1
|
Hammond C, Williams S, Vega M, Ao D, Li G, Salati R, Pariser K, Shourijeh M, Habib A, Patten C, Fregly B. The Neuromusculoskeletal Modeling Pipeline: MATLAB-based Model Personalization and Treatment Optimization Functionality for OpenSim. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620965. [PMID: 39605512 PMCID: PMC11601422 DOI: 10.1101/2024.10.30.620965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuromusculoskeletal injuries including osteoarthritis, stroke, spinal cord injury, and traumatic brain injury affect roughly 19% of the U.S. adult population. Standardized interventions have produced suboptimal functional outcomes due to the unique treatment needs of each patient. Strides have been made to utilize computational models to develop personalized treatments, but researchers and clinicians have yet to cross the "valley of death" between fundamental research and clinical usefulness. This article introduces the Neuromusculoskeletal Modeling (NMSM) Pipeline, two MATLAB-based toolsets that add Model Personalization and Treatment Optimization functionality to OpenSim. The two toolsets facilitate computational design of individualized treatments for neuromusculoskeletal impairments through the use of personalized neuromusculoskeletal models and predictive simulation. The Model Personalization toolset contains four tools for personalizing 1) joint structure models, 2) muscle-tendon models, 3) neural control models, and 4) foot-ground contact models. The Treatment Optimization toolset contains three tools for predicting and optimizing a patient's functional outcome for different treatment options using a patient's personalized neuromusculoskeletal model with direct collocation optimal control methods. Support for user-defined cost functions and model modification functions facilitate simulation of a vast number of possible treatments. An NMSM Pipeline use case is presented for an individual post-stroke with impaired walking function, where the goal was to predict how the subject's neural control could be changed to improve walking speed without increasing metabolic cost. First the Model Personalization toolset was used to develop a personalized neuromusculoskeletal model of the subject starting from a generic OpenSim full-body model and experimental walking data (video motion capture, ground reaction, and electromyography) collected from the subject at his self-selected speed. Next the Treatment Optimization toolset was used with the personalized model to predict how the subject could recruit existing muscle synergies more effectively to reduce muscle activation disparities between the paretic and non-paretic legs. The software predicted that the subject could increase his walking speed by 60% without increasing his metabolic cost per unit time by modifying existing muscle synergy recruitment. This hypothetical treatment demonstrates how NMSM Pipeline tools could allow researchers working collaboratively with clinicians to develop personalized neuromusculoskeletal models of individual patients and to perform predictive simulations for the purpose of designing personalized treatments that maximize a patient's post-treatment functional outcome.
Collapse
|
2
|
Ao D, Fregly BJ. Comparison of synergy extrapolation and static optimization for estimating multiple unmeasured muscle activations during walking. J Neuroeng Rehabil 2024; 21:194. [PMID: 39482723 PMCID: PMC11529311 DOI: 10.1186/s12984-024-01490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Calibrated electromyography (EMG)-driven musculoskeletal models can provide insight into internal quantities (e.g., muscle forces) that are difficult or impossible to measure experimentally. However, the need for EMG data from all involved muscles presents a significant barrier to the widespread application of EMG-driven modeling methods. Synergy extrapolation (SynX) is a computational method that can estimate a single missing EMG signal with reasonable accuracy during the EMG-driven model calibration process, yet its performance in estimating a larger number of missing EMG signals remains unknown. METHODS This study assessed the accuracy with which SynX can use eight measured EMG signals to estimate muscle activations and forces associated with eight missing EMG signals in the same leg during walking while simultaneously performing EMG-driven model calibration. Experimental gait data collected from two individuals post-stroke, including 16 channels of EMG data per leg, were used to calibrate an EMG-driven musculoskeletal model, providing "gold standard" muscle activations and forces for evaluation purposes. SynX was then used to predict the muscle activations and forces associated with the eight missing EMG signals while simultaneously calibrating EMG-driven model parameter values. Due to its widespread use, static optimization (SO) applied to a scaled generic musculoskeletal model was also utilized to estimate the same muscle activations and forces. Estimation accuracy for SynX and SO was evaluated using root mean square errors (RMSE) to quantify amplitude errors and correlation coefficient r values to quantify shape similarity, each calculated with respect to "gold standard" muscle activations and forces. RESULTS On average, compared to SO, SynX with simultaneous model calibration produced significantly more accurate amplitude and shape estimates for unmeasured muscle activations (RMSE 0.08 vs. 0.15, r value 0.55 vs. 0.12) and forces (RMSE 101.3 N vs. 174.4 N, r value 0.53 vs. 0.07). SynX yielded calibrated Hill-type muscle-tendon model parameter values for all muscles and activation dynamics model parameter values for measured muscles that were similar to "gold standard" calibrated model parameter values. CONCLUSIONS These findings suggest that SynX could make it possible to calibrate EMG-driven musculoskeletal models for all important lower-extremity muscles with as few as eight carefully chosen EMG signals and eventually contribute to the design of personalized rehabilitation and surgical interventions for mobility impairments.
Collapse
Affiliation(s)
- Di Ao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Benjamin J Fregly
- Department for Mechanical Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
3
|
Wang Z, Guan X, He L, Zhu M, Bai Y. Positional Analysis of Assisting Muscles for Handling-Assisted Exoskeletons. SENSORS (BASEL, SWITZERLAND) 2024; 24:4673. [PMID: 39066070 PMCID: PMC11280825 DOI: 10.3390/s24144673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
In order to better design handling-assisted exoskeletons, it is necessary to analyze the biomechanics of human hand movements. In this study, Anybody Modeling System (AMS) simulation was used to analyze the movement state of muscles during human handling. Combined with surface electromyography (sEMG) experiments, specific analysis and verification were carried out to obtain the position of muscles that the human body needs to assist during handling. In this study, the simulation and experiment were carried out for the manual handling process. A treatment group and an experimental group were set up. This study found that the vastus medialis muscle, vastus lateralis muscle, latissimus dorsi muscle, trapezius muscle, deltoid muscle and triceps brachii muscle require more energy in the process of handling, and it is reasonable and effective to combine sEMG signals with the simulation of the musculoskeletal model to analyze the muscle condition of human movement.
Collapse
Affiliation(s)
- Zheng Wang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (L.H.); (M.Z.); (Y.B.)
| | - Xiaorong Guan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (L.H.); (M.Z.); (Y.B.)
| | - Long He
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (L.H.); (M.Z.); (Y.B.)
- Zhiyuan Research Institute, Hangzhou 310000, China
| | - Meng Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (L.H.); (M.Z.); (Y.B.)
| | - Yu Bai
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (L.H.); (M.Z.); (Y.B.)
| |
Collapse
|
4
|
Di A, Benjamin JF. Comparison of Synergy Extrapolation and Static Optimization for Estimating Multiple Unmeasured Muscle Activations during Walking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583228. [PMID: 38496460 PMCID: PMC10942366 DOI: 10.1101/2024.03.03.583228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Calibrated electromyography (EMG)-driven musculoskeletal models can provide great insight into internal quantities (e.g., muscle forces) that are difficult or impossible to measure experimentally. However, the need for EMG data from all involved muscles presents a significant barrier to the widespread application of EMG-driven modeling methods. Synergy extrapolation (SynX) is a computational method that can estimate a single missing EMG signal with reasonable accuracy during the EMG-driven model calibration process, yet its performance in estimating a larger number of missing EMG signals remains unclear. Methods This study assessed the accuracy with which SynX can use eight measured EMG signals to estimate muscle activations and forces associated with eight missing EMG signals in the same leg during walking while simultaneously performing EMG-driven model calibration. Experimental gait data collected from two individuals post-stroke, including 16 channels of EMG data per leg, were used to calibrate an EMG-driven musculoskeletal model, providing "gold standard" muscle activations and forces for evaluation purposes. SynX was then used to predict the muscle activations and forces associated with the eight missing EMG signals while simultaneously calibrating EMG-driven model parameter values. Due to its widespread use, static optimization (SO) was also utilized to estimate the same muscle activations and forces. Estimation accuracy for SynX and SO was evaluated using root mean square errors (RMSE) to quantify amplitude errors and correlation coefficient r values to quantify shape similarity, each calculated with respect to "gold standard" muscle activations and forces. Results On average, SynX produced significantly more accurate amplitude and shape estimates for unmeasured muscle activations (RMSE 0.08 vs. 0.15 , r value 0.55 vs. 0.12) and forces (RMSE 101.3 N vs. 174.4 N , r value 0.53 vs. 0.07) compared to SO. SynX yielded calibrated Hill-type muscle-tendon model parameter values for all muscles and activation dynamics model parameter values for measured muscles that were similar to "gold standard" calibrated model parameter values. Conclusions These findings suggest that SynX could make it possible to calibrate EMG-driven musculoskeletal models for all important lower-extremity muscles with as few as eight carefully chosen EMG signals and eventually contribute to the design of personalized rehabilitation and surgical interventions for mobility impairments.
Collapse
Affiliation(s)
- Ao Di
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - J Fregly Benjamin
- Department for Mechanical Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
5
|
Lauer J. Video-driven simulation of lower limb mechanical loading during aquatic exercises. J Biomech 2023; 152:111576. [PMID: 37043928 DOI: 10.1016/j.jbiomech.2023.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Understanding the mechanical demands of an exercise on the musculoskeletal system is crucial to prescribe effective training or therapeutic interventions. Yet, that knowledge is currently limited in water, mostly because of the difficulty in evaluating external resistance. Here I reconcile recent advances in 3D markerless pose and mesh estimation, biomechanical simulations, and hydrodynamic modeling, to predict lower limb mechanical loading during aquatic exercises. Simulations are driven exclusively from a single video. Fluid forces were estimated within 12.5±4.1% of the peak forces determined through computational fluid dynamics analyses, at a speed three orders of magnitude greater. In silico hip and knee resultant joint forces agreed reasonably well with in vivo instrumented implant recordings (R2=0.74) downloaded from the OrthoLoad database, both in magnitude (RMSE =251±125 N) and direction (cosine similarity = 0.92±0.09). Hip flexors, glutes, adductors, and hamstrings were the main contributors to hip joint compressive forces (40.4±12.7%, 25.6±9.7%, 14.2±4.8%, 13.0±8.2%, respectively), while knee compressive forces were mostly produced by the gastrocnemius (39.1±15.9%) and vasti (29.4±13.7%). Unlike dry-land locomotion, non-hip- and non-knee-spanning muscles provided little to no offloading effect via dynamic coupling. This noninvasive method has the potential to standardize the reporting of exercise intensity, inform the design of rehabilitation protocols and improve their reproducibility.
Collapse
Affiliation(s)
- Jessy Lauer
- Neuro-X Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
6
|
Li G, Ao D, Vega MM, Shourijeh MS, Zandiyeh P, Chang SH, Lewis VO, Dunbar NJ, Babazadeh-Naseri A, Baines AJ, Fregly BJ. A computational method for estimating trunk muscle activations during gait using lower extremity muscle synergies. Front Bioeng Biotechnol 2022; 10:964359. [PMID: 36582837 PMCID: PMC9792665 DOI: 10.3389/fbioe.2022.964359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
One of the surgical treatments for pelvic sarcoma is the restoration of hip function with a custom pelvic prosthesis after cancerous tumor removal. The orthopedic oncologist and orthopedic implant company must make numerous often subjective decisions regarding the design of the pelvic surgery and custom pelvic prosthesis. Using personalized musculoskeletal computer models to predict post-surgery walking function and custom pelvic prosthesis loading is an emerging method for making surgical and custom prosthesis design decisions in a more objective manner. Such predictions would necessitate the estimation of forces generated by muscles spanning the lower trunk and all joints of the lower extremities. However, estimating trunk and leg muscle forces simultaneously during walking based on electromyography (EMG) data remains challenging due to the limited number of EMG channels typically used for measurement of leg muscle activity. This study developed a computational method for estimating unmeasured trunk muscle activations during walking using lower extremity muscle synergies. To facilitate the calibration of an EMG-driven model and the estimation of leg muscle activations, EMG data were collected from each leg. Using non-negative matrix factorization, muscle synergies were extracted from activations of leg muscles. On the basis of previous studies, it was hypothesized that the time-varying synergy activations were shared between the trunk and leg muscles. The synergy weights required to reconstruct the trunk muscle activations were determined through optimization. The accuracy of the synergy-based method was dependent on the number of synergies and optimization formulation. With seven synergies and an increased level of activation minimization, the estimated activations of the erector spinae were strongly correlated with their measured activity. This study created a custom full-body model by combining two existing musculoskeletal models. The model was further modified and heavily personalized to represent various aspects of the pelvic sarcoma patient, all of which contributed to the estimation of trunk muscle activations. This proposed method can facilitate the prediction of post-surgery walking function and pelvic prosthesis loading, as well as provide objective evaluations for surgical and prosthesis design decisions.
Collapse
Affiliation(s)
- Geng Li
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Di Ao
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Marleny M. Vega
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Mohammad S. Shourijeh
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Payam Zandiyeh
- Biomotion Laboratory, Department of Orthopaedic Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shuo-Hsiu Chang
- Department of Physical Medicine and Rehabilitation, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States,Neurorecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States
| | - Valerae O. Lewis
- Department of Orthopaedic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicholas J. Dunbar
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Ata Babazadeh-Naseri
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Andrew J. Baines
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Benjamin J. Fregly
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States,*Correspondence: Benjamin J. Fregly,
| |
Collapse
|
7
|
Luis I, Afschrift M, De Groote F, Gutierrez-Farewik EM. Evaluation of musculoskeletal models, scaling methods, and performance criteria for estimating muscle excitations and fiber lengths across walking speeds. Front Bioeng Biotechnol 2022; 10:1002731. [PMID: 36277379 PMCID: PMC9583830 DOI: 10.3389/fbioe.2022.1002731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Muscle-driven simulations have been widely adopted to study muscle-tendon behavior; several generic musculoskeletal models have been developed, and their biofidelity improved based on available experimental data and computational feasibility. It is, however, not clear which, if any, of these models accurately estimate muscle-tendon dynamics over a range of walking speeds. In addition, the interaction between model selection, performance criteria to solve muscle redundancy, and approaches for scaling muscle-tendon properties remain unclear. This study aims to compare estimated muscle excitations and muscle fiber lengths, qualitatively and quantitatively, from several model combinations to experimental observations. We tested three generic models proposed by Hamner et al., Rajagopal et al., and Lai-Arnold et al. in combination with performance criteria based on minimization of muscle effort to the power of 2, 3, 5, and 10, and four approaches to scale the muscle-tendon unit properties of maximum isometric force, optimal fiber length, and tendon slack length. We collected motion analysis and electromyography data in eight able-bodied subjects walking at seven speeds and compared agreement between estimated/modelled muscle excitations and observed muscle excitations from electromyography and computed normalized fiber lengths to values reported in the literature. We found that best agreement in on/off timing in vastus lateralis, vastus medialis, tibialis anterior, gastrocnemius lateralis, gastrocnemius medialis, and soleus was estimated with minimum squared muscle effort than to higher exponents, regardless of model and scaling approach. Also, minimum squared or cubed muscle effort with only a subset of muscle-tendon unit scaling approaches produced the best time-series agreement and best estimates of the increment of muscle excitation magnitude across walking speeds. There were discrepancies in estimated fiber lengths and muscle excitations among the models, with the largest discrepancy in the Hamner et al. model. The model proposed by Lai-Arnold et al. best estimated muscle excitation estimates overall, but failed to estimate realistic muscle fiber lengths, which were better estimated with the model proposed by Rajagopal et al. No single model combination estimated the most accurate muscle excitations for all muscles; commonly observed disagreements include onset delay, underestimated co-activation, and failure to estimate muscle excitation increments across walking speeds.
Collapse
Affiliation(s)
- Israel Luis
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Elena M. Gutierrez-Farewik
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Elena M. Gutierrez-Farewik,
| |
Collapse
|
8
|
Vega MM, Li G, Shourijeh MS, Ao D, Weinschenk RC, Patten C, Font-Llagunes JM, Lewis VO, Fregly BJ. Computational evaluation of psoas muscle influence on walking function following internal hemipelvectomy with reconstruction. Front Bioeng Biotechnol 2022; 10:855870. [PMID: 36246391 PMCID: PMC9559731 DOI: 10.3389/fbioe.2022.855870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
An emerging option for internal hemipelvectomy surgery is custom prosthesis reconstruction. This option typically recapitulates the resected pelvic bony anatomy with the goal of maximizing post-surgery walking function while minimizing recovery time. However, the current custom prosthesis design process does not account for the patient's post-surgery prosthesis and bone loading patterns, nor can it predict how different surgical or rehabilitation decisions (e.g., retention or removal of the psoas muscle, strengthening the psoas) will affect prosthesis durability and post-surgery walking function. These factors may contribute to the high observed failure rate for custom pelvic prostheses, discouraging orthopedic oncologists from pursuing this valuable treatment option. One possibility for addressing this problem is to simulate the complex interaction between surgical and rehabilitation decisions, post-surgery walking function, and custom pelvic prosthesis design using patient-specific neuromusculoskeletal models. As a first step toward developing this capability, this study used a personalized neuromusculoskeletal model and direct collocation optimal control to predict the impact of ipsilateral psoas muscle strength on walking function following internal hemipelvectomy with custom prosthesis reconstruction. The influence of the psoas muscle was targeted since retention of this important muscle can be surgically demanding for certain tumors, requiring additional time in the operating room. The post-surgery walking predictions emulated the most common surgical scenario encountered at MD Anderson Cancer Center in Houston. Simulated post-surgery psoas strengths included 0% (removed), 50% (weakened), 100% (maintained), and 150% (strengthened) of the pre-surgery value. However, only the 100% and 150% cases successfully converged to a complete gait cycle. When post-surgery psoas strength was maintained, clinical gait features were predicted, including increased stance width, decreased stride length, and increased lumbar bending towards the operated side. Furthermore, when post-surgery psoas strength was increased, stance width and stride length returned to pre-surgery values. These results suggest that retention and strengthening of the psoas muscle on the operated side may be important for maximizing post-surgery walking function. If future studies can validate this computational approach using post-surgery experimental walking data, the approach may eventually influence surgical, rehabilitation, and custom prosthesis design decisions to meet the unique clinical needs of pelvic sarcoma patients.
Collapse
Affiliation(s)
- Marleny M. Vega
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Geng Li
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Mohammad S. Shourijeh
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Di Ao
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Robert C. Weinschenk
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience (BRaIN) Lab, UC Davis School of Medicine, Sacramento, CA, United States
- UC Davis Center for Neuroengineering and Medicine, University of California, Davis, CA, United States
- VA Northern California Health Care System, Martinez, CA, United States
| | - Josep M. Font-Llagunes
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
- Health Technologies and Innovation, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Valerae O. Lewis
- Department of Orthopaedic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Benjamin J. Fregly
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
9
|
Ao D, Vega MM, Shourijeh MS, Patten C, Fregly BJ. EMG-driven musculoskeletal model calibration with estimation of unmeasured muscle excitations via synergy extrapolation. Front Bioeng Biotechnol 2022; 10:962959. [PMID: 36159690 PMCID: PMC9490010 DOI: 10.3389/fbioe.2022.962959] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Subject-specific electromyography (EMG)-driven musculoskeletal models that predict muscle forces have the potential to enhance our knowledge of internal biomechanics and neural control of normal and pathological movements. However, technical gaps in experimental EMG measurement, such as inaccessibility of deep muscles using surface electrodes or an insufficient number of EMG channels, can cause difficulties in collecting EMG data from muscles that contribute substantially to joint moments, thereby hindering the ability of EMG-driven models to predict muscle forces and joint moments reliably. This study presents a novel computational approach to address the problem of a small number of missing EMG signals during EMG-driven model calibration. The approach (henceforth called "synergy extrapolation" or SynX) linearly combines time-varying synergy excitations extracted from measured muscle excitations to estimate 1) unmeasured muscle excitations and 2) residual muscle excitations added to measured muscle excitations. Time-invariant synergy vector weights defining the contribution of each measured synergy excitation to all unmeasured and residual muscle excitations were calibrated simultaneously with EMG-driven model parameters through a multi-objective optimization. The cost function was formulated as a trade-off between minimizing joint moment tracking errors and minimizing unmeasured and residual muscle activation magnitudes. We developed and evaluated the approach by treating a measured fine wire EMG signal (iliopsoas) as though it were "unmeasured" for walking datasets collected from two individuals post-stroke-one high functioning and one low functioning. How well unmeasured muscle excitations and activations could be predicted with SynX was assessed quantitatively for different combinations of SynX methodological choices, including the number of synergies and categories of variability in unmeasured and residual synergy vector weights across trials. The two best methodological combinations were identified, one for analyzing experimental walking trials used for calibration and another for analyzing experimental walking trials not used for calibration or for predicting new walking motions computationally. Both methodological combinations consistently provided reliable and efficient estimates of unmeasured muscle excitations and activations, muscle forces, and joint moments across both subjects. This approach broadens the possibilities for EMG-driven calibration of muscle-tendon properties in personalized neuromusculoskeletal models and may eventually contribute to the design of personalized treatments for mobility impairments.
Collapse
Affiliation(s)
- Di Ao
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Marleny M. Vega
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Mohammad S. Shourijeh
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience (BRaIN) Lab, VA Northern California Health Care System, Martinez, CA, United States
- Department of Physical Medicine and Rehabilitation, Davis School of Medicine, University of California, Sacramento, CA, United States
| | - Benjamin J. Fregly
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
10
|
Zhao J, Yu Y, Wang X, Ma S, Sheng X, Zhu X. A musculoskeletal model driven by muscle synergy-derived excitations for hand and wrist movements. J Neural Eng 2022; 19. [PMID: 34986472 DOI: 10.1088/1741-2552/ac4851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/05/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Musculoskeletal model (MM) driven by electromyography (EMG) signals has been identified as a promising approach to predicting human motions in the control of prostheses and robots. However, muscle excitations in MMs are generally derived from the EMG signals of the targeted sensor covering the muscle, inconsistent with the fact that signals of a sensor are from multiple muscles considering signal crosstalk in actual situation. To identify more accurate muscle excitations for MM in the presence of crosstalk, we proposed a novel excitation-extracting method inspired by muscle synergy for simultaneously estimating hand and wrist movements. APPROACH Muscle excitations were firstly extracted using a two-step muscle synergy-derived method. Specifically, we calculated subject-specific muscle weighting matrix and corresponding profiles according to contributions of different muscles for movements derived from synergistic motion relation. Then, the improved excitations were used to simultaneously estimate hand and wrist movements through musculoskeletal modeling. Moreover, the offline comparison among the proposed method, traditional MM and regression methods, and an online test of the proposed method were conducted. MAIN RESULTS The offline experiments demonstrated that the proposed approach outperformed the EMG envelope-driven MM and three regression models with higher R and lower NRMSE. Furthermore, the comparison of excitations of two MMs validated the effectiveness of the proposed approach in extracting muscle excitations in the presence of crosstalk. The online test further indicated the superior performance of the proposed method than the MM driven by EMG envelopes. SIGNIFICANCE The proposed excitation-extracting method identified more accurate neural commands for MMs, providing a promising approach in rehabilitation and robot control to model the transformation from surface EMG to joint kinematics.
Collapse
Affiliation(s)
- Jiamin Zhao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, China, Shanghai, 200240, CHINA
| | - Yang Yu
- Shanghai Jiao Tong University State Key Laboratory of Mechanical System and Vibration, 800 Dongchuan RD. Minhang District, Shanghai, 200240, CHINA
| | - Xu Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, China, Shanghai, 200240, CHINA
| | - Shihan Ma
- School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, China, Shanghai, 200240, CHINA
| | - Xinjun Sheng
- School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, China, Shanghai, 200240, CHINA
| | - Xiangyang Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, China, Shanghai, 200240, CHINA
| |
Collapse
|
11
|
Sylvester AD, Lautzenheiser SG, Kramer PA. A review of musculoskeletal modelling of human locomotion. Interface Focus 2021; 11:20200060. [PMID: 34938430 DOI: 10.1098/rsfs.2020.0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Locomotion through the environment is important because movement provides access to key resources, including food, shelter and mates. Central to many locomotion-focused questions is the need to understand internal forces, particularly muscle forces and joint reactions. Musculoskeletal modelling, which typically harnesses the power of inverse dynamics, unites experimental data that are collected on living subjects with virtual models of their morphology. The inputs required for producing good musculoskeletal models include body geometry, muscle parameters, motion variables and ground reaction forces. This methodological approach is critically informed by both biological anthropology, with its focus on variation in human form and function, and mechanical engineering, with a focus on the application of Newtonian mechanics to current problems. Here, we demonstrate the application of a musculoskeletal modelling approach to human walking using the data of a single male subject. Furthermore, we discuss the decisions required to build the model, including how to customize the musculoskeletal model, and suggest cautions that both biological anthropologists and engineers who are interested in this topic should consider.
Collapse
Affiliation(s)
- Adam D Sylvester
- Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD 21205, USA
| | - Steven G Lautzenheiser
- Department of Anthropology, University of Washington, Denny Hall, Seattle, WA 98195, USA.,Department of Anthropology, The University of Tennessee, Strong Hall, Knoxville, TN 37996, USA
| | - Patricia Ann Kramer
- Department of Anthropology, University of Washington, Denny Hall, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Michaud F, Lamas M, Lugrís U, Cuadrado J. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait. J Neuroeng Rehabil 2021; 18:17. [PMID: 33509205 PMCID: PMC7841909 DOI: 10.1186/s12984-021-00806-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 11/15/2022] Open
Abstract
Experimental studies and EMG collections suggest that a specific strategy of muscle coordination is chosen by the central nervous system to perform a given motor task. A popular mathematical approach for solving the muscle recruitment problem is optimization. Optimization-based methods minimize or maximize some criterion (objective function or cost function) which reflects the mechanism used by the central nervous system to recruit muscles for the movement considered. The proper cost function is not known a priori, so the adequacy of the chosen function must be validated according to the obtained results. In addition of the many criteria proposed, several physiological representations of the musculotendon actuator dynamics (that prescribe constraints for the forces) along with different musculoskeletal models can be found in the literature, which hinders the selection of the best neuromusculotendon model for each application. Seeking to provide a fair base for comparison, this study measures the efficiency and accuracy of: (i) four different criteria within the static optimization approach (where the physiological character of the muscle, which affects the constraints of the forces, is not considered); (ii) three physiological representations of the musculotendon actuator dynamics: activation dynamics with elastic tendon, simplified activation dynamics with rigid tendon and rigid tendon without activation dynamics; (iii) a synergy-based method; all of them within the framework of inverse-dynamics based optimization. Motion/force/EMG gait analyses were performed on ten healthy subjects. A musculoskeletal model of the right leg actuated by 43 Hill-type muscles was scaled to each subject and used to calculate joint moments, musculotendon kinematics and moment arms. Muscle activations were then estimated using the different approaches, and these estimates were compared with EMG measurements. Although no significant differences were obtained with all the methods at statistical level, it must be pointed out that a higher complexity of the method does not guarantee better results, as the best correlations with experimental values were obtained with two simplified approaches: the static optimization and the physiological approach with simplified activation dynamics and rigid tendon, both using the sum of the squares of muscle forces as objective function.
Collapse
Affiliation(s)
- Florian Michaud
- Laboratory of Mechanical Engineering, University of La Coruña, Ferrol, Spain.
| | - Mario Lamas
- Laboratory of Mechanical Engineering, University of La Coruña, Ferrol, Spain
| | - Urbano Lugrís
- Laboratory of Mechanical Engineering, University of La Coruña, Ferrol, Spain
| | - Javier Cuadrado
- Laboratory of Mechanical Engineering, University of La Coruña, Ferrol, Spain
| |
Collapse
|
13
|
Li G, Shourijeh MS, Ao D, Patten C, Fregly BJ. How Well Do Commonly Used Co-contraction Indices Approximate Lower Limb Joint Stiffness Trends During Gait for Individuals Post-stroke? Front Bioeng Biotechnol 2021; 8:588908. [PMID: 33490046 PMCID: PMC7817819 DOI: 10.3389/fbioe.2020.588908] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Muscle co-contraction generates joint stiffness to improve stability and accuracy during limb movement but at the expense of higher energetic cost. However, quantification of joint stiffness is difficult using either experimental or computational means. In contrast, quantification of muscle co-contraction using an EMG-based Co-Contraction Index (CCI) is easier and may offer an alternative for estimating joint stiffness. This study investigated the feasibility of using two common CCIs to approximate lower limb joint stiffness trends during gait. Calibrated EMG-driven lower extremity musculoskeletal models constructed for two individuals post-stroke were used to generate the quantities required for CCI calculations and model-based estimation of joint stiffness. CCIs were calculated for various combinations of antagonist muscle pairs based on two common CCI formulations: Rudolph et al. (2000) (CCI1) and Falconer and Winter (1985) (CCI2). CCI1 measures antagonist muscle activation relative to not only total activation of agonist plus antagonist muscles but also agonist muscle activation, while CCI2 measures antagonist muscle activation relative to only total muscle activation. We computed the correlation between these two CCIs and model-based estimates of sagittal plane joint stiffness for the hip, knee, and ankle of both legs. Although we observed moderate to strong correlations between some CCI formulations and corresponding joint stiffness, these associations were highly dependent on the methodological choices made for CCI computation. Specifically, we found that: (1) CCI1 was generally more correlated with joint stiffness than was CCI2, (2) CCI calculation using EMG signals with calibrated electromechanical delay generally yielded the best correlations with joint stiffness, and (3) choice of antagonist muscle pairs significantly influenced CCI correlation with joint stiffness. By providing guidance on how methodological choices influence CCI correlation with joint stiffness trends, this study may facilitate a simpler alternate approach for studying joint stiffness during human movement.
Collapse
Affiliation(s)
- Geng Li
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Mohammad S Shourijeh
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Di Ao
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Benjamin J Fregly
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
14
|
Ao D, Shourijeh MS, Patten C, Fregly BJ. Evaluation of Synergy Extrapolation for Predicting Unmeasured Muscle Excitations from Measured Muscle Synergies. Front Comput Neurosci 2020; 14:588943. [PMID: 33343322 PMCID: PMC7746870 DOI: 10.3389/fncom.2020.588943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Electromyography (EMG)-driven musculoskeletal modeling relies on high-quality measurements of muscle electrical activity to estimate muscle forces. However, a critical challenge for practical deployment of this approach is missing EMG data from muscles that contribute substantially to joint moments. This situation may arise due to either the inability to measure deep muscles with surface electrodes or the lack of a sufficient number of EMG channels. Muscle synergy analysis (MSA) is a dimensionality reduction approach that decomposes a large number of muscle excitations into a small number of time-varying synergy excitations along with time-invariant synergy weights that define the contribution of each synergy excitation to all muscle excitations. This study evaluates how well missing muscle excitations can be predicted using synergy excitations extracted from muscles with available EMG data (henceforth called "synergy extrapolation" or SynX). The method was evaluated using a gait data set collected from a stroke survivor walking on an instrumented treadmill at self-selected and fastest-comfortable speeds. The evaluation process started with full calibration of a lower-body EMG-driven model using 16 measured EMG channels (collected using surface and fine wire electrodes) per leg. One fine wire EMG channel (either iliopsoas or adductor longus) was then treated as unmeasured. The synergy weights associated with the unmeasured muscle excitation were predicted by solving a nonlinear optimization problem where the errors between inverse dynamics and EMG-driven joint moments were minimized. The prediction process was performed for different synergy analysis algorithms (principal component analysis and non-negative matrix factorization), EMG normalization methods, and numbers of synergies. SynX performance was most influenced by the choice of synergy analysis algorithm and number of synergies. Principal component analysis with five or six synergies consistently predicted unmeasured muscle excitations the most accurately and with the greatest robustness to EMG normalization method. Furthermore, the associated joint moment matching accuracy was comparable to that produced by initial EMG-driven model calibration using all 16 EMG channels per leg. SynX may facilitate the assessment of human neuromuscular control and biomechanics when important EMG signals are missing.
Collapse
Affiliation(s)
- Di Ao
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Mohammad S. Shourijeh
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience (BRaIN) Lab, VA Northern California Health Care System, Martinez, CA, United States
- Department of Physical Medicine and Rehabilitation, Davis School of Medicine, University of California, Sacramento, CA, United States
| | - Benjamin J. Fregly
- Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
15
|
Arones MM, Shourijeh MS, Patten C, Fregly BJ. Musculoskeletal Model Personalization Affects Metabolic Cost Estimates for Walking. Front Bioeng Biotechnol 2020; 8:588925. [PMID: 33324623 PMCID: PMC7725798 DOI: 10.3389/fbioe.2020.588925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Assessment of metabolic cost as a metric for human performance has expanded across various fields within the scientific, clinical, and engineering communities. As an alternative to measuring metabolic cost experimentally, musculoskeletal models incorporating metabolic cost models have been developed. However, to utilize these models for practical applications, the accuracy of their metabolic cost predictions requires improvement. Previous studies have reported the benefits of using personalized musculoskeletal models for various applications, yet no study has evaluated how model personalization affects metabolic cost estimation. This study investigated the effect of musculoskeletal model personalization on estimates of metabolic cost of transport (CoT) during post-stroke walking using three commonly used metabolic cost models. We analyzed walking data previously collected from two male stroke survivors with right-sided hemiparesis. The three metabolic cost models were implemented within three musculoskeletal modeling approaches involving different levels of personalization. The first approach used a scaled generic OpenSim model and found muscle activations via static optimization (SOGen). The second approach used a personalized electromyographic (EMG)-driven musculoskeletal model with personalized functional axes but found muscle activations via static optimization (SOCal). The third approach used the same personalized EMG-driven model but calculated muscle activations directly from EMG data (EMGCal). For each approach, the muscle activation estimates were used to calculate each subject's CoT at different gait speeds using three metabolic cost models (Umberger et al., 2003; Bhargava et al., 2004; Umberger, 2010). The calculated CoT values were compared with published CoT data as a function of walking speed, step length asymmetry, stance time asymmetry, double support time asymmetry, and severity of motor impairment (i.e., Fugl-Meyer score). Overall, only SOCal and EMGCal with the Bhargava metabolic cost model were able to reproduce accurately published experimental trends between CoT and various clinical measures of walking asymmetry post-stroke. Tuning of the parameters in the different metabolic cost models could potentially resolve the observed CoT magnitude differences between model predictions and experimental measurements. Realistic CoT predictions may allow researchers to predict human performance, surgical outcomes, and rehabilitation outcomes reliably using computational simulations.
Collapse
Affiliation(s)
- Marleny M. Arones
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | | | - Carolynn Patten
- Department of Physical Medicine and Rehabilitation, University of California, Davis, Davis, CA, United States
| | - Benjamin J. Fregly
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
16
|
Michaud F, Shourijeh MS, Fregly BJ, Cuadrado J. Do Muscle Synergies Improve Optimization Prediction of Muscle Activations During Gait? Front Comput Neurosci 2020; 14:54. [PMID: 32754024 PMCID: PMC7366793 DOI: 10.3389/fncom.2020.00054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/18/2020] [Indexed: 11/16/2022] Open
Abstract
Determination of muscle forces during motion can help to understand motor control, assess pathological movement, diagnose neuromuscular disorders, or estimate joint loads. Difficulty of in vivo measurement made computational analysis become a common alternative in which, as several muscles serve each degree of freedom, the muscle redundancy problem must be solved. Unlike static optimization (SO), synergy optimization (SynO) couples muscle activations across all time frames, thereby altering estimated muscle co-contraction. This study explores whether the use of a muscle synergy structure within an SO framework improves prediction of muscle activations during walking. A motion/force/electromyography (EMG) gait analysis was performed on five healthy subjects. A musculoskeletal model of the right leg actuated by 43 Hill-type muscles was scaled to each subject and used to calculate joint moments, muscle–tendon kinematics, and moment arms. Muscle activations were then estimated using SynO with two to six synergies and traditional SO, and these estimates were compared with EMG measurements. Synergy optimization neither improved SO prediction of experimental activation patterns nor provided SO exact matching of joint moments. Finally, synergy analysis was performed on SO estimated activations, being found that the reconstructed activations produced poor matching of experimental activations and joint moments. As conclusion, it can be said that, although SynO did not improve prediction of muscle activations during gait, its reduced dimensional control space could be beneficial for applications such as functional electrical stimulation or motion control and prediction.
Collapse
Affiliation(s)
- Florian Michaud
- Laboratory of Mechanical Engineering, University of La Coruña, Escuela Politecnica Superior, Ferrol, Spain
| | - Mohammad S Shourijeh
- Rice Computational Neuromechanics Laboratory, Rice University, Houston, TX, United States
| | - Benjamin J Fregly
- Rice Computational Neuromechanics Laboratory, Rice University, Houston, TX, United States
| | - Javier Cuadrado
- Laboratory of Mechanical Engineering, University of La Coruña, Escuela Politecnica Superior, Ferrol, Spain
| |
Collapse
|