1
|
Heerdt PM, Kheyfets VO, Oakland HT, Joseph P, Singh I. Right Ventricular Pressure Waveform Analysis-Clinical Relevance and Future Directions. J Cardiothorac Vasc Anesth 2024; 38:2433-2445. [PMID: 39025682 DOI: 10.1053/j.jvca.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024]
Abstract
Continuous measurement of pressure in the right atrium and pulmonary artery has commonly been used to monitor right ventricular function in critically ill and surgical patients. This approach is largely based upon the assumption that right atrial and pulmonary arterial pressures provide accurate surrogates for diastolic filling and peak right ventricular pressures, respectively. However, due to both technical and physiologic factors, this assumption is not always true. Accordingly, recent studies have begun to emphasize the potential clinical value of also measuring right ventricular pressure at the bedside. This has highlighted both past and emerging research demonstrating the utility of analyzing not only the amplitude of right ventricular pressure but also the shape of the pressure waveform. This brief review summarizes data demonstrating that combining conventional measurements of right ventricular pressure with variables derived from waveform shape allows for more comprehensive and ideally continuous bedside assessment of right ventricular function, particularly when combined with stroke volume measurement or 3D echocardiography, and discusses the potential use of right ventricular pressure analysis in computational models for evaluating cardiac function.
Collapse
Affiliation(s)
- Paul M Heerdt
- Department of Anesthesiology, Applied Hemodynamics, Yale School of Medicine, New Haven, CT.
| | - Vitaly O Kheyfets
- Department of Pediatrics-Critical Care Medicine, University of Colorado - Anschutz Medical Campus, Denver, CO
| | - Hannah T Oakland
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT
| | - Phillip Joseph
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT
| | - Inderjit Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT
| |
Collapse
|
2
|
Kheyfets VO, Kumar S, Heerdt PM, Ichimura K, Brown RD, Lucero M, Essafri I, Williams S, Stenmark KR, Spiekerkoetter E. Characterizing the Spatiotemporal Transcriptomic Response of the Right Ventricle to Acute Pressure Overload. Int J Mol Sci 2023; 24:9746. [PMID: 37298696 PMCID: PMC10253685 DOI: 10.3390/ijms24119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This study analyzed microarray data of right ventricular (RV) tissue from rats exposed to pulmonary embolism to understand the initial dynamic transcriptional response to mechanical stress and compare it with experimental pulmonary hypertension (PH) models. The dataset included samples harvested from 55 rats at 11 different time points or RV locations. We performed principal component analysis (PCA) to explore clusters based on spatiotemporal gene expression. Relevant pathways were identified from fast gene set enrichment analysis using PCA coefficients. The RV transcriptomic signature was measured over several time points, ranging from hours to weeks after an acute increase in mechanical stress, and was found to be highly dependent on the severity of the initial insult. Pathways enriched in the RV outflow tracts of rats at 6 weeks after severe PE share many commonalities with experimental PH models, but the transcriptomic signature at the RV apex resembles control tissue. The severity of the initial pressure overload determines the trajectory of the transcriptomic response independent of the final afterload, but this depends on the location where the tissue is biopsied. Chronic RV pressure overload due to PH appears to progress toward similar transcriptomic endpoints.
Collapse
Affiliation(s)
- Vitaly O. Kheyfets
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Sushil Kumar
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Paul M. Heerdt
- Department of Anaesthesiology, Applied Hemodynamic, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kenzo Ichimura
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - R. Dale Brown
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Melissa Lucero
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Ilham Essafri
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Sarah Williams
- Queensland Facility for Advanced Bioinformatics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kurt R. Stenmark
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Edda Spiekerkoetter
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Brown RD, Hunter KS, Li M, Frid MG, Harral J, Krafsur GM, Holt TN, Williams J, Zhang H, Riddle SR, Edwards MG, Kumar S, Hu CJ, Graham BB, Walker LA, Garry FB, Buttrick PM, Lahm T, Kheyfets VO, Hansen KC, Stenmark KR. Functional and molecular determinants of right ventricular response to severe pulmonary hypertension in a large animal model. Am J Physiol Heart Circ Physiol 2023; 324:H804-H820. [PMID: 36961489 PMCID: PMC10190846 DOI: 10.1152/ajpheart.00614.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, n = 29) or ambient normoxia (1,525 m/5,000 ft, n = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with 1) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, 2) extracellular matrix (ECM) remodeling, 3) inflammatory cell activation, and 4) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.NEW & NOTEWORTHY Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.
Collapse
Affiliation(s)
- R Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Kendall S Hunter
- Department of Bioengineering, University of Coloradoo Denver, Denver, Colorado, United States
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Julie Harral
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Greta M Krafsur
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Timothy N Holt
- Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Jason Williams
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, United States
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Suzette R Riddle
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | | | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Brian B Graham
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, California, United States
| | - Lori A Walker
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Franklyn B Garry
- Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Peter M Buttrick
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, University of Colorado Denver, Denver, Colorado, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Vitaly O Kheyfets
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
- Department of Biomedical Informatics, University of Colorado Denver, Denver, Colorado, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, United States
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| |
Collapse
|
4
|
Odeigah OO, Valdez-Jasso D, Wall ST, Sundnes J. Computational models of ventricular mechanics and adaptation in response to right-ventricular pressure overload. Front Physiol 2022; 13:948936. [PMID: 36091369 PMCID: PMC9449365 DOI: 10.3389/fphys.2022.948936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with substantial remodeling of the right ventricle (RV), which may at first be compensatory but at a later stage becomes detrimental to RV function and patient survival. Unlike the left ventricle (LV), the RV remains understudied, and with its thin-walled crescent shape, it is often modeled simply as an appendage of the LV. Furthermore, PAH diagnosis is challenging because it often leaves the LV and systemic circulation largely unaffected. Several treatment strategies such as atrial septostomy, right ventricular assist devices (RVADs) or RV resynchronization therapy have been shown to improve RV function and the quality of life in patients with PAH. However, evidence of their long-term efficacy is limited and lung transplantation is still the most effective and curative treatment option. As such, the clinical need for improved diagnosis and treatment of PAH drives a strong need for increased understanding of drivers and mechanisms of RV growth and remodeling (G&R), and more generally for targeted research into RV mechanics pathology. Computational models stand out as a valuable supplement to experimental research, offering detailed analysis of the drivers and consequences of G&R, as well as a virtual test bench for exploring and refining hypotheses of growth mechanisms. In this review we summarize the current efforts towards understanding RV G&R processes using computational approaches such as reduced-order models, three dimensional (3D) finite element (FE) models, and G&R models. In addition to an overview of the relevant literature of RV computational models, we discuss how the models have contributed to increased scientific understanding and to potential clinical treatment of PAH patients.
Collapse
Affiliation(s)
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | | | | |
Collapse
|
5
|
Tsarova K, Morgan AE, Melendres-Groves L, Ibrahim MM, Ma CL, Pan IZ, Hatton ND, Beck EM, Ferrel MN, Selzman CH, Ingram D, Alamri AK, Ratcliffe MB, Wilson BD, Ryan JJ. Imaging in Pulmonary Vascular Disease-Understanding Right Ventricle-Pulmonary Artery Coupling. Compr Physiol 2022; 12:3705-3730. [PMID: 35950653 DOI: 10.1002/cphy.c210017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The right ventricle (RV) and pulmonary arterial (PA) tree are inextricably linked, continually transferring energy back and forth in a process known as RV-PA coupling. Healthy organisms maintain this relationship in optimal balance by modulating RV contractility, pulmonary vascular resistance, and compliance to sustain RV-PA coupling through life's many physiologic challenges. Early in states of adaptation to cardiovascular disease-for example, in diastolic heart failure-RV-PA coupling is maintained via a multitude of cellular and mechanical transformations. However, with disease progression, these compensatory mechanisms fail and become maladaptive, leading to the often-fatal state of "uncoupling." Noninvasive imaging modalities, including echocardiography, magnetic resonance imaging, and computed tomography, allow us deeper insight into the state of coupling for an individual patient, providing for prognostication and potential intervention before uncoupling occurs. In this review, we discuss the physiologic foundations of RV-PA coupling, elaborate on the imaging techniques to qualify and quantify it, and correlate these fundamental principles with clinical scenarios in health and disease. © 2022 American Physiological Society. Compr Physiol 12: 1-26, 2022.
Collapse
Affiliation(s)
- Katsiaryna Tsarova
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ashley E Morgan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Lana Melendres-Groves
- Division of Pulmonary and Critical Care Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Majd M Ibrahim
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christy L Ma
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Irene Z Pan
- Department of Pharmacy, University of Utah Health, Salt Lake City, Utah, USA
| | - Nathan D Hatton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Emily M Beck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Meganne N Ferrel
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Craig H Selzman
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Dominique Ingram
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ayedh K Alamri
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | - Brent D Wilson
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Kheyfets VO, Dufva MJ, Boehm M, Tian X, Qin X, Tabakh JE, Truong U, Ivy D, Spiekerkoetter E. The left ventricle undergoes biomechanical and gene expression changes in response to increased right ventricular pressure overload. Physiol Rep 2021; 8:e14347. [PMID: 32367677 PMCID: PMC7198956 DOI: 10.14814/phy2.14347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Pulmonary hypertension (PH) results in right ventricular (RV) pressure overload and eventual failure. Current research efforts have focused on the RV while overlooking the left ventricle (LV), which is responsible for mechanically assisting the RV during contraction. The objective of this study is to evaluate the biomechanical and gene expression changes occurring in the LV due to RV pressure overload in a mouse model. Nine male mice were divided into two groups: (a) pulmonary arterial banding (PAB, N = 4) and (b) sham surgery (Sham, N = 5). Tagged and steady‐state free precision cardiac MRI was performed on each mouse at 1, 4, and 7 weeks after surgery. At/week7, the mice were euthanized following right/left heart catheterization with RV/LV tissue harvested for histology and gene expression (using RT‐PCR) studies. Compared to Sham mice, the PAB group revealed a significantly decreased LV and RV ejection fraction, and LV maximum torsion and torsion rate, within the first week after banding. In the PAB group, there was also a slight but significant increase in LV perivascular fibrosis, which suggests elevated myocardial stress. LV fibrosis was also accompanied with changes in gene expression in the hypertensive group, which was correlated with LV contractile mechanics. In fact, principal component (PC) analysis of LV gene expression effectively separated Sham and PAB mice along PC2. Changes in LV contractile mechanics were also significantly correlated with unfavorable changes in RV contractile mechanics, but a direct causal relationship was not established. In conclusion, a purely biomechanical insult of RV pressure overload resulted in biomechanical and transcriptional changes in both the RV and LV. Given that the RV relies on the LV for contractile energy assistance, considering the LV could provide prognostic and therapeutic targets for treating RV failure in PH.
Collapse
Affiliation(s)
- Vitaly O Kheyfets
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Melanie J Dufva
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Mario Boehm
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA.,German Center for Lung Research (DZL), Giessen, Germany
| | - Xuefeit Tian
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Xulei Qin
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Jennifer E Tabakh
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Uyen Truong
- Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA.,Department of Pediatrics - Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dunbar Ivy
- Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA.,Cardiovascular Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Dufva MJ, Boehm M, Ichimura K, Truong U, Qin X, Tabakh J, Hunter KS, Ivy D, Spiekerkoetter E, Kheyfets VO. Pulmonary arterial banding in mice may be a suitable model for studies on ventricular mechanics in pediatric pulmonary arterial hypertension. J Cardiovasc Magn Reson 2021; 23:66. [PMID: 34078382 PMCID: PMC8173855 DOI: 10.1186/s12968-021-00759-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of interventricular mechanics in pediatric pulmonary arterial hypertension (PAH) and its relation to right ventricular (RV) dysfunction has been largely overlooked. Here, we characterize the impact of maintained pressure overload in the RV-pulmonary artery (PA) axis on myocardial strain and left ventricular (LV) mechanics in pediatric PAH patients in comparison to a preclinical PA-banding (PAB) mouse model. We hypothesize that the PAB mouse model mimics important aspects of interventricular mechanics of pediatric PAH and may be beneficial as a surrogate model for some longitudinal and interventional studies not possible in children. METHODS Balanced steady-state free precession (bSSFP) cardiovascular magnetic resonance (CMR) images of 18 PAH and 17 healthy (control) pediatric subjects were retrospectively analyzed using CMR feature-tracking (FT) software to compute measurements of myocardial strain. Furthermore, myocardial tagged-CMR images were also analyzed for each subject using harmonic phase flow analysis to derive LV torsion rate. Within 48 h of CMR, PAH patients underwent right heart catheterization (RHC) for measurement of PA/RV pressures, and to compute RV end-systolic elastance (RV_Ees, a measure of load-independent contractility). Surgical PAB was performed on mice to induce RV pressure overload and myocardial remodeling. bSSFP-CMR, tagged CMR, and intra-cardiac catheterization were performed on 12 PAB and 9 control mice (Sham) 7 weeks after surgery with identical post-processing as in the aforementioned patient studies. RV_Ees was assessed via the single beat method. RESULTS LV torsion rate was significantly reduced under hypertensive conditions in both PAB mice (p = 0.004) and pediatric PAH patients (p < 0.001). This decrease in LV torsion rate correlated significantly with a decrease in RV_Ees in PAB (r = 0.91, p = 0.05) and PAH subjects (r = 0.51, p = 0.04). In order to compare combined metrics of LV torsion rate and strain parameters principal component analysis (PCA) was used. PCA revealed grouping of PAH patients with PAB mice and control subjects with Sham mice. Similar to LV torsion rate, LV global peak circumferential, radial, and longitudinal strain were significantly (p < 0.05) reduced under hypertensive conditions in both PAB mice and children with PAH. CONCLUSIONS The PAB mouse model resembles PAH-associated myocardial mechanics and may provide a potential model to study mechanisms of RV/LV interdependency.
Collapse
Affiliation(s)
- Melanie J Dufva
- Department of Bioengineering, University of Colorado Denver, Denver, CO, USA.
- Department of Pediatrics, Section of Cardiology, Childrens Hospital Colorado, Aurora, CO, USA.
- Department of Bioengineering, University of Colorado Denver, 12700 E. 19th Ave, Aurora, CO, 80045-2560, USA.
| | - Mario Boehm
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University Giessen, German Center for Lung Research (DZL), Giessen, Germany
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Kenzo Ichimura
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Uyen Truong
- Department of Pediatrics, Section of Cardiology, Childrens Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, Section of Cardiology, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, VA, USA
| | - Xulei Qin
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Jennifer Tabakh
- Department of Bioengineering, University of Colorado Denver, Denver, CO, USA
| | - Kendall S Hunter
- Department of Bioengineering, University of Colorado Denver, Denver, CO, USA
- Department of Pediatrics, Section of Cardiology, Childrens Hospital Colorado, Aurora, CO, USA
| | - Dunbar Ivy
- Department of Pediatrics, Section of Cardiology, Childrens Hospital Colorado, Aurora, CO, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Vitaly O Kheyfets
- Department of Bioengineering, University of Colorado Denver, Denver, CO, USA
- Department of Pediatrics, Section of Cardiology, Childrens Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
8
|
Sharifi Kia D, Kim K, Simon MA. Current Understanding of the Right Ventricle Structure and Function in Pulmonary Arterial Hypertension. Front Physiol 2021; 12:641310. [PMID: 34122125 PMCID: PMC8194310 DOI: 10.3389/fphys.2021.641310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease resulting in increased right ventricular (RV) afterload and RV remodeling. PAH results in altered RV structure and function at different scales from organ-level hemodynamics to tissue-level biomechanical properties, fiber-level architecture, and cardiomyocyte-level contractility. Biomechanical analysis of RV pathophysiology has drawn significant attention over the past years and recent work has found a close link between RV biomechanics and physiological function. Building upon previously developed techniques, biomechanical studies have employed multi-scale analysis frameworks to investigate the underlying mechanisms of RV remodeling in PAH and effects of potential therapeutic interventions on these mechanisms. In this review, we discuss the current understanding of RV structure and function in PAH, highlighting the findings from recent studies on the biomechanics of RV remodeling at organ, tissue, fiber, and cellular levels. Recent progress in understanding the underlying mechanisms of RV remodeling in PAH, and effects of potential therapeutics, will be highlighted from a biomechanical perspective. The clinical relevance of RV biomechanics in PAH will be discussed, followed by addressing the current knowledge gaps and providing suggested directions for future research.
Collapse
Affiliation(s)
- Danial Sharifi Kia
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh - University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marc A Simon
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Pewowaruk RJ, Barton GP, Johnson C, Ralphe JC, Francois CJ, Lamers L, Roldán-Alzate A. Stent interventions for pulmonary artery stenosis improve bi-ventricular flow efficiency in a swine model. J Cardiovasc Magn Reson 2021; 23:13. [PMID: 33627121 PMCID: PMC7905680 DOI: 10.1186/s12968-021-00709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Branch pulmonary artery (PA) stenosis (PAS) commonly occurs in patients with congenital heart disease (CHD). Prior studies have documented technical success and clinical outcomes of PA stent interventions for PAS but the impact of PA stent interventions on ventricular function is unknown. The objective of this study was to utilize 4D flow cardiovascular magnetic resonance (CMR) to better understand the impact of PAS and PA stenting on ventricular contraction and ventricular flow in a swine model of unilateral branch PA stenosis. METHODS 18 swine (4 sham, 4 untreated left PAS, 10 PAS stent intervention) underwent right heart catheterization and CMR at 20 weeks age (55 kg). CMR included ventricular strain analysis and 4D flow CMR. RESULTS 4D flow CMR measured inefficient right ventricular (RV) and left ventricular (LV) flow patterns in the PAS group (RV non-dimensional (n.d.) vorticity: sham 82 ± 47, PAS 120 ± 47; LV n.d. vorticity: sham 57 ± 5, PAS 78 ± 15 p < 0.01) despite the PAS group having normal heart rate, ejection fraction and end-diastolic volume. The intervention group demonstrated increased ejection fraction that resulted in more efficient ventricular flow compared to untreated PAS (RV n.d. vorticity: 59 ± 12 p < 0.01; LV n.d. vorticity: 41 ± 7 p < 0.001). CONCLUSION These results describe previously unknown consequences of PAS on ventricular function in an animal model of unilateral PA stenosis and show that PA stent interventions improve ventricular flow efficiency. This study also highlights the sensitivity of 4D flow CMR biomarkers to detect earlier ventricular dysfunction assisting in identification of patients who may benefit from PAS interventions.
Collapse
MESH Headings
- Animals
- Computed Tomography Angiography
- Disease Models, Animal
- Endovascular Procedures/instrumentation
- Magnetic Resonance Imaging, Cine
- Myocardial Contraction
- Myocardial Perfusion Imaging
- Pulmonary Artery/diagnostic imaging
- Pulmonary Artery/physiopathology
- Recovery of Function
- Stenosis, Pulmonary Artery/diagnostic imaging
- Stenosis, Pulmonary Artery/physiopathology
- Stenosis, Pulmonary Artery/therapy
- Stents
- Sus scrofa
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/therapy
- Ventricular Function, Left
- Ventricular Function, Right
Collapse
Affiliation(s)
- Ryan J Pewowaruk
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gregory P Barton
- University of Wisconsin-Madison, Madison, WI, USA
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Cody Johnson
- University of Wisconsin-Madison, Madison, WI, USA
| | - J Carter Ralphe
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Division of Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher J Francois
- University of Wisconsin-Madison, Madison, WI, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Luke Lamers
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Division of Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison, Madison, WI, USA
- Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Multiscale modeling of ventricular–vascular dysfunction in pulmonary arterial hypertension. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|