1
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Qin B, Kanatzidis MG, Zhao LD. The development and impact of tin selenide on thermoelectrics. Science 2024; 386:eadp2444. [PMID: 39418358 DOI: 10.1126/science.adp2444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
Thermoelectric technology experienced rapid development over the past 20 years, with the most promising applications being in both power generation and active cooling. Among existing thermoelectrics, tin selenide (SnSe) has had particularly rapid development owing to the unexpectedly high thermoelectric efficiency that has been continuously established over the past decade. Several transport mechanisms and strategies used to interpret and improve the thermoelectric performance of SnSe have been important for understanding and developing other material systems with SnSe-like characteristics. Similar to other thermoelectrics, building commercially viable SnSe-based devices requires advances in device efficiency and service stability. Further optimization across all material systems should enable thermoelectric technology to play a critical role in the future global energy landscape.
Collapse
Affiliation(s)
- Bingchao Qin
- Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | | | - Li-Dong Zhao
- Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Yue O, Wang X, Xie L, Bai Z, Zou X, Liu X. Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307369. [PMID: 38196276 PMCID: PMC10953594 DOI: 10.1002/advs.202307369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Implantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial "tissue batteries" (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological-activity monitoring, diagnosis, and therapy. ATBs are on-demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near-term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material-screening, structural-design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human-body (biofuel cells, thermoelectric nanogenerators, bio-potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency-ultrasound energy harvesters, ultrasound-induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio-safety, flexibility, and high-volume energy density as crucial components in long-term implantable bioelectronic devices.
Collapse
Affiliation(s)
- Ouyang Yue
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Long Xie
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xiaoliang Zou
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| |
Collapse
|
4
|
Sattar M, Yeo WH. Recent Advances in Materials for Wearable Thermoelectric Generators and Biosensing Devices. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4315. [PMID: 35744374 PMCID: PMC9230808 DOI: 10.3390/ma15124315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023]
Abstract
Recently, self-powered health monitoring systems using a wearable thermoelectric generator (WTEG) have been rapidly developed since no battery is needed for continuous signal monitoring, and there is no need to worry about battery leakage. However, the existing materials and devices have limitations in rigid form factors and small-scale manufacturing. Moreover, the conventional bulky WTEG is not compatible with soft and deformable tissues, including human skins or internal organs. These limitations restrict the WTEG from stabilizing the thermoelectric gradient that is necessary to harvest the maximum body heat and generate valuable electrical energy. This paper summarizes recent advances in soft, flexible materials and device designs to overcome the existing challenges. Specifically, we discuss various organic and inorganic thermoelectric materials with their properties for manufacturing flexible devices. In addition, this review discusses energy budgets required for effective integration of WTEGs with wearable biomedical systems, which is the main contribution of this article compared to previous articles. Lastly, the key challenges of the existing WTEGs are discussed, followed by describing future perspectives for self-powered health monitoring systems.
Collapse
Affiliation(s)
- Maria Sattar
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Neural Engineering Center, Institute for Materials, and Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
SAHARA GENTA, HIJIKATA WATARU, INOUE YUSUKE, YAMADA AKIHIRO, SHIRAISHI YASUYUKI, FUKAYA AOI, KARUBE MASATO, GENDA TATSUYA, IWAMOTO NAOKI, TACHIZAKI YUMA, MORITA RYOSUKE, YAMBE TOMOYUKI. METHODS FOR INVESTIGATING CONTRACTION CHARACTERISTICS OF A PART OF MUSCLES FOR IMPLANTABLE POWER GENERATION SYSTEMS. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To develop a power generation system as a solution to the power supply problems of small active implantable medical devices, we proposed a new method to examine muscles using skeletal muscle contraction through electrical stimulation. Realization of the system requires data on the contraction characteristics of a part of the muscles through which blood flows; thus, a dedicated setup was built and verified using a goat. The connecting parts were attached to two points in the large muscle of the goat’s trunk; one was fixed and the other slid along the guide. The distance and force between the two points, approaching each other, were measured by contracting the muscle between the points using electrical stimulation and pulling the measurement cart. The contraction distance and force were measured simultaneously, and the dynamic work of the contraction was calculated. The muscle work occurred with almost the same time delay regardless of the load, and the work tended to be greater when the contraction force, and not the contraction distance, of the muscle was large. The setup is physiological, simple, and versatile. Our setup can potentially be used in the development of implantable power generation systems and in other related fields.
Collapse
Affiliation(s)
- GENTA SAHARA
- Department of Medical Engineering and Cardiology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai-shi, Miyagi-ken 980-8575, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
- Department of Plastic and Reconstructive Surgery, Tohoku University Hospital, Miyagi, Japan
| | - WATARU HIJIKATA
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - YUSUKE INOUE
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
- Advanced Medical Engineering Research Center, Asahikawa Medical University, Hokkaido, Japan
| | - AKIHIRO YAMADA
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - YASUYUKI SHIRAISHI
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - AOI FUKAYA
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - MASATO KARUBE
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - TATSUYA GENDA
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - NAOKI IWAMOTO
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - YUMA TACHIZAKI
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - RYOSUKE MORITA
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - TOMOYUKI YAMBE
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| |
Collapse
|
6
|
Rao Y, Yuan C, Sadashivaiah G, Hohlfeld D, Bechtold T. Efficient design optimization of a miniaturized thermoelectric generator for electrically active implants based on parametric model order reduction. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3517. [PMID: 34338421 DOI: 10.1002/cnm.3517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
This research focuses on the design of a miniaturized thermoelectric generator (TEG) for electrically active implants. Its design optimization is performed using the finite element method. A simplified TEG model is obtained by replacing the thermocouple array with a single representative thermopile, which considers the number and fill factor of the thermocouples as parameters. Instead of rebuilding the geometry of a detailed model with multiple thermocouples, the simplified model adapts the material properties of its representative thermopile, facilitating design optimization. We extend the model by integrating the simplified TEG together with a housing inside a human tissue model for thermoelectric analysis. For computation efficiency and applicability of model order reduction (MOR), a thermal model is derived from the thermoelectric one, with the Peltier effect being considered through an effective thermal conductivity. Through parametric MOR, two parametric reduced-order models are generated from the full-scale thermoelectric and thermal model, respectively. Furthermore, we demonstrate the design optimization of TEG both in full-scale and reduced-order model for maximal power output and sufficient voltage output.
Collapse
Affiliation(s)
- Yongchen Rao
- Department of Engineering, Jade University of Applied Sciences, Wilhelmshaven, Germany
- Institute for Electronic Appliances and Circuits, University of Rostock, Rostock, Germany
| | - Chengdong Yuan
- Department of Engineering, Jade University of Applied Sciences, Wilhelmshaven, Germany
- Institute for Electronic Appliances and Circuits, University of Rostock, Rostock, Germany
| | | | - Dennis Hohlfeld
- Institute for Electronic Appliances and Circuits, University of Rostock, Rostock, Germany
| | - Tamara Bechtold
- Department of Engineering, Jade University of Applied Sciences, Wilhelmshaven, Germany
- Institute for Electronic Appliances and Circuits, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
A Review of Power Management Integrated Circuits for Ultrasound-Based Energy Harvesting in Implantable Medical Devices. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062487] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper aims to review the recent architectures of power management units for ultrasound-based energy harvesting, while focusing on battery-less implantable medical devices. In such systems, energy sustainability is based on piezoelectric devices and a power management circuit, which represents a key building block since it maximizes the power extracted from the piezoelectric devices and delivers it to the other building blocks of the implanted device. Since the power budget is strongly constrained by the dimension of the piezoelectric energy harvester, complexity of topologies have been increased bit by bit in order to achieve improved power efficiency also in difficult operative conditions. With this in mind, the introduced work consists of a comprehensive presentation of the main blocks of a generic power management unit for ultrasound-based energy harvesting and its operative principles, a review of the prior art and a comparative study of the performance achieved by the considered solutions. Finally, design guidelines are provided, allowing the designer to choose the best topology according to the given design specifications and technology adopted.
Collapse
|
8
|
Cai L, Gutruf P. Soft, Wireless and subdermally implantable recording and neuromodulation tools. J Neural Eng 2021; 18. [PMID: 33607646 DOI: 10.1088/1741-2552/abe805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Progress in understanding neuronal interaction and circuit behavior of the central and peripheral nervous system strongly relies on the advancement of tools that record and stimulate with high fidelity and specificity. Currently, devices used in exploratory research predominantly utilize cables or tethers to provide pathways for power supply, data communication, stimulus delivery and recording, which constrains the scope and use of such devices. In particular, the tethered connection, mechanical mismatch to surrounding soft tissues and bones frustrate the interface leading to irritation and limitation of motion of the subject, which in the case of fundamental and preclinical studies, impacts naturalistic behaviors of animals and precludes the use in experiments involving social interaction and ethologically relevant three-dimensional environments, limiting the use of current tools to mostly rodents and exclude species such as birds and fish. This review explores the current state-of-the-art in wireless, subdermally implantable tools that quantitively expand capabilities in analysis and perturbation of the central and peripheral nervous system by removing tethers and externalized features of implantable neuromodulation and recording tools. Specifically, the review explores power harvesting strategies, wireless communication schemes, and soft materials and mechanics that enable the creation of such devices and discuss their capabilities in the context of freely-behaving subjects. Highlights of this class of devices includes wireless battery-free and fully implantable operation with capabilities in cell specific recording, multimodal neural stimulation and electrical, optogenetic and pharmacological neuromodulation capabilities. We conclude with discussion on translation of such technologies which promises routes towards broad dissemination.
Collapse
Affiliation(s)
- Le Cai
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| | - Philipp Gutruf
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| |
Collapse
|
9
|
Yuan C, Kreß S, Sadashivaiah G, Rudnyi EB, Hohlfeld D, Bechtold T. Towards efficient design optimization of a miniaturized thermoelectric generator for electrically active implants via model order reduction and submodeling technique. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3311. [PMID: 31943823 DOI: 10.1002/cnm.3311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/09/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Thermoelectric generators (TEG) convert the thermal energy into electrical energy and are under investigation as a power supply for medical implants. To improve the performance of TEG, the design optimization process through finite element model simulation is preferred by biomedical engineers. This paper aims to provide an efficient method of speeding up the design optimization process of TEG. A three-dimensional realistic human torso model incorporating the TEG is investigated, where the internal heat transfer in human tissue is characterized by Pennes bioheat equation. In addition, convection, radiation, and evaporation effects at the skin surface are applied to identify the heat transfer effects between the human body and the environment. To speed up finite element simulation of the large-scale human torso model, projection-based model order reduction (MOR) is applied for generation of a compact but highly accurate model. Parametric MOR (pMOR) further enables generating a parameter-independent compact model. For an efficient design optimization of TEG, this compact human torso model is applied within a thermal submodeling approach. Its temperature distribution results are back-projected and used as boundary conditions for the TEG submodel. The achieved speed-up in simulation time, demonstrated in this work, clearly indicates that the design optimization process of TEG is more efficient with the combination of MOR and submodeling techniques.
Collapse
Affiliation(s)
- Chengdong Yuan
- Department of Engineering, Jade University of Applied Sciences, Wilhelmshaven, Germany
- Institute of Electronic Appliances and Circuits, University of Rostock, Rostock, Germany
| | - Stefanie Kreß
- Institute of Electronic Appliances and Circuits, University of Rostock, Rostock, Germany
| | | | | | - Dennis Hohlfeld
- Institute of Electronic Appliances and Circuits, University of Rostock, Rostock, Germany
| | - Tamara Bechtold
- Department of Engineering, Jade University of Applied Sciences, Wilhelmshaven, Germany
- Institute of Electronic Appliances and Circuits, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Zhang D, Wang Y, Yang Y. Design, Performance, and Application of Thermoelectric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805241. [PMID: 30773843 DOI: 10.1002/smll.201805241] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Thermal energy harvesting from the ambient environment through thermoelectric nanogenerators (TEGs) is an ideal way to realize self-powered operation of electronics, and even relieve the energy crisis and environmental degradation. As one of the most significant energy-related technologies, TEGs have exhibited excellent thermoelectric performance and played an increasingly important role in harvesting and converting heat into electric energy, gradually becoming one of the hot research fields. Here, the development of TEGs including materials optimization, structural designs, and potential applications, even the opportunities, challenges, and the future development direction, is analyzed and summarized. Materials optimization and structural designs of flexibility for potential applications in wearable electronics are systematically discussed. With the development of flexible and wearable electronic equipment, flexible TEGs show increasingly great application prospects in artificial intelligence, self-powered sensing systems, and other fields in the future.
Collapse
Affiliation(s)
- Ding Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanhao Wang
- Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, P. R. China
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
11
|
Liu H, Wang Y, Mei D, Shi Y, Chen Z. Design of a Wearable Thermoelectric Generator for Harvesting Human Body Energy. WEARABLE SENSORS AND ROBOTS 2017. [DOI: 10.1007/978-981-10-2404-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|