational multiscale (or stabilized) finite element method is presented. The focus of the numerical examples in this work is on respiratory flows with complete flow reversals. However, the proposed formulation is just as well suited for cardiovascular flow problems with partial retrograde flow. Instabilities, which were reported for such problems in the literature, are resolved by the present approach without requiring the additional consideration of a Lagrange multiplier technique. The suitability of the approach is demonstrated for two respiratory flow examples, a rather simple tube and complex tracheobronchial airways (up to the fourth generation, segmented from end-expiratory CT images). For the latter example, the boundary conditions are generated from mechanical ventilation data obtained from an intensive care unit patient suffering from acute lung injury. For the tube, analytical pressure profiles can be replicated, and for the tracheobronchial airways, a correct distribution of the prescribed total momentum flux at the inflow boundary into velocity and pressure part is observed.
Collapse
Affiliation(s)
- Volker Gravemeier
- Emmy Noether Research Group on "Computational Multiscale Methods for Turbulent Combustion", Technische Universität München, Boltzmannstr. 15, D-85747 Garching, Germany; Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, D-85747 Garching, Germany.
| | | | | | | | | |
Collapse
|
24
|
Oakes JM, Scadeng M, Breen EC, Marsden AL, Darquenne C. Rat airway morphometry measured from in situ MRI-based geometric models. J Appl Physiol (1985) 2012; 112:1921-31. [PMID: 22461437 DOI: 10.1152/japplphysiol.00018.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rodents have been widely used to study the environmental or therapeutic impact of inhaled particles. Knowledge of airway morphometry is essential in assessing geometric influence on aerosol deposition and in developing accurate lung models of aerosol transport. Previous morphometric studies of the rat lung performed ex situ provided high-resolution measurements (50-125 μm). However, it is unclear how the overall geometry of these casts might have differed from the natural in situ appearance. In this study, four male Wistar rat (268 ± 14 g) lungs were filled sequentially with perfluorocarbon and phosphate-buffered saline before being imaged in situ in a 7-T magnetic resonance (MR) scanner at a resolution of 0.2 × 0.2 × 0.27 mm. Airway length, diameter, gravitational, bifurcation, and rotational angles were measured for the first four airway generations from 3D geometric models built from the MR images. Minor interanimal variability [expressed by the relative standard deviation RSD (=SD/mean)] was found for length (0.18 ± 0.07), diameter (0.15 ± 0.15), and gravitational angle (0.12 ± 0.06). One rat model was extended to 16 airway generations. Organization of the airways using a diameter-defined Strahler ordering method resulted in lower interorder variability than conventional generation-based grouping for both diameter (RSD = 0.12 vs. 0.42) and length (0.16 vs. 0.67). Gravitational and rotational angles averaged 82.9 ± 37.9° and 53.6 ± 24.1°, respectively. Finally, the major daughter branch bifurcated at a smaller angle (19.3 ± 14.6°) than the minor branch (60.5 ± 19.4°). These data represent the most comprehensive set of rodent in situ measurements to date and can be used readily in computational studies of lung function and aerosol exposure.
Collapse
Affiliation(s)
- Jessica M Oakes
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
25
|
Malvè M, del Palomar AP, Chandra S, López-Villalobos JL, Finol EA, Ginel A, Doblaré M. FSI Analysis of a Human Trachea Before and After Prosthesis Implantation. J Biomech Eng 2011; 133:071003. [DOI: 10.1115/1.4004315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this work we analyzed the response of a stenotic trachea after a stent implantation. An endotracheal stent is the common treatment for tracheal diseases such as stenosis, chronic cough, or dispnoea episodes. Medical treatment and surgical techniques are still challenging due to the difficulties in overcoming potential complications after prosthesis implantation. A finite element model of a diseased and stented trachea was developed starting from a patient specific computerized tomography (CT) scan. The tracheal wall was modeled as a fiber reinforced hyperelastic material in which we modeled the anisotropy due to the orientation of the collagen fibers. Deformations of the tracheal cartilage rings and of the muscular membrane, as well as the maximum principal stresses, are analyzed using a fluid solid interaction (FSI) approach. For this reason, as boundary conditions, impedance-based pressure waveforms were computed modeling the nonreconstructed vessels as a binary fractal network. The results showed that the presence of the stent prevents tracheal muscle deflections and indicated a local recirculatory flow on the stent top surface which may play a role in the process of mucous accumulation. The present work gives new insight into clinical procedures, predicting their mechanical consequences. This tool could be used in the future as preoperative planning software to help the thoracic surgeons in deciding the optimal prosthesis type as well as its size and positioning.
Collapse
Affiliation(s)
- M. Malvè
- Group of Structural Mechanics and Materials Modeling Aragón Institute of Engineering Research (I3A) Universidad de Zaragoza C/María de Luna s/n, E-50018 Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Poeta Mariano Esquillor s/n, 50018 Zaragoza, Spain e-mail:
| | - A. Pérez del Palomar
- M2BE—Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, C/María de Luna s/n, E-50018 Zaragoza, Spain
| | - S. Chandra
- Institute for Complex Engineered Systems (ICES), Carnegie Mellon University, 1205 Hamburg Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213
| | - J. L. López-Villalobos
- Hospital Virgen del Rocío, Department of Thoracic Surgery, Avenida de Manuel Siurot s/n, 41013, Seville, Spain
| | - E. A. Finol
- Institute for Complex Engineered Systems (ICES), Carnegie Mellon University, 1205 Hamburg Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213
| | - A. Ginel
- Hospital Virgen del Rocío, Department of Thoracic Surgery, Avenida de Manuel Siurot s/n, 41013, Seville, Spain
| | - M. Doblaré
- Group of Structural Mechanics and Materials Modeling Aragón Institute of Engineering Research (I3A) Universidad de Zaragoza C/María de Luna s/n, 50018 Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Poeta Mariano Esquillor s/n, E-50018 Zaragoza, Spain
| |
Collapse
|
26
|
Rausch SMK, Haberthür D, Stampanoni M, Schittny JC, Wall WA. Local Strain Distribution in Real Three-Dimensional Alveolar Geometries. Ann Biomed Eng 2011; 39:2835-43. [DOI: 10.1007/s10439-011-0328-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
|