1
|
Edrisnia H, Sharbatdar M. Numerical analysis of the effect of Syringomyelia on cerebrospinal fluid dynamics. Heliyon 2024; 10:e37067. [PMID: 39319127 PMCID: PMC11419872 DOI: 10.1016/j.heliyon.2024.e37067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Spinal cord enlargement (SCE) includes conditions such as Syringomyelia, tumors, and tumor-like cases of demyelination, edema, or inflammation. These conditions involve fluid-filled cysts, known as syrinx, or masses of tissue, referred to as tumors, which cause increased pressure within the spinal cord (SC) and obstruct cerebrospinal fluid (CSF) circulation. To assess the impact of SCE location and diameter, we constructed fifteen computational SC models, each featuring a SCE placed in one of five probable locations with 20 %, 40 %, and 60 % stenosis. Our objective was to investigate how the location, diameter, and length of the SCE influence CSF velocity pattern and to identify the most critical location in the SC associated with this condition. The results indicated a velocity increase of 0.5 cm/(s) near models with 60 % stenosis. Importantly, SCE located from T1 to T5 exhibit a more pronounced reduction, exceeding 6.5, in the Womersley number. Our finding suggests that this region is the most vulnerable for SCE formation due to its significant impact on fluid circulation. The identification of specific locations within the SC associated with heightened risk can contribute to an improved understanding, treatment and management of SCE.
Collapse
Affiliation(s)
- Hadis Edrisnia
- Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19991-43344, Iran
| | - Mahkame Sharbatdar
- Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19991-43344, Iran
| |
Collapse
|
2
|
Rivera-Rivera LA, Vikner T, Eisenmenger L, Johnson SC, Johnson KM. Four-dimensional flow MRI for quantitative assessment of cerebrospinal fluid dynamics: Status and opportunities. NMR IN BIOMEDICINE 2024; 37:e5082. [PMID: 38124351 PMCID: PMC11162953 DOI: 10.1002/nbm.5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Neurological disorders can manifest with altered neurofluid dynamics in different compartments of the central nervous system. These include alterations in cerebral blood flow, cerebrospinal fluid (CSF) flow, and tissue biomechanics. Noninvasive quantitative assessment of neurofluid flow and tissue motion is feasible with phase contrast magnetic resonance imaging (PC MRI). While two-dimensional (2D) PC MRI is routinely utilized in research and clinical settings to assess flow dynamics through a single imaging slice, comprehensive neurofluid dynamic assessment can be limited or impractical. Recently, four-dimensional (4D) flow MRI (or time-resolved three-dimensional PC with three-directional velocity encoding) has emerged as a powerful extension of 2D PC, allowing for large volumetric coverage of fluid velocities at high spatiotemporal resolution within clinically reasonable scan times. Yet, most 4D flow studies have focused on blood flow imaging. Characterizing CSF flow dynamics with 4D flow (i.e., 4D CSF flow) is of high interest to understand normal brain and spine physiology, but also to study neurological disorders such as dysfunctional brain metabolite waste clearance, where CSF dynamics appear to play an important role. However, 4D CSF flow imaging is challenged by the long T1 time of CSF and slower velocities compared with blood flow, which can result in longer scan times from low flip angles and extended motion-sensitive gradients, hindering clinical adoption. In this work, we review the state of 4D CSF flow MRI including challenges, novel solutions from current research and ongoing needs, examples of clinical and research applications, and discuss an outlook on the future of 4D CSF flow.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tomas Vikner
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiation Sciences, Radiation Physics and Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
3
|
De Andres J, Hayek S, Perruchoud C, Lawrence MM, Reina MA, De Andres-Serrano C, Rubio-Haro R, Hunt M, Yaksh TL. Intrathecal Drug Delivery: Advances and Applications in the Management of Chronic Pain Patient. FRONTIERS IN PAIN RESEARCH 2022; 3:900566. [PMID: 35782225 PMCID: PMC9246706 DOI: 10.3389/fpain.2022.900566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in our understanding of the biology of spinal systems in organizing and defining the content of exteroceptive information upon which higher centers define the state of the organism and its role in the regulation of somatic and automatic output, defining the motor response of the organism, along with the unique biology and spatial organization of this space, have resulted in an increased focus on therapeutics targeted at this extracranial neuraxial space. Intrathecal (IT) drug delivery systems (IDDS) are well-established as an effective therapeutic approach to patients with chronic non-malignant or malignant pain and as a tool for management of patients with severe spasticity and to deliver therapeutics that address a myriad of spinal pathologies. The risk to benefit ratio of IDD makes it a useful interventional approach. While not without risks, this approach has a significant therapeutic safety margin when employed using drugs with a validated safety profile and by skilled practioners. The present review addresses current advances in our understanding of the biology and dynamics of the intrathecal space, therapeutic platforms, novel therapeutics, delivery technology, issues of safety and rational implementation of its therapy, with a particular emphasis upon the management of pain.
Collapse
Affiliation(s)
- Jose De Andres
- Surgical Specialties Department, Valencia University Medical School, Valencia, Spain
- Anesthesia Critical Care and Pain Management Department, Valencia, Spain
- *Correspondence: Jose De Andres
| | - Salim Hayek
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christophe Perruchoud
- Pain Center and Department of Anesthesia, La Tour Hospital, Geneva, Switzerland
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melinda M. Lawrence
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Miguel Angel Reina
- Department of Anesthesiology, Montepríncipe University Hospital, Madrid, Spain
- CEU-San-Pablo University School of Medicine, Madrid, Spain
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
- Facultad de Ciencias de la Salud Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Ruben Rubio-Haro
- Anesthesia and Pain Management Department, Provincial Hospital, Castellon, Spain
- Multidisciplinary Pain Clinic, Vithas Virgen del Consuelo Hospital, Valencia, Spain
| | - Mathew Hunt
- Department of Physiology, Karolinska Institute, Stockholm, Sweden
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
4
|
Abstract
Computational fluid dynamics (CFD) modeling of blood flow plays an important role in better understanding various medical conditions, designing more effective drug delivery systems, and developing novel diagnostic methods and treatments. However, despite significant advances in computational technology and resources, the expensive computational cost of these simulations still hinders their transformation from a research interest to a clinical tool. This bottleneck is even more severe for image-based, patient-specific CFD simulations with realistic boundary conditions and complex computational domains, which make such simulations excessively expensive. To address this issue, deep learning approaches have been recently explored to accelerate computational hemodynamics simulations. In this study, we review recent efforts to integrate deep learning with CFD and discuss the applications of this approach in solving hemodynamics problems, such as blood flow behavior in aorta and cerebral arteries. We also discuss potential future directions in the field. In this review, we suggest that incorporating physiologic understandings and underlying fluid mechanics laws in deep learning models will soon lead to a paradigm shift in the development novel non-invasive computational medical decisions.
Collapse
|
5
|
Ibrahimy A, Huang CWC, Bezuidenhout AF, Allen PA, Bhadelia RA, Loth F. Association Between Resistance to Cerebrospinal Fluid Flow Near the Foramen Magnum and Cough-Associated Headache in Adult Chiari Malformation Type I. J Biomech Eng 2021; 143:051003. [PMID: 33454731 PMCID: PMC8086178 DOI: 10.1115/1.4049788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Indexed: 01/03/2023]
Abstract
Cough-associated headaches (CAHs) are thought to be distinctive for Chiari malformation type I (CMI) patients and have been shown to be related to the motion of cerebrospinal fluid (CSF) near the foramen magnum (FM). We used computational fluid dynamics (CFD) to compute patient-specific resistance to CSF motion in the spinal canal for CMI patients to determine its accuracy in predicting CAH. Fifty-one symptomatic CMI patients with cerebellar tonsillar position (CTP) ≥ 5 mm were included in this study. The patients were divided into two groups based on their symptoms (CAH and non-CAH) by review of the neurosurgical records. CFD was utilized to simulate CSF motion, and the integrated longitudinal impedance (ILI) was calculated for all patients. A receiver operating characteristic (ROC) curve was evaluated for its accuracy in predicting CAH. The ILI for CMI patients with CAH (776 dyn/cm5, 288-1444 dyn/cm5; median, interquartile range) was significantly larger compared to non-CAH (285 dyn/cm5, 187-450 dyn/cm5; p = 0.001). The ILI was more accurate in predicting CAH in CMI patients than the CTP when the comparison was made using the area under the ROC curve (AUC) (0.77 and 0.70, for ILI and CTP, respectively). ILI ≥ 750 dyn/cm5 had a sensitivity of 50% and a specificity of 95% in predicting CAH. ILI is a parameter that is used to assess CSF blockage in the spinal canal and can predict patients with and without CAH with greater accuracy than CTP.
Collapse
Affiliation(s)
- Alaaddin Ibrahimy
- Department of Mechanical Engineering, The University of Akron, 302 E Buchtel Avenue, Akron, OH 44325
| | - Chi-Wen Christina Huang
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei City 110, Taiwan
| | - Abraham F. Bezuidenhout
- Beth Israel Deaconess Medical Center, Department of Radiology, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Philip A. Allen
- Department of Psychology, The University of Akron, 302 E Buchtel Avenue, Akron, OH 44325
| | - Rafeeque A. Bhadelia
- Beth Israel Deaconess Medical Center, Department of Radiology, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Francis Loth
- Department of Mechanical Engineering, The University of Akron, 302 E Buchtel Avenue, Akron, OH 44325
| |
Collapse
|
6
|
Williams G, Thyagaraj S, Fu A, Oshinski J, Giese D, Bunck AC, Fornari E, Santini F, Luciano M, Loth F, Martin BA. In vitro evaluation of cerebrospinal fluid velocity measurement in type I Chiari malformation: repeatability, reproducibility, and agreement using 2D phase contrast and 4D flow MRI. Fluids Barriers CNS 2021; 18:12. [PMID: 33736664 PMCID: PMC7977612 DOI: 10.1186/s12987-021-00246-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/03/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Phase contrast magnetic resonance imaging, PC MRI, is a valuable tool allowing for non-invasive quantification of CSF dynamics, but has lacked adoption in clinical practice for Chiari malformation diagnostics. To improve these diagnostic practices, a better understanding of PC MRI based measurement agreement, repeatability, and reproducibility of CSF dynamics is needed. METHODS An anatomically realistic in vitro subject specific model of a Chiari malformation patient was scanned three times at five different scanning centers using 2D PC MRI and 4D Flow techniques to quantify intra-scanner repeatability, inter-scanner reproducibility, and agreement between imaging modalities. Peak systolic CSF velocities were measured at nine axial planes using 2D PC MRI, which were then compared to 4D Flow peak systolic velocity measurements extracted at those exact axial positions along the model. RESULTS Comparison of measurement results showed good overall agreement of CSF velocity detection between 2D PC MRI and 4D Flow (p = 0.86), fair intra-scanner repeatability (confidence intervals ± 1.5 cm/s), and poor inter-scanner reproducibility. On average, 4D Flow measurements had a larger variability than 2D PC MRI measurements (standard deviations 1.83 and 1.04 cm/s, respectively). CONCLUSION Agreement, repeatability, and reproducibility of 2D PC MRI and 4D Flow detection of peak CSF velocities was quantified using a patient-specific in vitro model of Chiari malformation. In combination, the greatest factor leading to measurement inconsistency was determined to be a lack of reproducibility between different MRI centers. Overall, these findings may help lead to better understanding for application of 2D PC MRI and 4D Flow techniques as diagnostic tools for CSF dynamics quantification in Chiari malformation and related diseases.
Collapse
Affiliation(s)
- Gwendolyn Williams
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA
| | - Suraj Thyagaraj
- Department of Mechanical Engineering, Conquer Chiari Research Center, University of Akron, Akron, OH, 44325, USA
| | - Audrey Fu
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, 83844, USA
| | - John Oshinski
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Daniel Giese
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Alexander C Bunck
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Eleonora Fornari
- CIBM, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Mark Luciano
- Department of Neurosurgery, John Hopkins University, Baltimore, MD, USA
| | - Francis Loth
- Department of Mechanical Engineering, Conquer Chiari Research Center, University of Akron, Akron, OH, 44325, USA
| | - Bryn A Martin
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA.
- Alcyone Therapeutics Inc, Lowell, MA, USA.
| |
Collapse
|
7
|
Jaeger E, Sonnabend K, Schaarschmidt F, Maintz D, Weiss K, Bunck AC. Compressed-sensing accelerated 4D flow MRI of cerebrospinal fluid dynamics. Fluids Barriers CNS 2020; 17:43. [PMID: 32677977 PMCID: PMC7364783 DOI: 10.1186/s12987-020-00206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 4D flow magnetic resonance imaging (MRI) of CSF can make an important contribution to the understanding of hydrodynamic changes in various neurological diseases but remains limited in clinical application due to long acquisition times. The aim of this study was to evaluate the accuracy of compressed SENSE accelerated MRI measurements of the spinal CSF flow. METHODS In 20 healthy subjects 4D flow MRI of the CSF in the cervical spine was acquired using compressed sensitivity encoding [CSE, a combination of compressed sensing and parallel imaging (SENSE) provided by the manufacturer] with acceleration factors between 4 and 10. A conventional scan using SENSE was used as reference. Extracted parameters were peak velocity, absolute net flow, forward flow and backward flow. Bland-Altman analysis was performed to determine the scan-rescan reproducibility and the agreement between SENSE and compressed SENSE. Additionally, a time accumulated flow error was calculated. In one additional subject flow of the spinal canal at the level of the entire spinal cord was assessed. RESULTS Averaged acquisition times were 10:21 min (SENSE), 9:31 min (CSE4), 6:25 min (CSE6), 4:53 min (CSE8) and 3:51 min (CSE10). Acquisition of the CSF flow surrounding the entire spinal cord took 14:40 min. Bland-Altman analysis showed good agreement for peak velocity, but slight overestimations for absolute net flow, forward flow and backward flow (< 1 ml/min) in CSE4-8. Results of the accumulated flow error were similar for CSE4 to CSE8. CONCLUSION A quantitative analysis of acceleration factors CSE4-10 showed that CSE with an acceleration factor up to 6 is feasible. This allows a scan time reduction of 40% and enables the acquisition and analysis of the CSF flow dynamics surrounding the entire spinal cord within a clinically acceptable scan time.
Collapse
Affiliation(s)
- Elena Jaeger
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany
| | - Kristina Sonnabend
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.
| | - Frank Schaarschmidt
- Institute of Cell Biology and Biophysics, Biostatistics Department, Leibniz University Hannover, Hannover, Germany
| | - David Maintz
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany
| | - Kilian Weiss
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.,Philips GmbH, Hamburg, Germany
| | - Alexander C Bunck
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany
| |
Collapse
|
8
|
Khani M, Sass LR, Xing T, Keith Sharp M, Balédent O, Martin BA. Anthropomorphic Model of Intrathecal Cerebrospinal Fluid Dynamics Within the Spinal Subarachnoid Space: Spinal Cord Nerve Roots Increase Steady-Streaming. J Biomech Eng 2019; 140:2683234. [PMID: 30003260 DOI: 10.1115/1.4040401] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/08/2022]
Abstract
Cerebrospinal fluid (CSF) dynamics are thought to play a vital role in central nervous system (CNS) physiology. The objective of this study was to investigate the impact of spinal cord (SC) nerve roots (NR) on CSF dynamics. A subject-specific computational fluid dynamics (CFD) model of the complete spinal subarachnoid space (SSS) with and without anatomically realistic NR and nonuniform moving dura wall deformation was constructed. This CFD model allowed detailed investigation of the impact of NR on CSF velocities that is not possible in vivo using magnetic resonance imaging (MRI) or other noninvasive imaging methods. Results showed that NR altered CSF dynamics in terms of velocity field, steady-streaming, and vortical structures. Vortices occurred in the cervical spine around NR during CSF flow reversal. The magnitude of steady-streaming CSF flow increased with NR, in particular within the cervical spine. This increase was located axially upstream and downstream of NR due to the interface of adjacent vortices that formed around NR.
Collapse
Affiliation(s)
- Mohammadreza Khani
- Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail:
| | - Lucas R Sass
- Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail:
| | - Tao Xing
- Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 e-mail:
| | - M Keith Sharp
- Biofluid Mechanics Laboratory, University of Louisville, Louisville, KY 40292 e-mail:
| | - Olivier Balédent
- Bioflow Image, CHU Nord Amiens-Picardie, Amiens 80054, France e-mail:
| | - Bryn A Martin
- Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail:
| |
Collapse
|
9
|
Puiseux T, Sewonu A, Meyrignac O, Rousseau H, Nicoud F, Mendez S, Moreno R. Reconciling PC-MRI and CFD: An in-vitro study. NMR IN BIOMEDICINE 2019; 32:e4063. [PMID: 30747461 DOI: 10.1002/nbm.4063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 05/25/2023]
Abstract
Several well-resolved 4D Flow MRI acquisitions of an idealized rigid flow phantom featuring an aneurysm, a curved channel as well as a bifurcation were performed under pulsatile regime. The resulting hemodynamics were processed to remove MRI artifacts. Subsequently, they were compared with CFD predictions computed on the same flow domain, using an in-house high-order low dissipative flow solver. Results show that reaching a good agreement is not straightforward but requires proper treatments of both techniques. Several sources of discrepancies are highlighted and their impact on the final correlation evaluated. While a very poor correlation (r2 = 0.63) is found in the entire domain between raw MRI and CFD data, correlation as high as r2 = 0.97 is found when artifacts are removed by post-processing the MR data and down sampling the CFD results to match the MRI spatial and temporal resolutions. This work demonstrates that, in a well-controlled environment, both PC-MRI and CFD might bring reliable and correlated flow quantities when a proper methodology to reduce the errors is followed.
Collapse
Affiliation(s)
- Thomas Puiseux
- IMAG, Univ Montpellier, CNRS, Montpellier, France
- ALARA Expertise, Strasbourg, France
| | - Anou Sewonu
- ALARA Expertise, Strasbourg, France
- I2MC, INSERM U1048, Toulouse, France
| | - Olivier Meyrignac
- I2MC, INSERM U1048, Toulouse, France
- Department of Radiology, CHU de Toulouse, Toulouse, France
| | - Hervé Rousseau
- I2MC, INSERM U1048, Toulouse, France
- Department of Radiology, CHU de Toulouse, Toulouse, France
| | | | - Simon Mendez
- IMAG, Univ Montpellier, CNRS, Montpellier, France
| | - Ramiro Moreno
- ALARA Expertise, Strasbourg, France
- I2MC, INSERM U1048, Toulouse, France
| |
Collapse
|
10
|
Hosotani K, Uehara S, Ishihara T, Ono A, Takeuchi K, Hashiguchi Y. Development of the MRI Flow Phantom System Focused on Low Speed Flows in Fluid Machinery. JOURNAL OF ROBOTICS AND MECHATRONICS 2018. [DOI: 10.20965/jrm.2018.p0650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At present, magnetic resonance imaging (MRI), which is one of the noninvasive diagnostic imaging techniques for medical use, has been applied to industrial product inspection. In this study, a hydraulic model test system, called the “flow phantom system,” which can generate steady flow and oscillating flow for time-resolved MRI, was developed to aid optimum design of fluid machinery. Simple flow phantoms are tested under laminar flow or oscillating flow to evaluate the validity and effectiveness of the proposed system. In this article, the test results of double cylindrical pipe flow, elbow pipe flow, cylindrical valve flow, and jet pump flow, which are often seen in fluid machines, are tested using the 2D time-spatial labeling inversion pulse (Time-SLIP) method, which can track a labeled water mass and visualize it using two-dimensional images. MRI-detected flow patterns were compared with particle image velocimetry (PIV) or numerical simulation.
Collapse
|
11
|
Khani M, Xing T, Gibbs C, Oshinski JN, Stewart GR, Zeller JR, Martin BA. Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey. J Biomech Eng 2018; 139:2625663. [PMID: 28462417 DOI: 10.1115/1.4036608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 11/08/2022]
Abstract
A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.
Collapse
Affiliation(s)
- Mohammadreza Khani
- Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail:
| | - Tao Xing
- Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 e-mail:
| | - Christina Gibbs
- Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail:
| | - John N Oshinski
- Department of Radiology, Emory University, Atlanta, GA 30322 e-mail:
| | | | | | - Bryn A Martin
- Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail:
| |
Collapse
|
12
|
Thyagaraj S, Pahlavian SH, Sass LR, Loth F, Vatani M, Choi JW, Tubbs RS, Giese D, Kroger JR, Bunck AC, Martin BA. An MRI-Compatible Hydrodynamic Simulator of Cerebrospinal Fluid Motion in the Cervical Spine. IEEE Trans Biomed Eng 2017; 65:1516-1523. [PMID: 28961100 DOI: 10.1109/tbme.2017.2756995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GOAL Develop and test an MRI-compatible hydrodynamic simulator of cerebrospinal fluid (CSF) motion in the cervical spinal subarachnoid space. Four anatomically realistic subject-specific models were created based on a 22-year-old healthy volunteer and a five-year-old patient diagnosed with Chiari I malformation. METHODS The in vitro models were based on manual segmentation of high-resolution T2-weighted MRI of the cervical spine. Anatomically realistic dorsal and ventral spinal cord nerve rootlets (NR) were added. Models were three dimensional (3-D) printed by stereolithography with 50-μm layer thickness. A computer controlled pump system was used to replicate the shape of the subject specific in vivo CSF flow measured by phase-contrast MRI. Each model was then scanned by T2-weighted and 4-D phase contrast MRI (4D flow). RESULTS Cross-sectional area, wetted perimeter, and hydraulic diameter were quantified for each model. The oscillatory CSF velocity field (flow jets near NR, velocity profile shape, and magnitude) had similar characteristics to previously reported studies in the literature measured by in vivo MRI. CONCLUSION This study describes the first MRI-compatible hydrodynamic simulator of CSF motion in the cervical spine with anatomically realistic NR. NR were found to impact CSF velocity profiles to a great degree. SIGNIFICANCE CSF hydrodynamics are thought to be altered in craniospinal disorders such as Chiari I malformation. MRI scanning techniques and protocols can be used to quantify CSF flow alterations in disease states. The provided in vitro models can be used to test the reliability of these protocols across MRI scanner manufacturers and machines.
Collapse
|
13
|
Yeo J, Cheng S, Hemley S, Lee BB, Stoodley M, Bilston L. Characteristics of CSF Velocity-Time Profile in Posttraumatic Syringomyelia. AJNR Am J Neuroradiol 2017; 38:1839-1844. [PMID: 28729294 DOI: 10.3174/ajnr.a5304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/24/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The development of syringomyelia has been associated with changes in CSF flow dynamics in the spinal subarachnoid space. However, differences in CSF flow velocity between patients with posttraumatic syringomyelia and healthy participants remains unclear. The aim of this work was to define differences in CSF flow above and below a syrinx in participants with posttraumatic syringomyelia and compare the CSF flow with that in healthy controls. MATERIALS AND METHODS Six participants with posttraumatic syringomyelia were recruited for this study. Phase-contrast MR imaging was used to measure CSF flow velocity at the base of the skull and above and below the syrinx. Velocity magnitudes and temporal features of the CSF velocity profile were compared with those in healthy controls. RESULTS CSF flow velocity in the spinal subarachnoid space of participants with syringomyelia was similar at different locations despite differences in syrinx size and locations. Peak cranial and caudal velocities above and below the syrinx were not significantly different (peak cranial velocity, P = .9; peak caudal velocity, P = 1.0), but the peak velocities were significantly lower (P < .001, P = .007) in the participants with syringomyelia compared with matched controls. Most notably, the duration of caudal flow was significantly shorter (P = .003) in the participants with syringomyelia. CONCLUSIONS CSF flow within the posttraumatic syringomyelia group was relatively uniform along the spinal canal, but there are differences in the timing of CSF flow compared with that in matched healthy controls. This finding supports the hypothesis that syrinx development may be associated with temporal changes in spinal CSF flow.
Collapse
Affiliation(s)
- J Yeo
- From Neuroscience Research Australia (J.Y., B.B.L., L.B.), Randwick, New South Wales, Australia
| | - S Cheng
- Department of Engineering (S.C.), Faculty of Science and Engineering
| | - S Hemley
- Australian School of Advance Medicine (S.H., M.S.), Macquarie University, Sydney, New South Wales, Australia
| | - B B Lee
- From Neuroscience Research Australia (J.Y., B.B.L., L.B.), Randwick, New South Wales, Australia
- Prince of Wales Hospital (B.B.L.), Sydney, New South Wales, Australia
- Prince of Wales Clinical School (B.B.L., L.B.), University of New South Wales, Kensington, New South Wales, Australia
| | - M Stoodley
- Australian School of Advance Medicine (S.H., M.S.), Macquarie University, Sydney, New South Wales, Australia
| | - L Bilston
- From Neuroscience Research Australia (J.Y., B.B.L., L.B.), Randwick, New South Wales, Australia
- Prince of Wales Clinical School (B.B.L., L.B.), University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
14
|
Asgari M, de Zélicourt DA, Kurtcuoglu V. Barrier dysfunction or drainage reduction: differentiating causes of CSF protein increase. Fluids Barriers CNS 2017; 14:14. [PMID: 28521764 PMCID: PMC5437537 DOI: 10.1186/s12987-017-0063-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) protein analysis is an important element in the diagnostic chain for various central nervous system (CNS) pathologies. Among multiple existing approaches to interpreting measured protein levels, the Reiber diagram is particularly robust with respect to physiologic inter-individual variability, as it uses multiple subject-specific anchoring values. Beyond reliable identification of abnormal protein levels, the Reiber diagram has the potential to elucidate their pathophysiologic origin. In particular, both reduction of CSF drainage from the cranio-spinal space as well as blood-CNS barrier dysfunction have been suggested ρas possible causes of increased concentration of blood-derived proteins. However, there is disagreement on which of the two is the true cause. METHODS We designed two computational models to investigate the mechanisms governing protein distribution in the spinal CSF. With a one-dimensional model, we evaluated the distribution of albumin and immunoglobulin G (IgG), accounting for protein transport rates across blood-CNS barriers, CSF dynamics (including both dispersion induced by CSF pulsations and advection by mean CSF flow) and CSF drainage. Dispersion coefficients were determined a priori by computing the axisymmetric three-dimensional CSF dynamics and solute transport in a representative segment of the spinal canal. RESULTS Our models reproduce the empirically determined hyperbolic relation between albumin and IgG quotients. They indicate that variation in CSF drainage would yield a linear rather than the expected hyperbolic profile. In contrast, modelled barrier dysfunction reproduces the experimentally observed relation. CONCLUSIONS High levels of albumin identified in the Reiber diagram are more likely to originate from a barrier dysfunction than from a reduction in CSF drainage. Our in silico experiments further support the hypothesis of decreasing spinal CSF drainage in rostro-caudal direction and emphasize the physiological importance of pulsation-driven dispersion for the transport of large molecules in the CSF.
Collapse
Affiliation(s)
- Mahdi Asgari
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Diane A de Zélicourt
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Yildiz S, Thyagaraj S, Jin N, Zhong X, Heidari Pahlavian S, Martin BA, Loth F, Oshinski J, Sabra KG. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI. J Magn Reson Imaging 2017; 46:431-439. [DOI: 10.1002/jmri.25591] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/28/2016] [Indexed: 02/05/2023] Open
Affiliation(s)
- Selda Yildiz
- Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta Georgia USA
| | - Suraj Thyagaraj
- Department of Mechanical Engineering, Conquer Chiari Research Center; University of Akron; Akron Ohio USA
| | - Ning Jin
- MR R&D Collaborations; Siemens Healthcare; Columbus Ohio USA
| | - Xiaodong Zhong
- MR R&D Collaborations; Siemens Healthcare; Atlanta Georgia USA
- Department of Radiology; Emory University; Atlanta Georgia USA
| | - Soroush Heidari Pahlavian
- Department of Mechanical Engineering, Conquer Chiari Research Center; University of Akron; Akron Ohio USA
| | - Bryn A. Martin
- Department of Biological Engineering; University of Idaho; Moscow Idaho USA
| | - Francis Loth
- Department of Mechanical Engineering, Conquer Chiari Research Center; University of Akron; Akron Ohio USA
| | - John Oshinski
- Department of Radiology & Imaging Sciences and Biomedical Engineering; Emory University; Atlanta Georgia USA
| | - Karim G. Sabra
- Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta Georgia USA
| |
Collapse
|
16
|
Heidari Pahlavian S, Bunck AC, Thyagaraj S, Giese D, Loth F, Hedderich DM, Kröger JR, Martin BA. Accuracy of 4D Flow Measurement of Cerebrospinal Fluid Dynamics in the Cervical Spine: An In Vitro Verification Against Numerical Simulation. Ann Biomed Eng 2016; 44:3202-3214. [PMID: 27043214 PMCID: PMC5050060 DOI: 10.1007/s10439-016-1602-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/29/2016] [Indexed: 11/30/2022]
Abstract
Abnormal alterations in cerebrospinal fluid (CSF) flow are thought to play an important role in pathophysiology of various craniospinal disorders such as hydrocephalus and Chiari malformation. Three directional phase contrast MRI (4D Flow) has been proposed as one method for quantification of the CSF dynamics in healthy and disease states, but prior to further implementation of this technique, its accuracy in measuring CSF velocity magnitude and distribution must be evaluated. In this study, an MR-compatible experimental platform was developed based on an anatomically detailed 3D printed model of the cervical subarachnoid space and subject specific flow boundary conditions. Accuracy of 4D Flow measurements was assessed by comparison of CSF velocities obtained within the in vitro model with the numerically predicted velocities calculated from a spatially averaged computational fluid dynamics (CFD) model based on the same geometry and flow boundary conditions. Good agreement was observed between CFD and 4D Flow in terms of spatial distribution and peak magnitude of through-plane velocities with an average difference of 7.5 and 10.6% for peak systolic and diastolic velocities, respectively. Regression analysis showed lower accuracy of 4D Flow measurement at the timeframes corresponding to low CSF flow rate and poor correlation between CFD and 4D Flow in-plane velocities.
Collapse
Affiliation(s)
- Soroush Heidari Pahlavian
- Conquer Chiari Research Center, The University of Akron, Akron, OH, USA
- Department of Mechanical Engineering, The University of Akron, Akron, OH, USA
| | - Alexander C Bunck
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Muenster, Muenster, Germany
| | - Suraj Thyagaraj
- Conquer Chiari Research Center, The University of Akron, Akron, OH, USA
- Department of Mechanical Engineering, The University of Akron, Akron, OH, USA
| | - Daniel Giese
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Francis Loth
- Conquer Chiari Research Center, The University of Akron, Akron, OH, USA
- Department of Mechanical Engineering, The University of Akron, Akron, OH, USA
| | - Dennis M Hedderich
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Jan Robert Kröger
- Department of Radiology, University Hospital of Muenster, Muenster, Germany
| | - Bryn A Martin
- Department of Biological Engineering, The University of Idaho, 875 Perimeter Drive MS 0904, Moscow, ID, 83844-0904, USA.
| |
Collapse
|
17
|
Martin BA, Yiallourou TI, Pahlavian SH, Thyagaraj S, Bunck AC, Loth F, Sheffer DB, Kröger JR, Stergiopulos N. Inter-operator Reliability of Magnetic Resonance Image-Based Computational Fluid Dynamics Prediction of Cerebrospinal Fluid Motion in the Cervical Spine. Ann Biomed Eng 2015; 44:1524-37. [PMID: 26446009 DOI: 10.1007/s10439-015-1449-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/03/2015] [Indexed: 11/30/2022]
Abstract
For the first time, inter-operator dependence of MRI based computational fluid dynamics (CFD) modeling of cerebrospinal fluid (CSF) in the cervical spinal subarachnoid space (SSS) is evaluated. In vivo MRI flow measurements and anatomy MRI images were obtained at the cervico-medullary junction of a healthy subject and a Chiari I malformation patient. 3D anatomies of the SSS were reconstructed by manual segmentation by four independent operators for both cases. CFD results were compared at nine axial locations along the SSS in terms of hydrodynamic and geometric parameters. Intraclass correlation (ICC) assessed the inter-operator agreement for each parameter over the axial locations and coefficient of variance (CV) compared the percentage of variance for each parameter between the operators. Greater operator dependence was found for the patient (0.19 < ICC < 0.99) near the craniovertebral junction compared to the healthy subject (ICC > 0.78). For the healthy subject, hydraulic diameter and Womersley number had the least variance (CV = ~2%). For the patient, peak diastolic velocity and Reynolds number had the smallest variance (CV = ~3%). These results show a high degree of inter-operator reliability for MRI-based CFD simulations of CSF flow in the cervical spine for healthy subjects and a lower degree of reliability for patients with Type I Chiari malformation.
Collapse
Affiliation(s)
- Bryn A Martin
- Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, The University of Idaho, 875 Perimeter Drive MS 0904, Moscow, ID, 83844-0904, USA.
| | - Theresia I Yiallourou
- Laboratory of Hemodynamics and Cardiovascular Technology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Soroush Heidari Pahlavian
- Department of Mechanical Engineering, Conquer Chiari Research Center, The University of Akron, Akron, OH, USA
| | - Suraj Thyagaraj
- Department of Mechanical Engineering, Conquer Chiari Research Center, The University of Akron, Akron, OH, USA
| | - Alexander C Bunck
- Department of Radiology, University Hospital of Cologne, Cologne, Germany.,Department of Clinical Radiology, University of Muenster, Münster, Germany
| | - Francis Loth
- Department of Mechanical Engineering, Conquer Chiari Research Center, The University of Akron, Akron, OH, USA
| | - Daniel B Sheffer
- Department of Biomedical Engineering, The University of Akron, Akron, OH, USA
| | - Jan Robert Kröger
- Department of Radiology, University Hospital of Cologne, Cologne, Germany.,Department of Clinical Radiology, University of Muenster, Münster, Germany
| | - Nikolaos Stergiopulos
- Laboratory of Hemodynamics and Cardiovascular Technology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|