1
|
Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, Tretiakow D, Fercho J, Jaguszewska K, Frankiewicz M, Pawłowska E, Targoński R, Szarpak Ł, Dądela K, Sabiniewicz R, Kwiatkowska J. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals-Cross-Sectional Multispecialty Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3331. [PMID: 35329016 PMCID: PMC8953417 DOI: 10.3390/ijerph19063331] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022]
Abstract
Medicine is a rapidly-evolving discipline, with progress picking up pace with each passing decade. This constant evolution results in the introduction of new tools and methods, which in turn occasionally leads to paradigm shifts across the affected medical fields. The following review attempts to showcase how 3D printing has begun to reshape and improve processes across various medical specialties and where it has the potential to make a significant impact. The current state-of-the-art, as well as real-life clinical applications of 3D printing, are reflected in the perspectives of specialists practicing in the selected disciplines, with a focus on pre-procedural planning, simulation (rehearsal) of non-routine procedures, and on medical education and training. A review of the latest multidisciplinary literature on the subject offers a general summary of the advances enabled by 3D printing. Numerous advantages and applications were found, such as gaining better insight into patient-specific anatomy, better pre-operative planning, mock simulated surgeries, simulation-based training and education, development of surgical guides and other tools, patient-specific implants, bioprinted organs or structures, and counseling of patients. It was evident that pre-procedural planning and rehearsing of unusual or difficult procedures and training of medical professionals in these procedures are extremely useful and transformative.
Collapse
Affiliation(s)
- Jarosław Meyer-Szary
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Marlon Souza Luis
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- First Doctoral School, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Szymon Mikulski
- Department of Head and Neck Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Agastya Patel
- First Doctoral School, Medical University of Gdańsk, 80-211 Gdańsk, Poland
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Finn Schulz
- University Clinical Centre in Gdańsk, 80-952 Gdańsk, Poland
| | - Dmitry Tretiakow
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Justyna Fercho
- Neurosurgery Department, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Kinga Jaguszewska
- Department of Gynecology, Obstetrics and Neonatology, Division of Gynecology and Obstetrics, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Mikołaj Frankiewicz
- Department of Urology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Ewa Pawłowska
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Radosław Targoński
- 1st Department of Cardiology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Łukasz Szarpak
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Research Unit, Maria Sklodowska-Curie Bialystok Oncology Center, 15-027 Bialystok, Poland
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katarzyna Dądela
- Department of Pediatric Cardiology, University Children's Hospital, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Robert Sabiniewicz
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Joanna Kwiatkowska
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
2
|
Wang S, Frisbie J, Keepers Z, Bolten Z, Hevaganinge A, Boctor E, Leonard S, Tokuda J, Krieger A, Siddiqui MM. The Use of Three-dimensional Visualization Techniques for Prostate Procedures: A Systematic Review. Eur Urol Focus 2020; 7:1274-1286. [PMID: 32873515 DOI: 10.1016/j.euf.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022]
Abstract
CONTEXT As an emerging technique, three-dimensional (3D) visualization has become more popular and can facilitate education, training, surgical planning, and intraoperative guidance for prostate cancer surgery. OBJECTIVE In this review, we aim to present the impact of 3D printing, virtual reality (VR), and augmented reality (AR) techniques for prostate cancer procedures, specifically prostate biopsy and radical prostatectomy (RP). EVIDENCE ACQUISITION A systematic review was performed by two investigators according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) criteria. EVIDENCE SYNTHESIS A total of 541 papers were identified in PubMed, Scopus, and Embase. Of these, 53 studies were identified for detailed review and 25 were qualified. Two more studies were identified from the references; thus, 27 studies were finally included in this systematic review. Nine papers reported on the use of 3D reconstructed models, mainly in education/training and intraoperative guidance; nine reported on VR, focusing on simulation training model and intraoperative guidance; and nine reported on AR technique with its best indication for surgical guidance in robotic RP. CONCLUSIONS Three-dimensional visualization techniques have gradually been introduced and developed in prostate procedures, and demonstrate potential utility not only for education/training, but also for surgical planning and intraoperative guidance. Prospective studies are needed to demonstrate clinical utility and validation of these technologies. PATIENT SUMMARY Despite low-quality evidence, promising signals were identified to demonstrate that three-dimensional visualization could help facilitate prostate procedures, in terms of education/training, surgical planning, and intraoperative guidance. It is still in a very early stage, and more studies need to be conducted to justify its widespread use.
Collapse
Affiliation(s)
- Shu Wang
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James Frisbie
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachery Keepers
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachary Bolten
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anjana Hevaganinge
- Bio-Imaging and Machine Vision Lab, Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Emad Boctor
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, USA; Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, USA
| | - Simon Leonard
- Laboratory for Computational Sensing and Robotics, The Johns Hopkins University, Baltimore, MD, USA
| | - Junichi Tokuda
- Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Axel Krieger
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Mohummad Minhaj Siddiqui
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Healthcare System, Baltimore, MD, USA.
| |
Collapse
|