1
|
Uwase E, Caru M, Levesque A, Dodin P, Curnier D, Périé D. Exercise stress cardiac magnetic resonance imaging in the assessment of induced cardiovascular responses in cardiac patients: a scoping review protocol. JBI Evid Synth 2023; 21:1879-1887. [PMID: 37128785 DOI: 10.11124/jbies-22-00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVE This scoping review will describe cardiac magnetic resonance imaging testing protocols used in combination with exercise (Ex-CMR) to assess cardiovascular responses. The review will document the advantages and limitations of these protocols in cardiac patients. INTRODUCTION Ex-CMR characterizes the heart, differentiating between normal and pathological cardiac remodeling with considerable accuracy. However, there is no review detailing existing Ex-CMR protocols. This is particularly important since not all Ex-CMR protocols seem to induce enough stress to effectively characterize cardiac remodeling, hence the need for a review to report on the current evidence. INCLUSION CRITERIA This review will consider studies that use Ex-CMR testing protocols to assess cardiovascular responses, revealing cardiac remodeling in patients whose age at the time of the study was ≥ 18 years. METHODS The review will be conducted in accordance with the JBI methodology for scoping reviews and reported in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). The following databases will be searched: PubMed, Embase, ISI Web of Science, OpenGrey, Grey Matters, and OAlster. Articles in English and French will be included and there will be no limitation set for the date of publication. Data will be extracted from papers included in the scoping review by 2 independent reviewers and will be classified in summary tables. REVIEW REGISTRATION Open Science Framework https://osf.io/hvn75/?view_only=f6cf8fc2112e498d89c39639dbce70d1 .
Collapse
Affiliation(s)
- Egidie Uwase
- Department of Mechanical Engineering, Polytechnique, Montreal, QC, Canada
| | - Maxime Caru
- Department of Mechanical Engineering, Polytechnique, Montreal, QC, Canada
- Sainte-Justine University Health Center, Research Center, Montreal, QC, Canada
| | - Ariane Levesque
- Sainte-Justine University Health Center, Research Center, Montreal, QC, Canada
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Philippe Dodin
- Sainte-Justine University Health Center, Research Center, Montreal, QC, Canada
| | - Daniel Curnier
- Sainte-Justine University Health Center, Research Center, Montreal, QC, Canada
- School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Delphine Périé
- Department of Mechanical Engineering, Polytechnique, Montreal, QC, Canada
- Sainte-Justine University Health Center, Research Center, Montreal, QC, Canada
| |
Collapse
|
2
|
He B, Chen Y, Wang L, Yang Y, Xia C, Zheng J, Gao F. Compact MR-compatible ergometer and its application in cardiac MR under exercise stress: A preliminary study. Magn Reson Med 2022; 88:1927-1936. [PMID: 35649186 PMCID: PMC9545047 DOI: 10.1002/mrm.29311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023]
Abstract
Purpose To develop a compact MR‐compatible ergometer for exercise stress and to initially evaluate the reproducibility of myocardial native T1 and myocardial blood flow (MBF) measurements during exercise stress performed on this ergometer. Methods The compact ergometer consists of exercise, workload, and data processing components. The exercise stress can be achieved by pedaling on a pair of cylinders at a predefined frequency with adjustable resistances. Ten healthy subjects were recruited to perform cardiac MRI scans twice in a 3.0T MR scanner, at different days to assess reproducibility. Myocardial native T1 and MBF were acquired at rest and during a moderate exercise. The reproducibility of the two tests was determined by the intra‐group correlation coefficient (ICC) and coefficient of variation (CoV). Results The mean exercise intensity in this pilot study was 45 Watts (W), with an exercise duration of 5 min. Stress induced a significant increase in systolic blood pressure (from 113 ± 11 mmHg to 141 ± 12, P < 0.05) and maximal increase in heart rate by 74 ± 19%. The rate pressure product increased two‐fold (P < 0.001). Excellent reproducibility was demonstrated in native T1 during the exercise (CoV = 3.0%), whereas the reproducibility of MBF and myocardial perfusion reserve during the exercise was also good (CoV = 10.7% and 8.8%, respectively). Conclusion This pilot study demonstrated that it is possible to acquire reproducible measurements of myocardial native T1 and MBF during the exercise stress in healthy volunteers using our new compact ergometer. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Bo He
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Molecular Imaging Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yushu Chen
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lei Wang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Molecular Imaging Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University in St Louis, St. Louis, Missouri, USA
| | - Fabao Gao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Molecular Imaging Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Trankle CR, Canada JM, Jordan JH, Truong U, Hundley WG. Exercise Cardiovascular Magnetic Resonance: A Review. J Magn Reson Imaging 2021; 55:720-754. [PMID: 33655592 DOI: 10.1002/jmri.27580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
While pharmacologic stress cardiovascular magnetic resonance imaging (MRI) is a robust noninvasive tool in the diagnosis and prognostication of epicardial coronary artery disease, clinical guidelines recommend exercise-based testing in those patients who can exercise. This review describes the development of exercise cardiovascular MRI protocols, summarizes the insights across various patient populations, and highlights future research initiatives. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Cory R Trankle
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Justin M Canada
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer H Jordan
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Uyen Truong
- Division of Pediatric Cardiology, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, Virginia, USA
| | - W Gregory Hundley
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
Forouzan O, Dinges E, Runo JR, Keevil JG, Eickhoff JC, Francois C, Chesler NC. Exercise-Induced Changes in Pulmonary Artery Stiffness in Pulmonary Hypertension. Front Physiol 2019; 10:269. [PMID: 31001123 PMCID: PMC6454859 DOI: 10.3389/fphys.2019.00269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/28/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Pulmonary hypertension causes pulmonary artery (PA) stiffening, which overloads the right ventricle (RV). Since symptoms of pulmonary hypertension (PH) are exacerbated by exercise, exercise-induced PA stiffening is relevant to cardiopulmonary status. Here, we sought to demonstrate the feasibility of using magnetic resonance imaging (MRI) for non-invasive assessment of exercise-induced changes in PA stiffness in patients with PH. Methods: MRI was performed on 7 PH patients and 8 age-matched control subjects at rest and during exercise stress. Main pulmonary artery (MPA) relative area change (RAC) and pulse wave velocity (PWV) were measured from 2D-PC images. Invasive right heart catheterization (RHC) was performed on 5 of the PH patients in conjunction with exercise stress to measure MPA pressures and stiffness index (β). Results: Heart rate and cardiac index (CI) were significantly increased with exercise in both groups. In controls, RAC decreased from 0.27 ± 0.05 at rest to 0.22 ± 0.06 with exercise (P < 0.05); a modest increase in PWV was not significant (P = 0.06). In PH patients, RAC decreased from 0.15 ± 0.02 to 0.11 ± 0.01 (P < 0.05) and PWV and β increased from 3.9 ± 0.54 m/s and 1.86 ± 0.12 at rest to 5.75 ± 0.70 m/s and 3.25 ± 0.26 with exercise (P < 0.05 for both), respectively. These results confirm increased MPA stiffness with exercise stress in both groups and the non-invasive metrics of MPA stiffness correlated well with β. Finally, as assessed by PWV but not RAC, PA stiffness of PH patients increased more than that of controls for comparable levels of moderate exercise. Conclusion: These results demonstrate the feasibility of using MRI for non-invasive assessment of exercise-induced changes in MPA stiffness in a small, heterogeneous group of PH patients in a research context. Similar measurements in a larger cohort are required to investigate differences between PWV and RAC for estimation of MPA stiffness.
Collapse
Affiliation(s)
- Omid Forouzan
- College of Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric Dinges
- College of Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - James R Runo
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan G Keevil
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jens C Eickhoff
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Christopher Francois
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Naomi C Chesler
- College of Engineering, University of Wisconsin-Madison, Madison, WI, United States.,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Macdonald JA, Franҫois CJ, Forouzan O, Chesler NC, Wieben O. MRI assessment of aortic flow in patients with pulmonary arterial hypertension in response to exercise. BMC Med Imaging 2018; 18:55. [PMID: 30577768 PMCID: PMC6303959 DOI: 10.1186/s12880-018-0298-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/09/2018] [Indexed: 11/30/2022] Open
Abstract
Background While primarily a right heart disease, pulmonary arterial hypertension (PAH) can impact left heart function and aortic flow through a shifted interventricular septum from right ventricular pressure overload and reduced left ventricular preload, among other mechanisms. In this study, we used phase contrast (PC) MRI and a modest exercise challenge to examine the effects of PAH on systemic circulation. While exercise challenges are typically performed with ultrasound in the clinic, MRI exercise studies allow for more reproducible image alignment, more accurate flow quantification, and improved tissue contrast. Methods Six PAH patients and fifteen healthy controls (8 older age-matched, 7 younger) exercised in the magnet bore with an MRI-compatible exercise device that allowed for scanning immediately following cessation of exercise. PC scans were performed in the ascending aorta during a breath hold immediately after modest exercise to non-invasively measure stroke volume (SV), cardiac output (CO), aortic peak systolic flow (PSF), and aortic wall stiffness via relative area change (RAC). Results Images following exercise showed mild blurring, but were high enough quality to allow for segmentation of the aorta. While SV was approximately 30% lower in PAH patients (SVPAH,rest = 67 ± 16 mL; SVPAH,stress = 90 ± 42 mL) than age-matched controls (SV,older,rest = 93 ± 16 mL; SVolder,stress = 133 ± 40 mL) at both rest and following exercise, CO was similar for both groups following exercise (COPAH,stress = 10.8 ± 5.7 L/min; COolder,stress = 11.8 ± 5.0 L/min). This was achieved through a compensatory increase in heart rate in the PAH subjects (74% increase as compared to 29% in age-matched controls). The PAH subjects also demonstrated reduced aortic peak systolic flow relative to the healthy controls (PSFPAH,rest = 309 ± 52 mL/s; PSFolder,rest = 416 ± 114 mL/s; PSFPAH,stress = 388 ± 113 mL/s; PSFolder,stress = 462 ± 176 mL/s). PAH patients and older controls demonstrated stiffer aortic walls when compared to younger controls (RACPAH,rest = 0.15 ± 0.05; RAColder,rest = 0.17 ± 0.05; RACyoung,rest = 0.28 ± 0.08). Conclusions PC MRI following a modest exercise challenge was capable of detecting differences in left heart dynamics likely induced from PAH. These results demonstrated that PAH can have a significant influence on systemic flow, even when the patient has no prior left heart disease. Image quantification following exercise could likely be improved in future studies through the implementation of free-breathing or real-time MRI acquisitions. Trial registration Retrospectively registered on 02/26/2018 (TRN:NCT03523910).
Collapse
Affiliation(s)
- Jacob A Macdonald
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Room 1005, Madison, WI, 53705, USA.
| | | | - Omid Forouzan
- Department of Biomedical Engineering, University of Wisconsin, Madison, USA
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin, Madison, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Room 1005, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin, Madison, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, USA
| |
Collapse
|
6
|
Foley JRJ, Plein S, Greenwood JP. Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques. World J Cardiol 2017; 9:92-108. [PMID: 28289524 PMCID: PMC5329750 DOI: 10.4330/wjc.v9.i2.92] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/15/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Coronary artery disease (CAD) is a leading cause of death and disability worldwide. Cardiovascular magnetic resonance (CMR) is established in clinical practice guidelines with a growing evidence base supporting its use to aid the diagnosis and management of patients with suspected or established CAD. CMR is a multi-parametric imaging modality that yields high spatial resolution images that can be acquired in any plane for the assessment of global and regional cardiac function, myocardial perfusion and viability, tissue characterisation and coronary artery anatomy, all within a single study protocol and without exposure to ionising radiation. Advances in technology and acquisition techniques continue to progress the utility of CMR across a wide spectrum of cardiovascular disease, and the publication of large scale clinical trials continues to strengthen the role of CMR in daily cardiology practice. This article aims to review current practice and explore the future directions of multi-parametric CMR imaging in the investigation of stable CAD.
Collapse
|
7
|
Forouzan O, Warczytowa J, Wieben O, François CJ, Chesler NC. Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise. J Cardiovasc Magn Reson 2015; 17:109. [PMID: 26653289 PMCID: PMC4677443 DOI: 10.1186/s12968-015-0213-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 11/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exercise stress tests are commonly used in clinical settings to monitor the functional state of the heart and vasculature. Large artery stiffness is one measure of arterial function that can be quantified noninvasively during exercise stress. Changes in proximal pulmonary artery stiffness are especially relevant to the progression of pulmonary hypertension (PH), since pulmonary artery (PA) stiffness is the best current predictor of mortality from right ventricular failure. METHODS Cardiovascular magnetic resonance (CMR) was used to investigate the effect of exercise stress on PA pulse wave velocity (PWV) and relative area change (RAC), which are both non-invasive measures of PA stiffness, in healthy subjects. All 21 subjects (average age 26 ± 4 years; 13 female and 8 male) used a custom-made MR-compatible stepping device to exercise (two stages of mild-to-moderate exercise of 3-4 min duration each) in a supine position within the confines of the scanner. To measure the cross-sectional area and blood flow velocity in the main PA (MPA), two-dimensional phase-contrast (2D-PC) CMR images were acquired. To measure the reproducibility of metrics, CMR images were analyzed by two independent observers. Inter-observer agreements were calculated using the intraclass correlation and Bland-Altman analysis. RESULTS From rest to the highest level of exercise, cardiac output increased from 5.9 ± 1.4 L/min to 8.2 ± 1.9 L/min (p < 0.05), MPA PWV increased from 1.6 ± 0.5 m/s to 3.6 ± 1.4 m/s (p < 0.05), and MPA RAC decreased from 0.34 ± 0.11 to 0.24 ± 0.1 (p < 0.05). While PWV also increased from the first to second exercise stage (from 2.7 ± 1.0 m/s to 3.6 ± 1.4 m/s, p < 0.05), there was no significant change in RAC between the two exercise stages. We found good inter-observer agreement for quantification of MPA flow, RAC and PWV. CONCLUSION These results demonstrate that metrics of MPA stiffness increase in response to acute moderate exercise in healthy subjects and that CMR exercise stress offers great potential in clinical practice to noninvasively assess vascular function.
Collapse
Affiliation(s)
- Omid Forouzan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 1550 Engineering Drive, Madison, WI, 53706, USA.
| | - Jared Warczytowa
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 1550 Engineering Drive, Madison, WI, 53706, USA.
| | - Oliver Wieben
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 1550 Engineering Drive, Madison, WI, 53706, USA.
- Department of Medical Physics, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Radiology, University of Wisconsin, School of Medicine and Public Health, E3/366 Clinical Science Center, 600 Highland Avenue, Madison, WI, 53792-3252, USA.
| | - Christopher J François
- Department of Radiology, University of Wisconsin, School of Medicine and Public Health, E3/366 Clinical Science Center, 600 Highland Avenue, Madison, WI, 53792-3252, USA.
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 1550 Engineering Drive, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Francois CJ, Forouzan O, Warczytowa J, Macdonald JA, Wieben O, Chesler NC. Exercise cardiac MR assessment of diastolic function. J Cardiovasc Magn Reson 2015. [PMCID: PMC4328642 DOI: 10.1186/1532-429x-17-s1-p26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|