1
|
Chen H, Liu L, Zhang Y. Finite element analysis of the knee joint stress after partial meniscectomy for meniscus horizontal cleavage tears. BMC Musculoskelet Disord 2023; 24:744. [PMID: 37726679 PMCID: PMC10508030 DOI: 10.1186/s12891-023-06868-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE To establish a finite element model of meniscus horizontal cleavage and partial resection, to simulate the mechanical changes of knee joint under 4 flexion angles, and to explore what is the optimal surgical plan. METHODS We used Mimics Research, Geomagic Wrap, and SolidWorks computer software to reconstruct the 3D model of the knee joint, and then produced the horizontal cleavage tears model of the internal and lateral meniscus, the suture model, and the partial meniscectomy model. These models were assembled into a complete knee joint in SolidWorks software, and corresponding loads and boundary constraints were added to these models in ANSYS software to simulate the changing trend of pressure and shear force on femoral condylar cartilage, meniscus, and tibial cartilage under the flexion angles of 0°, 10°, 20°, 30° and 40° of the knee joint. At the same time, the difference of force area between medial interventricular and lateral interventricular of knee joint under four states of bending the knee was compared, to explore the different effects of different surgical methods on knee joint after horizontal meniscus tear. RESULTS Within the four medial meniscus injury models, the lowest peak internal pressure and shear force of the knee joint was observed in the meniscal suture model; the highest values were found in the bilateral leaflet resection model and the inferior leaflet resection model; the changes of pressure, shear force and stress area in the superior leaflet resection model were the most similar to the changes of the knee model with the meniscal suture model. CONCLUSION Suture repair is the best way to maintain the force relationship in the knee joint. However, resection of the superior leaflet of the meniscus is also a reliable choice when suture repair is difficult.
Collapse
Affiliation(s)
- Hao Chen
- Department of Sport Medicine, Beijing DCN Orthopedic Hospital, No.19 Fushi Road, Beijing, 100143 China
| | - Lantao Liu
- Department of Spinal Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, No.5 Donghai Zhong Road, Qingdao, 266000 China
| | - Youlei Zhang
- Department of Sport Medicine, Beijing DCN Orthopedic Hospital, No.19 Fushi Road, Beijing, 100143 China
| |
Collapse
|
2
|
Ardatov O, Aleksiuk V, Maknickas A, Stonkus R, Uzieliene I, Vaiciuleviciute R, Pachaleva J, Kvederas G, Bernotiene E. Modeling the Impact of Meniscal Tears on von Mises Stress of Knee Cartilage Tissue. Bioengineering (Basel) 2023; 10:bioengineering10030314. [PMID: 36978703 PMCID: PMC10045156 DOI: 10.3390/bioengineering10030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The present study aims to explore the stressed state of cartilage using various meniscal tear models. To perform this research, the anatomical model of the knee joint was developed and the nonlinear mechanical properties of the cartilage and meniscus were verified. The stress–strain curve of the meniscus was obtained by testing fresh tissue specimens of the human meniscus using a compression machine. The results showed that the more deteriorated meniscus had greater stiffness, but its integrity had the greatest impact on the growth of cartilage stresses. To confirm this, cases of radial, longitudinal, and complex tears were examined. The methodology and results of the study can assist in medical diagnostics for meniscus treatment and replacement.
Collapse
Affiliation(s)
- Oleg Ardatov
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
- Correspondence:
| | - Viktorija Aleksiuk
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania
| | - Algirdas Maknickas
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Rimantas Stonkus
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania
| | - Jolita Pachaleva
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania
| | - Giedrius Kvederas
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10221 Vilnius, Lithuania
| |
Collapse
|
3
|
Wu CC, Ye LM, Li XF, Shi LJ. Sequential damage assessment of the posterolateral complex of the knee joint: a finite element study. J Orthop Surg Res 2022; 17:185. [PMID: 35346281 PMCID: PMC8962527 DOI: 10.1186/s13018-022-03034-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The posterolateral complex (PLC), which consists of the popliteus tendon (PT), lateral collateral ligament (LCL), and popliteofibular ligament (PFL), is an indispensable structure of the knee joint. The aim of this study was to explore the functionality of the PLC by determining the specific role of each component in maintaining posterolateral knee stability. METHODS A finite element (FE) model was generated based on previous material property data and magnetic resonance imaging of a volunteer's knee joint. The injury order of the PLC was set as LCL, PFL, and PT. A combined compressive load of 1150 N and an anterior tibial load of 134 N was applied to the tibia to investigate tibial displacement (TD). Tibial external rotation (TER) and tibial varus angulation (TVA) were measured under bending motions of 5 and 10 Nm. The instantaneous axis of rotation (IAR) of the knee joint under different rotation motions was also recorded. RESULTS The TD of the intact knee under a combined compressive load of 1150 N and an anterior tibial load of 134 N matched the values determined in previous studies. Our model showed consistent increases in TD, TVA, and TER after sequential damage of the PLC. In addition, sequential disruption caused the IAR to shift superiorly and laterally during varus rotation and medially and anteriorly during external rotation. In the dynamic damage of the PLC, LCL injury had the largest effect on TD, TVA, TER, and IAR. CONCLUSIONS Sequential injury of the PLC caused considerable loss of stability of the knee joint according to an FE model. The most significant structure of the PLC was the LCL.
Collapse
Affiliation(s)
- Cong-Cong Wu
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China
| | - Li-Mei Ye
- Department of Radiology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China
| | - Xiao-Fei Li
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China
| | - Lin-Jun Shi
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China.
| |
Collapse
|
4
|
Orava H, Huang L, Ojanen SP, Mäkelä JT, Finnilä MA, Saarakkala S, Herzog W, Korhonen RK, Töyräs J, Tanska P. Changes in subchondral bone structure and mechanical properties do not substantially affect cartilage mechanical responses – A finite element study. J Mech Behav Biomed Mater 2022; 128:105129. [DOI: 10.1016/j.jmbbm.2022.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
5
|
Li Y, Liem Y, Dall'Ara E, Sullivan N, Ahmed H, Blom A, Sharif M. Subchondral bone microarchitecture and mineral density in human osteoarthritis and osteoporosis: A regional and compartmental analysis. J Orthop Res 2021; 39:2568-2580. [PMID: 33751647 DOI: 10.1002/jor.25018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) and osteoporosis (OP) are historically considered to be inversely correlated but there may be an overlap between the pathophysiology of the two diseases. This study aimed to investigate the subchondral bone microarchitecture and matrix mineralization, and the association between them in OA and OP in relation to the degree of cartilage degeneration. Fifty-six osteochondral plugs were collected from 16 OA femoral heads. They were graded on a regional basis according to the stages of cartilage degeneration, as evaluated by a new macroscopic and a modified microscopic grading system. Twenty-one plugs were collected from seven femoral heads with OP. Plugs were scanned by microcomputed tomography and the microarchitectural and mineral properties were obtained for both subchondral plate and trabecular bone. Microarchitecture and material and apparent densities of subchondral bone in OP were similar to regions with early cartilage degeneration but different from regions with advanced cartilage degradation in OA femoral heads. Subchondral trabecular bone was more mineralized than subchondral plate in both OP and OA, and this compartmental difference varied by severity of cartilage degradation. Furthermore, the relationship among trabecular bone volume fraction, tissue mineral density, and apparent bone density was similar in OP and different stages of OA. Subchondral bone microarchitecture and mineral properties in OP are different from OA in a regionalized manner in relation to stages of cartilage degeneration. Both regional and compartmental differences at structural, material, and cellular levels need to be studied to understand the transition of OA subchondral bone from being osteoporotic to sclerotic.
Collapse
Affiliation(s)
- Yunfei Li
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yulia Liem
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Niall Sullivan
- Department of Trauma and Orthopaedics, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Haroon Ahmed
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashley Blom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Mohammed Sharif
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Sun Y, Wang N, Yu J, Yan Y, Dong H, Wu X, Zhang M, Wang Y, Li P, Wei X, Chen W. Study on the poroelastic behaviors of the defected articular cartilage. Comput Methods Biomech Biomed Engin 2021; 25:1288-1300. [PMID: 34807804 DOI: 10.1080/10255842.2021.2007376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This article presented the possible mechanism of arthritis damaged changes in cartilage's interstitial fluid flowing behavior. Firstly, the analytical solutions for the pore fluid pressure and velocity in the idealized cartilage defect model were obtained, which are employed to validate the finite element (FE) method. Then according to the MRI data, an articular cartilage FE model was developed to study the effects of defect characteristics on its poroelastic behaviors. The results showed the interstitial fluid pressure and velocity in defected articular cartilage is diminished, moreover, this trend is even more severe as the defect radius or thickness increased. As the development of osteoarthritis goes, the fluid velocity is decreased and cause the even serious nutrients loss.
Collapse
Affiliation(s)
- Yuqin Sun
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ningning Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jianhao Yu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yang Yan
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hao Dong
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaogang Wu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Meizhen Zhang
- College of Physical Education, Taiyuan University of Technology, Taiyuan, China
| | - Yanqin Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Pengcui Li
- Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Taiyuan, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
7
|
Constitutive modeling of menisci tissue: a critical review of analytical and numerical approaches. Biomech Model Mechanobiol 2020; 19:1979-1996. [PMID: 32572727 DOI: 10.1007/s10237-020-01352-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Menisci are fibrocartilaginous disks consisting of soft tissue with a complex biomechanical structure. They are critical determinants of the kinematics as well as the stability of the knee joint. Several studies have been carried out to formulate tissue mechanical behavior, leading to the development of a wide spectrum of constitutive laws. In addition to developing analytical tools, extensive numerical studies have been conducted on menisci modeling. This study reviews the developments of the most widely used continuum models of the meniscus mechanical properties in conjunction with emerging analytical and numerical models used to study the meniscus. The review presents relevant approaches and assumptions used to develop the models and includes discussions regarding strengths, weaknesses, and discrepancies involved in the presented models. The study presents a comprehensive coverage of relevant publications included in Compendex, EMBASE, MEDLINE, PubMed, ScienceDirect, Springer, and Scopus databases. This review aims at opening novel avenues for improving menisci modeling within the framework of constitutive modeling through highlighting the needs for further research directed toward determining key factors in gaining insight into the biomechanics of menisci which is crucial for the elaborate design of meniscal replacements.
Collapse
|
8
|
Li L, Yang L, Zhang K, Zhu L, Wang X, Jiang Q. Three-dimensional finite-element analysis of aggravating medial meniscus tears on knee osteoarthritis. J Orthop Translat 2020; 20:47-55. [PMID: 31908933 PMCID: PMC6939112 DOI: 10.1016/j.jot.2019.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The biomechanical change during the medial meniscus damage in the process of knee osteoarthritis has not been explored. The purpose of this study was to determine the effect of aggravating medial meniscus degenerative tear on the progress of knee osteoarthritis through the finite-element simulation method. METHODS The three-dimensional digital model of a total-knee joint was obtained using a combination of magnetic resonance imaging and computed tomography images. Four types of medial meniscus tears were created to represent the aggravating degenerative meniscus lesions. Meniscectomy of each meniscal tear was also utilized in the simulation. The compression and shear stress of bony tissue, cartilage, and meniscus were evaluated, and meniscus extrusion of the healthy knee, postinjured knee, and postmeniscectomy knee were investigated under the posture of balanced standing. RESULTS Based on the results of finite-element simulation, the peak shear principal stress, peak compression principal stress, and meniscus extrusion increased gradually as the meniscus tears' region enlarged progressively (from 7.333 MPa to 15.14 MPa on medial femur and from 6 MPa to 20.94 MPa on medial tibia). The higher stress and larger meniscus extrusion displacement in all tests were observed in the flap and complex tears. The oblique tears also had a biomechanical variation of stress and meniscus extrusion in the knee joint, but their level was milder. Both the peak value of the stress and meniscus displacement increased after the meniscectomy. CONCLUSION In contrast to the damaged hemijoint, the stress applied on the healthy lateral hemijoint increased. The change of biomechanics was more obvious with the aggravation of meniscus injury. The advanced degenerative damage resulted in increasing stress that was more likely to cause symptomatic clinical manifestation in the knee joint and accelerate the progress of osteoarthritis. Moreover, we found that the meniscus injury caused higher stress concentration on the contralateral side of the joint. We also discovered that the meniscectomy can lead to more serious biomechanical changes, and although this technique can relieve pain over a period of time, it increased the risk of osteoarthritis (OA) occurrence. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE It is clear that the meniscal lesions can cause osteoarthritic knee, but the biomechanical change during the meniscus damage period has not been explored. We have evaluated the variation of stress during the aggravating medial degenerative meniscus tears and the relationship in the process of knee OA through finite-element simulation. This study does favour to obtain a better understanding on the symptoms and pathological changes of OA. It also may provide some potential directions for the prophylaxis and treatment of OA.
Collapse
Affiliation(s)
- Lan Li
- School of Mechanical Engineering, Southeast University, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, China
| | - Longfei Yang
- School of Mechanical Engineering, Southeast University, China
| | - Kaijia Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, China
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, China
| | - Xingsong Wang
- School of Mechanical Engineering, Southeast University, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, China
| |
Collapse
|
9
|
Sajjadinia SS, Haghpanahi M, Razi M. Computational simulation of the multiphasic degeneration of the bone-cartilage unit during osteoarthritis via indentation and unconfined compression tests. Proc Inst Mech Eng H 2019; 233:871-882. [DOI: 10.1177/0954411919854011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been experimentally proposed that the discrete regions of articular cartilage, along with different subchondral bone tissues, known as the bone-cartilage unit, are biomechanically altered during osteoarthritis degeneration. However, a computational framework capturing all of the dominant changes in the multiphasic parameters has not yet been developed. This article proposes a new finite element model of the bone-cartilage unit by combining several validated, nonlinear, depth-dependent, fibril-reinforced, and swelling models, which can computationally simulate the variations in the dominant parameters during osteoarthritis degeneration by indentation and unconfined compression tests. The mentioned dominant parameters include the proteoglycan depletion, collagen fibrillar softening, permeability, and fluid fraction increase for approximately non-advanced osteoarthritis. The results depict the importance of subchondral bone tissues in fluid distribution within the bone-cartilage units by decreasing the fluid permeation and pressure (up to a maximum of 100 kPa) during osteoarthritis, supporting the notion that subchondral bones might play a role in the pathogenesis of osteoarthritis. Furthermore, the osteoarthritis composition-based studies shed light on the significant biomechanical role of the calcified cartilage, which experienced a maximum change of 70 kPa in stress, together with relative load contributions of articular cartilage constituents during osteoarthritis, in which the osmotic pressure bore around 70% of the loads after degeneration. To conclude, the new insights provided by the results reveal the significance of the multiphasic osteoarthritis simulation and demonstrate the functionality of the proposed bone-cartilage unit model.
Collapse
Affiliation(s)
| | - Mohammad Haghpanahi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Razi
- Department of Orthopedic Surgery, Iran University of Medical Sciences, Tehran, Iran
- Department of Sports Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Kaur K, Singh KJ, Anand V, Bhatia G, Singh AP, Kaur M. Elucidating the role of size of hydroxyl apatite particles toward the development of competent antiosteoporotic bioceramic materials: In vitro and in vivo studies. J Biomed Mater Res A 2019; 107:1723-1735. [PMID: 30924267 DOI: 10.1002/jbm.a.36687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Accepted: 03/15/2019] [Indexed: 12/26/2022]
Abstract
Osteoporosis caused by overdose of steroids is one of the major concerns for the orthopedic surgeons. Current therapeutic strategies offer limited success due to their inability to regenerate damaged bone at osteoporosis site. Therefore, there is an urgent need to develop a material having bone regeneration ability and also, ability to cure osteoporosis simultaneously. In this work, nanosized and microsized hydroxyl apatite (HAp) particles doped with europium (Eu) were prepared for diagnostic and therapeutic applications in biomedical engineering. Particles were characterized by X-ray diffraction to confirm the formation of HAp phase and transmission electron microscopy technique has been used to explore the size of microparticle and nanoparticle. In vitro release of antibiotic drug and degradation behavior in two different pHs of phosphate buffered saline was checked. Controlled drug release behavior and conversion of degraded ions into HAp is estimated by Higuchi's and 3D diffusion model, respectively. Osteoporosis was induced in 36 female Wistar rats by administering dexamethasone once a week for four consecutive weeks. Rats were treated with different doses of nano-HAp (25, 50, and 100 μg/kg intravenous single dose) and single dose of microsized HAp (100 μg/kg). After treatment, authors have evaluated sensitive biochemical markers of bone in serum. Continuous improvement in ultimate stiffness and Young's modulus of femur shaft of rats was observed with the increase in the dose of nano-HAp from 25 to 100 μg/kg. Results strongly suggest that europium-doped nano-HAp is more effective for treating severe osteoporosis in humans. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1723-1735, 2019.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Department of Physics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - K J Singh
- Department of Physics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Vikas Anand
- Department of Physics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Gaurav Bhatia
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
11
|
Trad Z, Barkaoui A, Chafra M, Tavares JMR. Finite element analysis of the effect of high tibial osteotomy correction angle on articular cartilage loading. Proc Inst Mech Eng H 2018; 232:553-564. [PMID: 29683374 DOI: 10.1177/0954411918770706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Osteoarthritis is a globally common disease that imposes a considerable ongoing health and economic burden on the socioeconomic system. As more and more biomechanical factors have been explored, malalignment of the lower limb has been found to influence the load distribution across the articular surface of the knee joint substantially. In this work, a three-dimensional finite element analysis was carried out to investigate the effect of varying the high tibial osteotomy correction angle on the stress distribution in both compartments of the human knee joint. Thereafter, determine the optimal correction angle to achieve a balanced loading between these two compartments. The developed finite element model was validated against experimental and numerical results. The findings of this work suggest that by changing the correction angle from 0° to 10° valgus, high tibial osteotomy shifted the mechanical load from the affected medial compartment to the lateral compartment with intact cartilage. The Von Mises and the shear stresses decreased in the medial compartment and increased in the lateral compartment. Moreover, a balanced stress distribution between the two compartments as well as the desired alignment were achieved under a valgus hypercorrection of 4.5° that significantly unloads the medial compartment, loads the lateral compartment and arrests the progression of osteoarthritis. After comparing the achieved results against the ones of previous studies that explored the effects of the high tibial osteotomy correction angle on either clinical outcomes or biomechanical outcomes, one can conclude that the findings of this study agree well with the related clinical data and recommendations found in the literature.
Collapse
Affiliation(s)
- Zahra Trad
- 1 LR-11-ES19 Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI), Ecole Nationale d'Ingénieurs de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Abdelwahed Barkaoui
- 1 LR-11-ES19 Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI), Ecole Nationale d'Ingénieurs de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Moez Chafra
- 2 Laboratoire de Systèmes et de Mécanique Appliquée (LASMAP-EPT), Ecole Polytechnique de Tunisie, Université de Carthage, La Marsa, Tunisie
| | - João Manuel Rs Tavares
- 3 Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Mäkelä JTA, Cooper BG, Korhonen RK, Grinstaff MW, Snyder BD. Functional effects of an interpenetrating polymer network on articular cartilage mechanical properties. Osteoarthritis Cartilage 2018; 26:414-421. [PMID: 29326062 DOI: 10.1016/j.joca.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/18/2017] [Accepted: 01/01/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Depletion of glycosaminoglycans (GAGs) and degradation of collagen network are early hallmarks of osteoarthritis (OA). Currently, there are no chondroprotective therapies that mitigate the loss of GAGs or effectively restore the collagen network. Recently, a novel polymeric cartilage supplement was described that forms a charged interpenetrating polymer network (IPN) reconstituting the hydrophilic properties of the extracellular matrix (ECM). To investigate the mechanism by which this hydrophilic IPN improves articular cartilage material properties, a finite element (FE) model is used to evaluate the IPN's effect on the fibrillar collagen network, nonfibrillar matrix, and interstitial fluid flow. METHODS Bovine osteochondral plugs were degraded with chondroitinase ABC to selectively decrease GAG content. Samples were mechanically tested before and after IPN treatment using unconfined testing geometry and stress-relaxation protocol. Every measurement was modeled separately using a fibril-reinforced poroviscoelastic FE model. Measurement replication was achieved by optimizing the following model parameters: initial and strain-dependent fibril network modulus (Ef0, Efε, respectively), nonfibrillar matrix modulus (Enf), initial permeability (k0) and strain-dependent permeability factor (M). RESULTS Based on the FE model results, treatment of native and GAG depleted cartilage with the hydrophilic IPN increases the ECM stiffness and impedes fluid flow. The IPN did not alter the stiffness of fibrillary network. Cartilage permeability and the strain-dependent permeability factor decreased with increasing IPN w/v%. CONCLUSIONS The IPN reconstitutes cartilage material properties primarily by augmenting the hydrophilic ECM. This reinforcement of the solid phase also affects the fluid phase reestablishing low permeability.
Collapse
Affiliation(s)
- J T A Mäkelä
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - B G Cooper
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Chemistry, Boston University, Boston, MA, USA
| | - R K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - M W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Medicine, Boston University, Boston, MA, USA.
| | - B D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Tanska P, Julkunen P, Korhonen RK. A computational algorithm to simulate disorganization of collagen network in injured articular cartilage. Biomech Model Mechanobiol 2017; 17:689-699. [PMID: 29177932 DOI: 10.1007/s10237-017-0986-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
Cartilage defects are a known risk factor for osteoarthritis. Estimation of structural changes in these defects could help us to identify high risk defects and thus to identify patients that are susceptible for the onset and progression of osteoarthritis. Here, we present an algorithm combined with computational modeling to simulate the disorganization of collagen fibril network in injured cartilage. Several potential triggers for collagen disorganization were tested in the algorithm following the assumption that disorganization is dependent on the mechanical stimulus of the tissue. We found that tensile tissue stimulus alone was unable to preserve collagen architecture in intact cartilage as collagen network reoriented throughout the cartilage thickness. However, when collagen reorientation was based on both tensile tissue stimulus and tensile collagen fibril strains or stresses, the collagen network architecture was preserved in intact cartilage. Using the same approach, substantial collagen reorientation was predicted locally near the cartilage defect and particularly at the cartilage-bone interface. The developed algorithm was able to predict similar structural findings reported in the literature that are associated with experimentally observed remodeling in articular cartilage. The proposed algorithm, if further validated, could help to predict structural changes in articular cartilage following post-traumatic injury potentially advancing to impaired cartilage function.
Collapse
Affiliation(s)
- Petri Tanska
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
| | - Petro Julkunen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
14
|
Burnett WD, Kontulainen SA, McLennan CE, Hazel D, Talmo C, Wilson DR, Hunter DJ, Johnston JD. Proximal tibial trabecular bone mineral density is related to pain in patients with osteoarthritis. Arthritis Res Ther 2017; 19:200. [PMID: 28899428 PMCID: PMC5596910 DOI: 10.1186/s13075-017-1415-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Our objective was to examine the relationships between proximal tibial trabecular (epiphyseal and metaphyseal) bone mineral density (BMD) and osteoarthritis (OA)-related pain in patients with severe knee OA. Methods The knee was scanned preoperatively using quantitative computed tomography (QCT) in 42 patients undergoing knee arthroplasty. OA severity was classified using radiographic Kellgren-Lawrence scoring and pain was measured using the pain subsection of the Western Ontario and McMaster Universities Arthritis Index (WOMAC). We used three-dimensional image processing techniques to assess tibial epiphyseal trabecular BMD between the epiphyseal line and 7.5 mm from the subchondral surface and tibial metaphyseal trabecular BMD 10 mm distal from the epiphyseal line. Regional analysis included the total epiphyseal and metaphyseal region, and the medial and lateral epiphyseal compartments. The association between total WOMAC pain scores and BMD measurements was assessed using hierarchical multiple regression with age, sex, and body mass index (BMI) as covariates. Statistical significance was set at p < 0.05. Results Total WOMAC pain was associated with total epiphyseal BMD adjusted for age, sex, and BMI (p = 0.013) and total metaphyseal BMD (p = 0.017). Regionally, total WOMAC pain was associated with medial epiphyseal BMD adjusted for age, sex, and BMI (p = 0.006). Conclusion These findings suggest that low proximal tibial trabecular BMD may have a role in OA-related pain pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1415-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wadena D Burnett
- University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | | | | | - Diane Hazel
- New England Baptist Hospital, Boston, MA, USA
| | - Carl Talmo
- New England Baptist Hospital, Boston, MA, USA
| | | | | | - James D Johnston
- University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
| |
Collapse
|
15
|
Nazemi SM, Amini M, Kontulainen SA, Milner JS, Holdsworth DW, Masri BA, Wilson DR, Johnston JD. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone. Clin Biomech (Bristol, Avon) 2017; 41:1-8. [PMID: 27842233 DOI: 10.1016/j.clinbiomech.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. METHODS Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. FINDINGS Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm3 density. INTERPRETATION In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions.
Collapse
Affiliation(s)
- S Majid Nazemi
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada.
| | - Morteza Amini
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
| | | | - Jaques S Milner
- Robarts Research Institute, Western University, London, Canada
| | | | - Bassam A Masri
- Department of Orthopaedics, University of British Columbia, Centre for Hip Health and Mobility, Vancouver, Canada
| | - David R Wilson
- Department of Orthopaedics, University of British Columbia, Centre for Hip Health and Mobility, Vancouver, Canada
| | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
16
|
Venäläinen M, Mononen M, Väänänen S, Jurvelin J, Töyräs J, Virén T, Korhonen R. Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading. J Biomech 2016; 49:1111-1120. [DOI: 10.1016/j.jbiomech.2016.02.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/16/2015] [Accepted: 02/16/2016] [Indexed: 11/30/2022]
|
17
|
Turunen MJ, Töyräs J, Kokkonen HT, Jurvelin JS. Quantitative evaluation of knee subchondral bone mineral density using cone beam computed tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:2186-2190. [PMID: 25935027 DOI: 10.1109/tmi.2015.2426684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Contrast agent enhanced cone beam computed tomography (CE-CBCT), a technique capable of high-resolution in vivo imaging with small radiation dose, has been applied successfully for clinical diagnostics of cartilage degeneration, i.e., osteoarthritis (OA). As an X-ray technique, CE-CBCT may also detect changes in mineral density of subchondral bone (volumetric bone mineral density, vBMD), known to be characteristic for OA. However, its feasibility for density measurements is not clear due to limited signal-to-noise ratio and contrast of CBCT images. In the present study, we created clinically applicable hydroxyapatite phantoms and determined vBMDs of cortical bone, trabecular bone, subchondral trabecular bone and subchondral plate of 10 cadaver (ex vivo) and 10 volunteer (in vivo) distal femora using a clinical CBCT scanner, and for reference, also using a conventional CT scanner. Our results indicated strong linear correlations between the vBMD values measured with the CT and CBCT scanners , however, absolute vBMD values were dependent on the scanner in use. Further, the differences between the vBMDs of cortical bone, trabecular bone and subchondral bone were similar and independent of the scanner. The present results indicate that vBMD values might not be directly comparable between different instruments. However, based on our present and previous results, we propose that, for OA diagnostics, clinical CBCT enables not only quantitative analysis of articular cartilage but also subchondral bone vBMD. Quantitative information on both cartilage and subchondral bone could be beneficial in OA diagnostics.
Collapse
|